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A Reduced-form Model
incorporating Fundamental Variables

Abstract

This paper proposes a reduced-form model of corporate debt, by taking into ac-
count stochastic interest rates, a firm’s equity values, and hazard rates of default.
We innovatively introduce structural characteristics of the firm into the model.
Distinguishing features of the model are fourfold. Firstly, the model is able to
capture the effects of economic fundamentals on properties of credit spreads. Sec-
ondly, it preserves a high degree of flexibility in generating credit spreads. Thirdly,
the analytical and tractable form of the model enhances its empirical applicability.

Finally, the model can easily be generalized to deal with counterparty default risk.

JEL Classification: G12, G13
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The valuation of corporate debt is central to theoretical and empirical work in corpo-
rate finance. The literature on pricing risky debt has evolved in two main directions: the
structural approach and the reduced-form approach. Pioneered by Merton (1974), the
structural approach has taken the dynamics of the assets of the issuing firm as given, and
priced corporate bonds as contingent claims on the assets. Assuming a constant interest
rate economy, Merton’s model provides an important insight into the determinants of
the risk structure, and shows how the default risk premium is affected by changes in the
firm’s business risk, debt maturity, and the prevailing interest rate.

Black and Cox (1976) and Geske (1977) provide generalizations that take into account
the effects of coupon and bond indenture provisions. The application of stochastic
interest rates in the valuation of corporate debt using Merton’s (1974) framework is
discussed in Shimko, Tjima, and Van Deventer (1993). Longstaff and Schwartz (1995a)
adapt Black and Cox’s (1976) model to a more realistic setting. Firstly, they allow
interest rates to be stochastic, with dynamics proposed by Vasicek (1977). Secondly,
they do not require the recovery rate to be equal to the boundary value upon first
passage, but assume an exogenously given rate of face value K. Thirdly, the default
boundary is assumed to be K. This approach explicitly allows for deviations from
absolute priority.

By introducing bankruptcy costs and tax effects, the framework has been extended to
a richer extent, taking into account issues in corporate finance. Examples that consider
endogenous capital structure, liquidation policy, re-capitalization, and re-organization
of debt include Brennan and Schwartz (1984), Leland (1994, 1998), Leland and Toft
(1996), Anderson and Sundaresan (1996), and Mella-Baral and Perruadin (1997). These
models allow for endogenous default, optimally determined by equity holders when asset
levels fall to a sufficiently low level.

A recent paper by Collin-Dufresne and Goldstein (2001) employs a structural ap-



proach to investigate the effects of a firm’s capital structure on debt pricing. They
propose a structural model of default with stochastic interest rates and the firm’s asset
values that captures mean-reverting feature of leverage ratios. Effectively, their model
allows for an amount of debt to be issued in the future when the firm’s asset values in-
crease. They derive the value of a risky discount bond in the form of an infinite series in
line with Longstaff and Schwartz’s (1995) model. The levels of credit spread generated
appear to be more consistent with empirical findings.

The structural approach to the valuation of risky debt has been criticized for not
being able to generate sufficient credit spreads for small maturities of debt. Although
these structural models can answer questions about the implications for debt pricing
in changes of firm-specific variables such as debt restructuring, this important feature
is compromised by their inability to generate realistic credit spreads for short maturity
bonds. In practice, even for small maturities, the market does not neglect the possibility
that some disaster may happen. As noted in Kim, Ramaswamy, and Sundaresan (1993),
realistic values of leverage and the volatility of the value of firm asset seem incapable of
producing the credit spreads that are actually observed in the market.

In contrast to the structural models, the literature has adopted an alternative ap-
proach that offers a high degree of tractability for credit risky bonds. This reduced-form
approach bypasses the complications of handling a firm’s economic fundamentals, and
deals directly with market prices and spreads. The method involves relating default
time to the stopping time of an exogenously given hazard rate process. Models in this
area include those of Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull (1994),
Lando (1995), Madan and Unal (1998), Duffee (1999), and Duffie and Singleton (1999).

There have been many applications of Duffie and Singleton’s (1999) framework in the
literature. Lando (1998) illustrates how doubly stochastic Poisson processes, also known

as Cox processes, can be applied to model prices of financial instruments in which credit



risk is a significant factor. The idea is based on Duffie and Singleton’s (1999) model
with the specification of a hazard rate process as a Cox process. Because of the general
nature of Cox processes, Lando’s (1998) approach allows default characteristics of firms,
such as rating transitions to be captured into his model.

Duffie and Huang (1996) apply Duffie and Singleton’s model to price swaps with
counterparties of different default risks. A switching-type, default-adjusted short rate
process is used depending on whether the swap value is positive or negative. Asymmetric
default risk of the counterparties and non-linearity of promised cash flows are then
explored in their paper. Another application of Duffie and Singleton’s (1999) model is
a recent paper by Jarrow and Yu (2001). The paper studies the impact of counterparty
default risk on the pricing of defaultable securities, where correlated defaults due to an
exposure of common risk factors and firm-specific risks are considered. As with Duffie
and Huang’s (1996) model, Jarrow and Yu (2001) specify in their models switching-
type hazard rate processes depending on which counterparties have gone bankrupt. In
principle, a framework with multiple layers of counterparty relationship can potentially
be applied to pricing defaultable securities.

A major advantage of reduced-form models is that they provide us with a model
that is close to the data; it is always possible to fit some version of the model. However,
the fitted model may not perform well on “out of sample” analysis. Another potential
drawback in the construction of an underlying hazard rate process is that these models
lack a connection of a firm’s economic fundamentals to default events. As a consequence,
these models provide no guidance of structural interpretation in the changes of firm-
specific variables. Firm-specific risk and financial fundamentals are not evaluated and
may even be ignored.

In addition to the basic incompatibility in the default mechanisms of the two ap-

proaches discussed by Wong and Hodges (2001), there is another key theoretical differ-



ence between them. A structural model completely rules out the use of a hazard rate
process that is common in the reduced-form approach, and such a structural model im-
plies a hazard rate that would be zero before default and infinite at default. Madan and
Unal (1998) have come up with a reduced-form model whose hazard rate process concurs
with the diffusion-based structural approach in this respect. However, the model still
lacks an interpretation of a firm’s structural characteristics.

To capture the effects of capital structure, a hybrid-type model has been suggested in
the literature. Madan and Unal (2000) propose a two-factor hazard rate model to price
risky debt. Consistent with the hazard rate literature, the probability of sudden default
is governed by the hazard rate. They derive the hazard rate function endogenously
in terms of the firm’s non-interest sensitive asset values and default-free interest rates.
Assuming that default follows a Poisson arrival rate and loss in the case of default
has a cumulative distribution function, they come up with a structural definition of
the hazard rate process as a product of the two quantities. Though the structural
approach is appealing, they fail to obtain an exact analytical solution for the bond
price. Instead, an analytical approximation is derived after they express the hazard
rate function as a first-order approximation of its Taylor expansion. Other attempts to
introduce structural properties into the reduced-form framework include Cathcart and
El-Jahel (1998), Jarrow (2000), Jarrow and Turnbull (2000), and Hiibner (2001). In this
paper, we extend their results by incorporating current and lagged effects of individual
stocks into the pricing of corporate bonds.

This paper proposes a reduced-form model of corporate debt by taking into account
stochastic interest rates, a firm’s asset values, and hazard rates of default. Consistent
with the literature of the reduced-form models, we assume that default can only happen
unexpectedly. As in Duffie and Singleton (1999) and Duffee’s (1999) work, we take

a hazard rate process as exogenously given. Unlike those models, there is a crucial



distinction in the specification of the process in our model. We introduce structural
characteristics of the firm into the hazard rate process, through a factor providing a
measure of a firm’s performance in equity. The use of such a measure has two important
features. Firstly, instead of solely using a firm’s current value as conventional Merton-
type models do, we take the past performance of the firm into account. Unlike Madan
and Unal (2000), we employ relative values of observable equity prices to measure a
firm’s performance as well as leverage effect. Secondly, having high equity values alone
may not necessarily be a good indicator of a firm’s creditworthiness. In our model, we
take a broader view of the financial health of a firm by considering the current asset
level relative to its past positions. The debt becomes more risky when the relative levels
are lower, whereas when the relative levels are higher, the debt becomes safer. As a
consequence, a peculiar feature of financial markets that news on corporate earnings is
normally reflected in equity prices first, and then bond prices, can be captured in our
model.

The objectives of this paper are as follows. We seek to propose a flexible model of
corporate debt in analytical form. The structural characteristics of a firm and stochastic
interest rates are taken into account. Our crucial assumption is that the default hazard
of the firm, unlike the structural approach, depends on the current relative price of eq-
uity to its recent past levels. We consider a moving average of logarithm of recent stock
prices. The use of this measure is an innovative idea that allows economic fundamentals
of the firm to be captured in the hazard rate process, and hence bond prices. Three
features are noteworthy. Firstly, as with other structural models, we show the struc-
tural impact of interest rate movements and their correlation with equity returns on the
pricing of risky debt. For example, we demonstrate that the levels of spread increase
with interest rate volatility, equity return volatility, and the correlation. Secondly, as a

reduced-form model, the model preserves a high degree of flexibility in generating credit



spreads. Numerical computations show that the model is flexible enough to generate
many different term structures of credit spreads by using appropriately chosen parame-
ters. We investigate analytically how parameter values affect the shape of credit spread
curve in terms of its intercept, slope at zero maturity, and spread level for long maturity.
Finally, the analytical and tractable form of the model enables researchers to undertake
comparative statics and enhance its empirical applicability.

The paper is divided into seven sections. In the next section, we state in advance
a main result of this paper. We postpone detailed discussion of economic implications
and construction of underlying processes to Section II and III. Section IV shows the
short- and long-term behaviour of credit spreads, and their relationships to the struc-
tural characteristics of the firm. Emphasis is placed on the flexibility of the model in
generating credit spreads in relation to model parameters. Section V shows how we can
extend the model to deal with counterparty default risk, whose impact on credit spreads

is also presented. Finally, we conclude in Section VI with a summary and a discussion

of further research.

I The Model

For ease of exposition, we state in advance the solution of our model in this section, and
postpone detailed discussion of economic implications and construction of underlying
processes to Section II and III. We consider a risky zero-coupon bond of unit face value
and maturity date 7. The default-free interest rate process is 7,. Consistent with Duffie
and Singleton (1999), we suppose that default occurs randomly, and that the risky debt
has a risk-neutral short spread process s;. We also allow economic fundamentals of the
firm to be captured in the short spread, through a process Y;. For construction and

interpretations of processes s; and Y;, please refer to Section III.



Given that these processes s;, Y3, and r; have the following affine representations (x):

dry = k. (0, — ) dt + o, dBj,
(*) 4 dY; = (ri — Yy — 02/2 — a) dt + o,p dB] + 0,+/1 — p? dB¢, and
dsy = (80n + knst + 0knyY: + Okpers)dt + 604 dBY + 604sdB] + 04V/8,/5:d B,
where Bf, Bf, and B} are independent standard Brownian motions, then as in Duffie
and Kan (1996), we assume that the bond price can be expressed in exponential-affine

form in terms of the three factors. The time-ty price, D(ty,T), of the risky bond is of

the form:

D(ty,T) = exp (A(to,T) + Bi(to, T)st, + Ba(to, T)Ys, + B3(t07T)7'to)- (1)
Now we state a main result in this paper as follows:

Proposition 1 Suppose that the bond price satisfies equation (1). Then
2[1 — e~ Vi +20E (1))

(VR — )+ (VR 2097 + e VBT

By(to,T) = Okpy / : e~ B, (u, T)du,

to

B]_ (to, T) =

T
Bs(to,T) = — / gFr(u=to) [1—6kh,Bl(u,T)—B2(u,T)]du, and

to

T
1
Alt, T) = /t (60031 (u, T) = (02/2 + @) By(u, T) + k6, By(u, T) + 50% Bofu, T’
0
2

1 0
+ §afB3(u, T)* + 5(0,":, + 02,)Bi1(u, T)? + 0,604 B1 (u, T) Bs(u, T)
+ 0,0,pB2(u, T)Bs3(u,T) + 6(050hrp + 05057/ 1 — p?) By (u, T)

X Bs(u, T)] du,

where By(to,T), Bs(to,T) are expressible in terms of a hypergeometric function and its

integrals.

Proof. See Appendix A. =



Proposition 1 shows that the bond price has an analytical form which can be ex-
pressed in terms of hypergeometric functions of the type 2Fi(-,-,-, ). In addition to
tractability, the analytical form of the model also enables us to undertake comparative
statics analysis and empirical research. Furthermore, the influences of interest rates, a
firm’s economic fundamentals, as well as the probabilities of default are synthesized into

the price of the risky debt in equation (1).

IT The Framework

In this section, we set out an overall structure of the model. We assume a frictionless
economy with a prevailing default-free interest rate r;. Under a risk-neutral measure,

the evolution of the short rate follows a Vasicek process (1977):
drs = k. (0, — 1) dt + o, dBj, (2)

where B] is a standard Brownian motion under the risk-neutral measure, %, is the speed
at which the interest rate r; tends to its long term mean 6,, and o, is the volatility of
changes in the instantaneous interest rate.

We consider a firm whose equity has value S;, which follows a diffusion process with

constant volatility of rate of return:

dS:/Ss = (r1 — a) dt + osp dB} + 051/1 — p? dB;, 3)

where B; is another standard Brownian motion under the same measure, and is inde-
pendent of B}, a is the total dividend rate to shareholders, o, is the volatility of equity
returns, and p is the correlation between the increments of r; and the instantaneous
returns of equity.

We consider a risky zero-coupon bond, issued by the firm, of unit face value and

maturity date T. Consistent with Duffie and Singleton (1999), we suppose that default



occurs at a random time 7, 7 < T, and that the corresponding risk-neutral hazard rate
process is h;. Assuming that in the event of default, the mean fractional loss of the
market value of the claim is a constant §, where 0 < § < 1, then the short spread can

be expressed as:! 2

St = 6ht (4)

According to Duffie and Singleton (1999), the time-ty price, D(ty, T), of the risky bond
is of the following form:

T

Dl(to, T) = By, [exp(— R, du) X], (5)

to
where R; = r; + s;. The intuition behind the model is as follows. By discounting at
the adjusted short rate R;, the model accounts for both the probability and timing of
default, as well as for the loss effects on default. Furthermore, the bond corresponds to
having a thinned default intensity dh;, and a recovery rate of zero in the event of default.
Hence the bond can be valued alternatively as in the Cox process case in Lando (1998).

Before we prove Proposition 1, we need to specify other processes through which
the firm’s economic fundamentals are incorporated into the model. The next section

achieves this by relating the equity prices to the instantaneous hazard rate.

1There are four different formulations of the loss function suggested in the literature: the default
pay-off is either a fraction of (i) par (Madan and Unal (1998)), (ii) of par plus accrued interest (J.P.
Morgan (1999) and Jarrow and Turnbull (2000)), (iii) of a risk-free bond with the same structure of
cash flows (Jarrow and Turnbull (1995)), and (iv) of the market value of the security just prior to
default (Duffie and Singleton (1999)). In this paper, we adopt Duffie and Singleton’s (1999) approach

and assume that the loss rate is a constant fraction of the bond price immediately before default.
2The mean loss rate is heavily dependent on the seniority of the bond.
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IIT Modeling of the Hazard Rate Process

Having high equity values alone may not necessarily provide a good indicator of firm’s
creditworthiness. Directors of a firm may consider issuing more debt after realizing an
increase in the firm’s asset values, but the increase in debt levels would bring extra risk
into the firm’s capital structure. On the contrary, they may consider reducing debt levels
by issuing new equity when realising a continual decline in the equity prices, the firm’s
debt-equity ratio would subsequently be lowered. This observation is consistent with
Malitz’s (1994) findings that bond covenants typically allow directors to have a degree
of flexibility in changing the debt levels in the future.

In our model, we take a broader view of the financial health of the firm to allow for
such a dynamic restructuring of capital structure, by considering the current equity level
relative to its past positions. The debt becomes more risky when the relative levels are
lower; when the relative levels are higher, the debt becomes safer. With this motivation,

we consider a continuous moving average M; of log(S;):
dM, = o log(S,) - M) dt, (6)

where o > 0 is a smoothing parameter. Note that instead of taking averages of the
equity prices, we define M; as the continuous moving average of log(S;) for the sake of

tractability. To solve equation (6) for ¢ > s > 0, we have the following expression:
t
M, = e=t=9 0, + / ae=t=") 10g(S,) du. )
S

This variable has been employed in the literature of bond pricing and stochastic
volatility models. Instead of using equity prices, Collin-Dufresne and Goldstein (2001)
structure a log-default threshold in a similar way by considering a firm’s asset values.
Tompkins (2000) has shown that the exponentially-weighted return series of futures

prices on a stock index is significantly related to the volatility of the futures prices, and

11



hence leverage effect.> Equation (7) is a straightforward generalization of exponential
moving average models in discrete case. This expression shows that the moving average
M; depends on the equity in two manners: (i) the equity prices before time s, and
(¢4) those entering the system from time s to t. More precisely, M; is a continuous
exponentially-weighted mean of its value at time s and all values of log(S,) between
time s and ¢, for which the weights are e~(~%) and 1 — e~o(t~9) respectively. It is
evident that the higher the value of ¢, the more the moving average is dependent on the
recent values of equity price. The value of @ must be chosen to ensure that the current
value of M; does not depend overwhelmingly on those in the past. We will show later
in this paper how the choice of o affects the term structure of credit spreads.

We define a measure of the relative levels of equity price as:
Y, = log(S) — M.

This variable measures how far log(S;) is from its recent mean level, and provides an
attribute to indicate the firm’s business outlook. Since, as documented in Kwan (1996),
both current and lagged values of equity return have been shown to have impact on
changes in bond yields, we incorporate these empirical properties into our model and
postulate that the structural characteristics of the firm enter into the prices of risky

bond through the process Y; in the following way:
dhy = (9h + knhy + ktht + khrrt)dt + O'thBZ + O'hsdBf + O'h\/]'Ttng, (8)

where B} is a standard Brownian motion independent of B! and Bj. Using equation

(4), the short spread s; follows the following process:

dsy = (60 + knss + 6knyYy -+ Okpyre)dt + S0 dBE + 604,dB; + 1,V/8,/5:dBr. (9)

3Tompkins (2000) uses this variable as an attribute to measure leverage effect. He found that recent

relative prices are negatively correlated to the series of 20-day unconditional volatility of stock index
futures. This result is consistent with the negative leverage effects that Christie (1982) has pointed out
for individual stocks.

12



It is interesting to note the role of Y; in the processes (8) and (9). The presence of the
process Y; is a structural difference between the short spread process (9) and many others
that have been suggested in the literature. For example, Duffee (1999) applies Duffie
and Singleton’s (1999) idea to fit yields on bonds issued by individual investment-grade
firms to a reduced-form model, in which no factors of firm’s economic fundamentals are

taken into account.* Four important features are captured in our setting:

(i) Both the hazard rate and the short spread are modeled as square-root processes.’
We know from the work of Longstaff and Schwartz (1995b) that credit spread dis-
plays a significant amount of stability. To be consistent with this property, a mean
reverting feature of credit spreads is incorporated into the model by specifying

kp < 0;

(ii) As documented in Duffee (1998), yield spreads for high-quality firms are positive,

‘Duffee (1999) considers a three-factor model in which the instantaneous, default-free short rate
process 73 is assumed to be a linear combination of two square-root diffusion processes. Short spread
st is modeled as another linear combination of three square-root diffusions, where two of them are the
same as those in the short rate process. No factors of firm’s economic fundamentals are taken into
account. An analytical form of solution for bond prices is obtained. Although empirical results appear
to be encouraging as the average error in fitting corporate bond yields is less than 10 basis points,
Duffie and Singleton (1999) argue that the models used by Duffee (1999) are theoretically incapable of
capturing the negative correlation between credit spreads and U.S. Treasury yields while maintaining
non-negative default hazard rates. They succeed in coming up with an alternative model with more
flexible correlation structures for (¢, s¢), but the system cannot be solved analytically for bond prices.

We discuss a method of solution for our model in Appendix A.
®In this formulation, the risk-neutral hazard-rate and short spread processes can become negative.

However, it can be shown by Monte-Carlo simulations that when 8, is sufficiently large, it is unlikely for
the processes to hit 0. In particular, for the numerical examples in this paper, Monte-Carlo simulations
show that if we assume that the true hazard rate process is of the form: h} = maz{h¢, 0}, then our model
tends to underestimate the true levels of credit spreads by no more than 10 basis points. Therefore,

given the tractability of the subsequent expressions, this is an acceptable approximation.
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even at the short end of spread curve. This suggests that there is a positive spread

at zero maturity, which is s;; = dhy, in the model;

(iii) The short spreads are stochastic, fluctuating with the firm’s structural character-
istics, captured by Y;. It is interesting to note that any latent variable with the
same structural and mathematical properties can be employed in the place of Y;;

and

(iv) The short spreads can be structured to be systematically related to variations in

the default-free term structure, as documented in empirical literature.®

It is important to investigate the properties of processes (8) and (9) in relation to
the process Y;, o, and other parameters. Recall that M; is defined as a mean of M, and
log(S,) from time s to ¢, weighted by e~*(=%) and 1 —e~2(*~9) respectively. A noticeable
feature is that the contribution of M, becomes negligible when «(t — s) is large. The
larger the value of o, the more significant contribution of the second term to the overall
average M;. As a consequence, the averaging is mainly performed on log(S,) from time
s to t. ‘An intuition is that when equity prices are continually rising, ¥; tends to be
positive. However, when equity prices are continually declining, Y; tends to be negative.
Such a property of Y; provides us with a clue as to the appropriate signs of k;, and
krr. To capture the property of negative correlation between the interest rate r; and the
short spread s;, we specify that kny, knr < 0. On the other hand, a positive value of
onr induces positive correlation between the increments of r; and s;. By construction,
this model also has a fairly high degree of flexibility in correlation structures. We will
discuss the flexibility of the model further in Section IV.

Before we finish this section, we state in the following proposition that the speci-

fication of Y; is affine. Hence, together with previous results, we have structured the

6See Duffee (1998), and Longstaff and Schwartz (1995a) for empirical justifications.

14



framework in terms of the three main processes, ¢, s;, and Y;, in affine representations.

We are now ready to present a proof of Proposition 1 (see Appendix A).
Proposition 2 The process Y; satisfies the following stochastic differential equation:
dY; = (ry — aY¥; — 02/2 — a) dt + g,p dB] + 0,+/1 — p? dB;. (10)
Proof. Rewrite process (3) as
dlog(Sy) = (r; — 02/2 — a) dt + g5p dBf + 0,1/1 — p? dB;.

By definitions of Y; and M, the result follows. m

IV Properties of Credit Spreads

To better understand the impacts of the underlying processes on risky debt, we conduct
an analysis of credit spreads as follows. Let the credit spread s(tg,T’) be the difference
in yields between the risky bond D(t,T") and default free bond B(t,T). Then

log ( B(to, T)/D(ts,T))
T —1 ’

S (t(], T) =
where

B(ty,T) = exp ( — By(to, T)re, + w2 - ik,

(Bo(to,T) —T+t0)(k72.9r —0'72./2) UEBO(thT)2)

1— e—kr (T—to)

BO (tO') T) Lk

By proposition 1, credit spread s(tp,T) is of the following form:

Alt,T) Bi(to,T)  Bs(te,T).,  Balto,T)
- = Sto - to Tty
T—t%,  T—¢t T — 1, T—1,
_Bo(to, T) . (Bolto, T)/(T —to) — 1)(k76, — 07/2)
Tty ™ k2
07 Bo(to, T)* (11)
Ak, (T — to)

S(to, T)
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It is evident that the spread s(tp,T") is a linear function depending on the current
states of economy, 74, s;, and Y;,. The role of Y;, in the spread function appears to
concur with a finding in the work of Kwan (1996) that current bond yield changes are
negatively correlated with the issuing firm’s current and lagged stock returns, and so
firm-specific information tends to be embedded first into individual stock prices and then
reflected in individual bond prices. Furthermore, the linear relationship of our model
can potentially capture both the specific and systematic risks of the firm. This is an
important point, as shown in Elton, Gruber, Agrawal, and Mann (2000), that the most
significant components of credit spreads result from expected default risk, taxes, and
systematic risk in the stock market.”

To evaluate the effects of the three factors on the yield spreads, we state the short

and long-term properties of the spread function s(tp,7") in the following proposition:
Proposition 3 The spread function s(ty,T) has the following properties:

(i) Short-term level of spreads s(to,to) = dhy,,

(i) Short-term slope of the spread curve = 80, + knSty + Okny Yz + OknrTs,,

(iii) Long-term properties of s(ty,T) are stationary, and

. 1 1 52
Aim s(to,T) = —06ply + (02/2+a)ly — 50313 - '2‘0313 - E(U?Lr + oyl
—0, 004, lils — 0,05plals — 8(050nrp + 050nsy/1 — p?)lily
k20, — o2/2
—k: 0,13 — 2

r

where

ll = =

k2 +2002 —ky,’

"Elton, et al. (2000) show that almost all of the differences between government and corporate credit

yields are explained by expected default risk, taxes, and systematic risk. We neglect tax effects in our

discount bond model.
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Okl
lp = =22 and

1, Gkl I
=—p+5 + 2

Proof. See Appendix B. m

As discussed in Section III, our model preserves the property that the short-term
spreads are positive. This is the case if the firm has a non-zero loss rate and positive
default hazard for short maturity debt. More interestingly, the slope of short-term spread
is a linear combination of initial values of zero maturity spread, interest rate, and the
relative position of the equity price to its average of past equity levels. The dependence
of the current state of economy allows us to generate richer term structures of credit
spread. Assuming that 0, > 0, &, kpy, and kp, < 0, the spread curve tends to be upward
(or download) sloping when Y;, < 0 (or Y, > 0). This concurs with our intuition that
there is a tendency for the spreads to rise when a firm’s equity is continually declining.
On the contrary, when the firm’s equity is continually rising, the spreads tend to be
sloping downward. On the other hand, the current interest rates have similar effects
on the slope of short term spreads. Such empirical properties have been documented
in Duffee (1998), who demonstrates that non-callable bond yield spreads fall when the
levels of Treasury term structure rises. Furthermore, the extent of the decline depends
on the initial credit quality of the bond. Duffee (1998) shows that the decline is small
for high-grade bonds and large for low-grade bonds. By appropriate choices of &y, khy,
knr, and Y3y, the model appears to have a high degree of flexibility in reconciling these
empirical results. For long-term debt, the levels of spread are stationary and independent
of the current states of economy. The spread levels depend only on the present estimates
of parameters. For example, it is trivial to observe that the levels of long-term spread
increase with the value of 6.

In the following, we illustrate the model by numerical results. In order to study the

properties of credit spreads, we consider a particular case of the model with a base case
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environment in which the parameters take the following values: k. = 0.2, 6, = 0.06,
o, = 0.031, a = 0.07, 0, = 0.2, p = 0.1, 6, = 0.03, kp, = —1, kpy = —0.2, ky = 0,
Ohr =0, 00 = 0,0, =02, =1, =0.5, t, = 0, hy, = 0.02, Y;, =0, and ¢, = 0.05.
In this case, we are assuming Y;, = 0, that there are no particular substantial upward
or downward movements in recent equity prices. Also we specify the model in such a
way that while it becomes simpler as &y, = 0, op = 0, and o3, = 0, it is rich enough to
capture a negative correlation between the interest rate and the spread movements.

[Please Insert Figure 1 Here.]

[Please Insert Figure 2 Here.]

[Please Insert Figure 3 Here.]

Figures 1, 2, and 3 illustrate structural properties of the model. The plots show that
the movements of spread are similar to those of Merton-type frameworks, as documented,
for example, in Shimko, Tjima, and Van Deventer (1993). Figure 1 shows that the levels
of spread tend to increase with the correlation. Figure 3 shows that equity return
volatility has a significant impact on the levels of credit spread. The effects of equity
volatility tend to increase the spreads through the Y;, term. Furthermore, interest rate
volatility has a similar effect on spread levels.

The effects of o are demonstrated in Figures 4 and 5. Figure 4 shows that in the case
where there is a recent decline in equity prices and « is increasing, the spreads tend to
move toward to the level of spread (dashed line with dots) generated in the case where
kny = 0. Similar results are shown in Figure 5, where equity prices are assumed to be
continually rising. The rationale behind this is as follows. Recall that the higher the
value of a, the greater the dependence of the moving average on the recent values of
equity price. When « is increasing, the value of Y; tends to move to zero, and hence the
effects of Y; in the hazard rate process and short rate process vanish.

Figures 4 and 5 also illustrate that the spread curves tend to be upward (or down-
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ward) sloping when the equity prices are continually declining (or rising). The result is
trivial as, by Proposition 3, the slope of a spread curve at short maturity is negatively
related to Y;,. Furthermore, it appears that the terms Y; in processes (8) and (9) have
another importance in generating spread curves with a humped shape. Numerical com-
putations show that this is likely to be the case, as the slope at short maturity tends to
be positive when equity prices are recently declining.

[Please Insert Figure 4 Here.]

[Please Insert Figure 5 Here.]

V  An Extension: A Model with Counterparty De-
fault Risk

It is interesting to see how we can extend our model to deal with the default risk of
firm’s counterparty. In this section, we introduce this element of risk into the model by
employing the ideas in Jarrow and Yu (2001). We consider a simple primary-secondary
framework of two firms, A and B. Firm A is a primary firm whose default process depends
only on macro-variables. Firm B is a secondary firm having default process dependent
on the macro-variables and the default probability of firm A. This assumption can be
taken to mean that firm B is holding a significant amount of long (or short) positions
of assets issued by firm A, and firm A is not holding any firm B’s equity or debt. In
principle, default processes of the two firms should be correlated. However, we intend to
weaken this assumption, as we are only concerned with the impact of firm A’s default
risk on the credit spread of a bond issued by firm B. For the sake of technical simplicity,

we assume that firm A has a constant default rate process,

hi =ht >0,
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and the default rate process hf of firm B consists of two parts relating to: (i) its own
economic fundamentals, and (ii) a default hazard induced by the default hazard of firm
A. We define A2 as

he = by + pliracy,

where 74 is the default time of firm A, and h, is defined by equation (8) and p > 0
(or p < 0) is a constant. The interpretation of this equation is that firm B is holding
some assets issued by firm A, and the default of firm A increases (or decreases) the
instantaneous hazard rate of firm B. Furthermore, we can relate the value of p to the
nature of underlying assets, since a portfolio of holding a significant amount of long
(or short) positions of firm A’s assets is normally associated with a large positive (or
negative) value of p. Assuming that debt issued by firm B has a loss rate § of its market
value in the event of default,® then the short spread process of firm B’s debt is of the
following form:

sf = 8§t + 0pliracy,

where s; is defined by equation (9). This equation means that the short spread increases
(or decreases) by an amount of dp after firm A have gone bankrupt. The price of a

discount bond with a unit face value issued by firm B is then:

T
DP(t0,T) = Dltn, T) By [ exp(— [ dplracay )], (12
to

if firm B has not defaulted by time ¢,. By construction, as A% is assumed to be constant,
the bond price can be separated into a product of two parts. The first part is exactly
the same as the solution given in equation (1) and Proposition 1. The second part of the
price is entirely due to the risk of holding the portfolio of firm A’s assets. The following
proposition shows how the default risks of firm A affect the credit spread of firm B’s

debt.

8This assumption on the loss of market value is different from Jarrow and Yu’s (2001) approach .

They assume that the loss rate is a fraction of face value and final payoff is always made at maturity.
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Proposition 4 Assuming that the above conditions hold, and that both firm A and B
have not defaulted by time ty, then

(i) the bond price D®(ty,T) of firm B is given by equation (12), where

5pe—hA(T—-to)_hAe——ép(T—to)

3p—hA if B4 # 0p
e M T~ [RA(T — tg) + 1] if h* = bp.

T
Ei, [exp(—/ 0Pl A<y du)] =
to

(i) The credit spread sB(ty, T) of the risky bond is of the form:
SB(t(JaT) = S(tUaT) + CSA(t(),T),

where s(ty, T') is given by equation (11), CSA(ty,T) is a component of the total
spread, due to the default risk of firm A only, and

A
-1 log (Jpe—h (T—to)_hAe—ap<T~to)) if hA £ 8p
CSA(te, T) =4 ™ to=h”

s (a0 1) 1=t

Furthermore, CS4(ty, T) has the following properties:

lim CS4(ty,T) = 0, and

T-—)t(",'

fl}im CS%(to,T) = Min{h*,dp}.
—00

Proof. See Appendix C. m

Proposition 4 shows that the default risk of counterparty A has an impact on the
credit spread of firm B’s debt. Interestingly, the effect is small when the maturity is
short; when the maturity is long, an additional amount of Min{h4,dp} adds to the
level s(tg,T) of the spreads. The short-end property of the credit spreads is due to the
assumption that firm A has not yet defaulted at the issue time ;. This implies that the
zero maturity level of spread curve remains the same as s;, = dhy,. The effect of default
risk of the counterparty becomes prominent only for debt of longer maturities. At the

long end of the spread curve, the spread level C.S4(ty, T) is positive if p > 0 when firm B
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is holding the portfolio of long positions of firm A’s assets. The spread level CS4(ty, T)
is negative if p < 0 when the holding is largely short positions of firm A’s assets.

The long-term properties of the counterparty default risk have an economic impli-
cation that can be visualised in the following situations. When the counterparty A has
very high hazard of default, firm B would prefer to choose a portfolio in such a way
that the value of p is minimized, for example, by maintaining an optimal composition of
long and short positions of firm A’s assets in the portfolio. On the contrary, when the
counterparty A has a very small hazard rate, it would be safe for firm B to hold a large
portfolio of firm A’s assets. Figure 6 shows the term structures of the spread level C'S4
for different values of p. Note that the spread curves C'S4(ty,T) increase more steeply
for larger values of p.

[Please Insert Figure 6 Here.]

V1 Conclusion

The literature on pricing risky debt has evolved in two main directions: the structural
approach and the reduced-form approach. The two approaches have pros and cons.
Although appealing, structural models have been criticized for not being able to gen-
erate sufficient credit spreads for small maturities of debt. The models’ reliance on
economic fundamentals and the value of a firm’s asset make them hard to estimate in
practice. On the contrary, the reduced-form approach has a major advantage in that
it provides us with a model of very high tractability and ease of calibration. However,
most reduced-form models have a structural drawback that lacks a connection between
a firm’s economic fundamentals and default events, although some suggestions for im-
provement have been put forward in the literature. This motivates us to propose in
this paper the flexible analytical model which provides a compromise between the two

approaches.
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Our model of corporate debt has taken into account stochastic interest rates, a firm'’s
asset values, and hazard rates of default. Consistent with the literature of the reduced-
form models, we have assumed that default can only happen unexpectedly. As in Duffie
and Singleton (1999) and Duffee (1999), we take a hazard rate process as exogenously
given. Unlike those models, there is a crucial and innovative distinction in the specifi-
cation of the process in our model. We have introduced structural characteristics of the
firm into the hazard rate process, through a moving average providing a measure of the
firm’s performance in equity as well as its leverage effect. Furthermore, our model also
has a fairly high degree of flexibility in correlation structures.

The model has another four important features. Firstly, instead of solely using
a firm’s current value as the conventional Merton-type and recent Madan and Unal’s
(2000) models do, we take a broader view of the financial health of the firm by considering
the current asset level relative to its past positions. The implication of this is that the
debt becomes more risky when the relative levels are lower. When the relative levels are
higher, the debt becomes safer. As with other structural models, we have shown that
our model is able to capture the effects of economic fundamentals on properties of credit
spreads. For example, in a simplified version of the model, we have demonstrated that
the levels of spread increase with interest rate volatility, equity return volatility, and the
correlation.

Secondly, our model preserves a high degree of flexibility in generating credit spreads.
Numerical computations have shown that the model is flexible enough to generate many
different term structures of credit spreads by using appropriately chosen parameters.
We have investigated analytically how parameter values affect the shape of the credit
spread curve, in terms of its intercept, slope at zero maturity, and spread level for long
maturity.

Thirdly, the analytical and tractable form of the model enables researchers to under-
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take comparative statics and enhance its empirical applicability.

Fourthly, as an interesting extension, we have demonstrated how we can generalize
our model to deal with the default risk of a counterparty. Although in a simple setting, we
believe that the extended model has captured essential features of counterparty default
risk, whose properties have been shown to have an economic implication in holding a
portfolio of assets issued by the counterparty.

The analytical tractability of the model has another advantage. Given the value
of the market loss rate d, we are able to estimate other model parameters, and hence
compute analytically survival probabilities of firms. However, as shown in Duffie and
Singleton (1999), if 6 is unknown and has to be estimated from data, we also have the
same identification problem of the market loss rate 6 and the hazard rate process h;
from our model. Jarrow (2001) develops a procedure for segregating the two variables
by using equity and bond prices. While it remains to be seen whether Jarrow’s idea can
be justified by empirical work, the modeling of survival probabilities of firms in terms
of hazard rate processes is an important area of research in credit risk analysis. More
importantly, by linking the hazard rate processes to underlying fundamental variables,
the result may provide us with deeper insights into understanding the default mechanism.

Finally, the flexibility of our model also paves the way for further generalizations.
For example, the modeling of a framework with several counterparties and the pricing

of credit default swaps are attractive avenues for further work.
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Figure 1: Credit spread surface as a function of maturity 7 and correlation p.
This figure shows the term structures of credit spreads of a risky discount bond with different
values of correlation p: k. = 0.2, 8, = 0.06, 0, = 0.031, a = 0.07, 05, = 0.2, 6, = 0.03, k, = —1,
kny = —0.2, kpr = 0, opr = 0, ops =0, 0, = 0.2, a =1, § = 0.5, ty = 0, hyy = 0.02, ¥;, =0,
and 7, = 0.05, unless stated otherwise.
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Figure 2: Credit spread surface as a function of maturity 7" and interest rate
volatility o,. This figure shows the term structures of credit spreads of a risky discount
bond with different values of interest rate volatility o,: k, = 0.2, 6, = 0.06, a = 0.07, 0, = 0.2,
p=0.1, 60, =003, ky = -1, kpy = —0.2, kpy =0, 0pr =0, 045 =0, 0, = 0.2, a = 1, § = 0.5,
to =0, hyy = 0.02, Yz, =0, and ¢, = 0.05, unless stated otherwise.
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Figure 3: Credit spread surface as a function of maturity T and equity return
volatility o,. This figure shows the term structures of credit spreads of a risky discount
bond with different values of equity return volatility o,: k. = 0.2, 8, = 0.06, o = 0.031,
a=0.07, p=0.1, 6, =0.03, kp, = =1, kpy = —0.2, kp, =0, opy =0, 045 =0, 0, =02, a =1,

0 =0.5, to =0, hyy = 0.02, Y;, =0, and 74, = 0.05, unless stated otherwise.
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Figure 4: Term structures of credit spread for different values of o when
Y:, < 0. This figure shows the term structures of credit spreads of a risky discount bond with
different values of a: (i) o = 1 (solid line), (ii) @ = 2 (short dashed line), (iii) @ = 10 (long -
dashed line), (iv) kpy = O (dashed line with dots). Parameter values: k. = 0.2, 8, = 0.06,
or = 0.031, a = 0.07, 05, = 0.2, p = 0.1, 6 = 0.03, kp, = —1, kpy = —0.2, kp, = 0, op, =0,
ops =0,0,=02,a0a=1,6=0.5,t =0, hy; =0.02, Y3, =

= —0.3, and ¢, = 0.05, unless stated
otherwise.
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Figure 5: Term structures of credit spread for different values of o when
Y;, > 0. This figure shows the term structures of credit spreads of a risky discount bond with
different values of oz (i) a = 1 (solid line), (ii) @ = 2 (short dashed line), (iii) @ = 10 (long
dashed line), (iv) kpy = 0 (dashed line with dots). Parameter values: k. = 0.2, 6, = 0.06,
or =0.031, a = 0.07, 05 = 0.2, p = 0.1, 6 = 0.03, kp = —1, kpy = —0.2, kpr =0, opr =0,

ops =0,0,=02,a0=1,6=0.5t =0, hy; =0.02, Y3, = 4+0.3, and r, = 0.05, unless stated

otherwise.
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Figure 6: Term structures of credit spread CS4(ty,T) for different values of p.
This figure shows the term structures of credit spreads due to the default risk of firm A for

different values of p: (i) p = 0.02 (solid line), (ii) p = 0.03 (short dashed line), and (iii) p =
0.04 (long dashed line). Parameter values: h4 = 0.01, § = 0.5, and ¢, = 0.
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Appendices

A Proof of Proposition 1

Proof. Given the three affine processes s;, Y;, and r; as in (%), by Duffie and Kan
[1996], we can express the solution in the form of the equation (1). For equation (5) to
satisfy the corresponding backward Kolmogorov partial differential equation,® we have

the following set of differential equations:°

0 = —1+4B.4T)+kBi(t,T) + ga%;Bl (£ T), (13)
0 = Bjy(t,T)+ 0knyBi(t,T) — aBy(t,T), (14)
0 = —1+4 By(t,T) — k.Bs(t,T) + 8k, By (t,T) + Bs(t, T), and (15)

' 1
0 = A (t, T) + 59;-,.31 (t, T) = (03/2 -+ CL)BQ(t, T) + k‘ro,-Bg(t, T) + EGEBQ(t, T)2
1 2
2B T + 2 (0 + o) But T)? + 0vbon By T)Ba(tT)  (16)

+ 0,05pB2(t,T)Bs(t,T) + 6(050hrp + 0505/ 1 — p?)B1(t, T)Bo(t, T),

with the boundary conditions A(T,T) =0, By(T,T) =0, Bo(T,T) =0, and B3(T,T) =
0. Assuming that kj, 6, op, o, and k, are positive, results follow by solving the above
system iteratively. Note that Ba(tp,T") can be expressed in terms of hypergeometric

functions of the form o Fi(:,-,-,-), and so are Bs(to,T) and A(ty,T). m

B Proof of Proposition 3

Proof. Part (i) and (ii) are trivial.

9We know from the Feynman-Kac formula that, under some technical conditions, equation (5) solves

the backward Kolmogorov partial differential equation of the problem.
10All derivatives are computed with respect to time ¢.
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For part (iii), we prove the result by using Proposition 1 and equation (11). Note

—2

that Bl(tU,T) — l1 as T — oQ, where ll = m.
Let Bs(to,T") — Iy as T — oo, where I, is independent of time ¢;. Then fort > ¢y > 0,

T
ékhy/ e~ B, (5,T) ds
7

0

t T
= Okpy / e~ (=) B, (5,T) ds + Skpy / e~ B, (5, T) ds
1 i

0

t T
= Okpy / e~#%) B, (5,T) ds + Jkp et / e~ 69 B, (s, T) ds.
to i
Taking limits on both sides, as T' — oo,

t
12 = 5khy/ e—a(s—to)ll ds + e_"(t_to)ZQ,

to

this implies that I, = ‘”c—’;ﬁ.

Similarly, we can prove that I3 = —5- + 'Sk,’g‘—:ll + ,lc—zr Hence,

T g
fori =0,1,2, and 3.
To compute limg_, AltoT) e consider

T—tp ?
[EBi(s,T) ds
lim =2 )

Note that B;(s,T) depends on s and T through their difference T — s, and that

limy_ o0 f:: Bi(s,T) ds — —oo as T' — oo. Therefore,

. j:: B1(37T) ds " 0 ¥+
111_1)130 g = 711_1)13057: \ Bi(s,T) ds
0 T
= Tll_r){.lo——a—% \ By(s,T) ds
= lim Bl(to,T)

A(t() ,T)

All remaining terms in limg_, o, =7 5, can be computed similarly. The result follows.
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C Proof of Proposition 4
Proof. Part (i): Note that for to <u < T, 1{;acy) = Lizacuyl{racr).

T
Eto[exp(—/t 0pliracy) du)]
0

= Biy | exp(—0p(T — ) 1racry))|

oo
= / e—JP(T—s)l{ng} hAe—hA(s——to)dS
to

T
= / e~ PT=) pe=h"(—to)gs / " e gs
T

to

T

_ A (hA_ _RA(T—

— / e opT+h tOhAe (h 6p)sd8+€ (T to)-
to

hA [e—hA (T—to)_e~6p(T—to)]

If 6p # h*, then the above integral becomes P . Otherwise, it

becomes e~T+h* 0o pA(T — 1), The results follow.

Part (ii) is trivial. m
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