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Abstract

We define the Bernstein copula and study its statistical properties in
terms of both distributions and densities. We also develop a theory of
approximation for multivariate distributions in terms of Bernstein copu-
lae To further motivate the introduction of this new object, we present a
simulated example in the context of portfolio optimization. Rates of con-
sistency when the Bernstein copula density is estimated nonparametrically
are given. In order of magnitude, this estimator has variance equal to the
square root of other nonparametric estimators, e.g. kernel smothers, but

it is biased as an histogram estimator.
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1 Introduction

The task of modelling multivariate distributions has always been a challenging
one. For this reason, it is very common to use elliptic distributions due to the
fact that these are simple to characterize. However, in many cases of interest in
economics, it is found that this simple characterization contrasts with empirical
evidence. A typical example are returns distributions in financial economics and
the complex range of dependence that they exhibit. Among many references,
the reader should look at Embrechts et al. (1999).

When dealing with vectors of random variables, the copula function becomes
a very useful object because it allows us to model the dependence between the
variables separately from their marginals. While the copula function is a fairly
new concept in econometrics, there has been a growing interest in financial
econometrics in these very recent years: for example, Bouye et al. (2001), Patton
(2001), Rockinger and Jondeau (2001), and Longin and Solnik (2000). The last
authors deal with multivariate extreme value theory in the context of financial
assets and use a dependence function equivalent to the copula function. The
copula has been considered elsewhere to study extreme values; see Joe (1997)
for a list of extreme value copulae.

We introduce a family of copulae defined as Bernstein polynomials. This new
representation leads to a general approach in estimation as well as simplifica-
tions of many operations whenever a parametric copula is given. Moreover, for
parametric copulae, the Bernstein representation is useful in studying properties

of the copula function itself.



There are many possible representations of continuous functions in terms of
polynomials, e.g. Hermite polynomials (the Edgeworth expansion) and Padé
approximations (the extended rational polynomials in Phillips, 1982, 1983).
However, none of these polynomial representations share the same properties
of Bernstein polynomials in the context of the copula function. We make this
clear in the text. However, just to give a hint, we can say that Bernstein polyno-
mials are closed under differentiation; for simple restrictions on the coefficients
they always lead to a proper copula function; when used for nonparametric esti-
mation, their rate of convergence in mean square error has lower variance than
other nonparametric estimators.

The plan for the paper is as follows. Section 2 introduces the Bernstein
copula and derives some of its mathematical and statistical properties. In section
2.4 we introduce the important extension of Bernstein representation of given
copulae. In order to provide further motivation for our definition, the Bernstein
copula is applied to a particular instance of portfolio optimization where the
marginals are Weibull distributions; this is done in Section 3. Issues related
to making the polynomial representation operational are deferred to section
4 where, as mentioned above, it is shown that the nonparametric Bernstein
copula density may provide some solution to the curse of dimensionality. Other
estimation procedures are possible, and discuss some, but by no means all of

the issues, in Section 5.



2 The Bernstein Copula

For expositional convenience, we recall Sklar’s representation for multivariate
distributions. Let H be a k dimensional distribution function with 1-dimensional
margins Fi, ..., Fi, then there exists a function C from the unit k-cube to the

unit cube such that
H(z1,...,2) = C (Fi(x1), ..., Fip(zk)) ;

C is referred to as the k-Copula. If each Fj is continuous, the copula is unique.
For more details and a proof see Sklar (1973).

Let o (%, s ﬁf[) be a real valued constant indexed by (v1, ..., vx) , v; € N4,
such that 0 < v; < m;. While we could simply use ay, .. v, 0 < v; < my, Vi,
for conceptual convenience we do not do so. Now, we define the object to be

studied in this paper.

Definition 1. Let

m; mj—vj mj—vj
Pv].,m,.(uj)_( )u (1= )™ 1)

Uj

If Cp:1[0,1]" —[0,1], where

U1 Uk
Cp(ug,nug) =Y .Y a <E ﬁ) Py (1) - Py, (ur),  (2)
U1 Vk
satisfies the properties of the copula function, then Cg is a Bernstein copula for
any mj > 1.

The Bernstein copula generalizes families of polynomial copulae. Polynomial

copulae are special cases of copulae with polynomial sections in one or more



variables. For the two dimensional case,
C(uy,uz) = u‘?a (ug) + u?b (ug) + uyc(ug) + d (usg)

is a proper copula for suitable choice of functions a (...), b(...), ¢(...) and d (...).
This copula has cubic sections and the just mentioned functions can be polyno-
mials. Then, they can be exactly written as a Bernstein copula. More details
on copulae with polynomial sections can be found in Nelsen (1998, ch. 3).

In order to study the properties of the Bernstein copula, it is convenient
to recall some properties of Bernstein polynomials.! We state the following as
a theorem because we could not find a reference in the literature apart from
the well known univariate case. Without loss of generality we consider the unit
hypercube instead of arbitrary compact subsets of R¥.2

Theorem 1. Let C[O’l]k be the space of bounded continuous functions in the
k dimensional hypercube [0, 1]1c . Then, the set of Bernstein polynomials defined
in (3) is dense in Cio,1)x-

Proof. See the Appendix. =

We encourage the reader to read the proof of Theorem 1 in the Appendix
before proceeding any further in order to become familiar with some properties
of Bernstein polynomials that will be assumed below. In particular, Bernstein
polynomials can be represented as a linear operator BF, such that given f €

C[O’l]k, then

(Bfnf)(X) = Z Z f <’:;L_117 - ) Pvlaml(xl)”'PUA-,mk(Ik)v (3)

)
m
v1 =0 ’L)k:O k



or in the more general singular integral representation via the Stieltjes integral

1 1
(Bzf)(X) = f(tl"'vtk)dthml (xlvtl)"'dtkak(xkvtk)v
[+]

for the kernel

En(zt) = 3 <’:>xv(1x)m_v7

v<mt

K (x,0) 0,

which is constant for 2 <t < “tL and has jumps of (7")x?(1 —2)™ ¥ at points
t = —. This representation establishes some clear parallels to kernel density
estimation in statistics. This idea is implicitly exploited in Section 4.
Throughout, we reserve the symbols Cg, C;, and C' for the Bernstein copula,
the empircal copula based on n observations, and a general copula, respectively,
and use cp for the Bernstein copula density; definitions will be given in due

course. For simplicity, m; = m Vj. Therefore, the letters m and n are only used

to define the order of polynomial and the sample size, respectively.

2.1 Some Properties of the Bernstein Copula

We list some properties of C's in common with all other copulae:
(1) Cp is increasing in all its arguments. Notice that throughout the paper, we
use increasing to mean nondecreasing;

(2) Cp satisfies the Fréchet bounds, i.e.
min (0,u1 + ... +ux — (k= 1)) < Cp (u1,...,ux) < min (uy, ..., ur),

which implies Cp is grounded: i.e. Cg(u1,...,ux) = 0 if u; = 0 for at least one

J,and Cg(1,...,1,u;,1,...,1) = uj, Vj;



k

(3) II w; is a copula for independent random variables, i.e. the product copula;
j=1

(4) Cp is Lipschitz, i.e.
k
|ICB (1, k) — CB (Y1, Yi)| < Z|1'j — Yl
j=1
In light of these properties, the next result shows related properties specific to

the Bernstein copula

Theorem 2. Cg (uy,...,ux) is a Bernstein copula if and only if

1 1
S S (et (”1 tho et l’“) >0 @)
m m

and

m m m m m m

in particular

lim a(ﬂ%) —0, Vj=1,...k, (5)
'u_,-—»O m m
and
o (1,...,1,2,1,....,1) S (6)
m m

Proof. Consider the Bernstein copula Cpg (u1, ...,ux) as an approximation

to a copula C (uq, ..., ug), i.e.

(%1 Vk (% Vi
€ (L) (L, Y,
m m m m

Then Theorem 2 follows by the definition of copula function. =
It is clear that the coefficients of the Bernstein copula have a direct inter-

pretation as the points of some arbitrary approximated copula. However, in



the context of Theorem 2, the Bernstein copula should not be understood as an
approximation but a generalization of polynomial families of copulae in virtue
of Theorem 1.

In some cases, it is useful to consider the following representation of the

Bernstein copula as the sum of the product copula and a perturbation term,

m m v UL
Uy U+ Z Z vy (El,,;k) Py m(u1) -+ Pyye m(ug)

V1 =0 Vg =0

Cp(u1, ..., ug)

m m

- Y .Y a (%”—n’;) Py (t01) -+ Py (1), (7)

v1=0 vE=0

where

v v v v v v
7(—1,...,—k):oz(—l,...,—k)f—l-‘-—k. (8)

m m m m m m

The equality follows from the fact that

v v
wu =y Y (ﬁf) Poyn(u1) -+~ Poyn(us);
U1 Vk

e.g. see the proof of Theorem 1. This leads to the following important decom-
position.

Theorem 3. Any copula C(uy, ..., ux,) can be written as uy - - - up+G (uy, ..., ux) ,
where wuy ---uy is the product copula and G (u1,...,ui) is a perturbation term
containing all information about the dependence of (u,...,ur).

Proof. Consider (7), then use uniform convergence of Bernstein polynomi-
als. m

Notice that G (ug,...,ux) is the distance of the copula from the product
copula. This is bounded above and below by the Fréchet bounds. For a 2-

copula, the Fréchet bounds define a skewed quadrilateral where the product



copula is the paraboloid inside it.

2.2 The Bernstein Density

Any Bernstein copula has a copula density; this is because the Bernstein copula
is absolutely continuous. Define A; ; as the k dimensional forward difference

operator, i.e.

A a (E %) = i i (71)k+ll+---+lk o U1 +ll v + lk
e i) D DD T .

Due to the convexity preserving properties of Bernstein polynomials, the Bern-
stein copula density has the following appealing structure

m—1 m—1 v v
k 1 k
cg (U1, ...,ug) = m E E Al""’kOé(E’m’E)

v1=0 vr=0

XPm ,m—l(ul) o PvK,m—l(uk)a

k . . . . . . .
where cgp = % and the expression is obtained by direct differentiation

of (2) with respect to each variable and rearranging; see Lorentz (1953) for
the univariate case. Differentiating, a term in the summation is lost, and the
coefficients of the polynomial are written in difference form which is directly
linked to the k dimensional rectangle inequality in (4), i.e. the copula density
is always positive.

For convenience, we use the following definition for the Bernstein copula



density,

cp(ug, ... Z Zﬁ(vl vk)

1)1_0 Vi =0

x ﬁ (:Z) u (1= )™, 9)

i=1

where 3 (%{, e %nh) is defined accordingly, i.e.

5(2 ﬂ) =m+1*Ar o (L Uk > (10)

m m m—+1 m—+1

2.3 Spearman’s Rho and the Moment Generating Func-

tion of the Bernstein Copula

We consider the moments of the Bernstein copula. Many operations find con-
venient representation in terms of hypergeometric functions; see Abadir (1999)
for an introduction to economists and many of the symbols we use.

The copula is

Cotun, ) = 3 Y a(% )

’L)]_O 1)1\_0
XH < ) (1 — )i,

and its bivariate marginal distribution, say for u; and usg, is

Cp(uy,ug, 1, ..., Z Z (Ul 7)2 ...,1)

’U1—0’U2 0
m—uv;
< ] ( ) (1= g,
Jj=1,2

We now calculate Spearman’s rho (pg). Using well known properties of the

10



1

: 1
5 and variance 13,

uniform distributions on [0, 1], namely that it has mean
ps = 12cov (u,v)
= 12F (w) — 3,

where

E(uw) = / wvdC (u, v)

/(l—uvarC(u,v))dudv,

using integration by parts. It should be noted that pg is independent of the
definition of the marginals whereas Pearson’s correlation coefficient (i.e. conven-
tional correlation) does depend upon the marginal distributions; see Schweizer
and Wolff (1981) for further discussion. Random variables which have zero co-
variance, could have non-zero pg. The use of pg in financial economics could
be advocated on the basis of the documented non-linearities and its simple es-

timation. For the Bernstein copula pg is equal to,

1 1
Ps 12//[1 — U] — U +CB(U1,UQ,1,...,1)] duidug — 3
0 0

X (m>B(vj+1,m+1—vj),

Uj
where v was defined in (8) and B(a,b) is the beta function. The first equality

follows by writing the Bernstein copula as the sum of the product copula and

11



the perturbation term. Notice that

11
12//(1 —up —uz + U1U2) duidug = 3.
00

As shown in Proposition 2, all dependency information is contained in the per-
turbation term. Even when the Bernstein copula is used as an approximation
(see next subsection), the above Spearman’s rho can be used as an approxima-
tion to the true Spearman’s rho of any copula. If enough terms of our proposed
Bernstein approximation are included, Spearman’s rho can be easily found to
any degree of accuracy without the need of evaluating complicated integrals.
For the sake of completeness the moment generating function of the density
in (9) is found. We do it for the one variable case. Then we just extend it to

the k dimensional case.
1
M,(t) = /exp{tu} c(u)du

0
1

320 () (1) [ erscn -

where (3 ( ) is given by (10) for k£ = 1. Before proceeding any further, we notice

iCR
m

the following (see Marichev, 1983, p. 87),
1
1Fi(a;¢;2) B (a,c) = /exp {zr} 77 (1 — 1) ar,
0

Re ¢ >Re a > 0, where 1 F(a; ¢; z) is Kummer’s confluent hypergeometric func-
tion and T (¢) is the gamma function. For a = v+ 1, ¢ =n + 2, and z = ¢ this

implies
1
/exp{tu}u”(lfu)"_”du:1F1 (w+1lin+2;t)Blv+1,n—v+1).
0

12



Therefore,

mn
M, (t) = Zﬂ (—) (n>1F1 (v+1Lin+2;t)Blv+1,n—v+1)
v
To obtain the moment generating function for the k£ dimensional Bernstein ap-
proximation, we replace the univariate result in the multivariate definition,

M, (t) —/1 /1e><p{t (ur 4. w}Z Zﬂ(vl Z’;)

’L)l_o Vi =0

) [ Fr (v + 5m+26) Bvj +1,m —v; +1).
j=1

These results can be used to further investigate the properties of the Bernstein
copula and its approximations. Deriving results on the joint moments of the
Bernstein copula is quite easy in virtue of its incomplete Beta function repre-
sentation. The joint moments are important to study the scale free dependence

properties of the variables.

2.4 Bernstein Representation of Arbitrary Copulae

While the Bernstein copula should be regarded as a copula in its own right, it
is particularly suited to problems where a parametric copula is available but
in a very complicated form. In this case, the Bernstein copula can be used
in place of the original copula. By the approximating properties of Bernstein

polynomials; the coefficients are simple to find. One may object that Bernstein

13



polynomials have a slower rate of convergence as compared to other polynomial
approximations (see Theorem 4, below).? However, they have the best rate of
convergence within the class of all operators with the same shape preserving
property; see Berens and DeVore (1980). Given the properties of the copula, we
could not hope for anything better.

To give an example of the viability of the Bernstein approximation and its
range of dependance we approximate the Kimeldorf and Sampson copula (see

e.g. Joe (1997) p. 141), which is equal to

=

C(u,v) = (u_0 +ov7f = 1)_ (11)

Figure I shows the 3 dimensional graph of the Kimeldorf and Sampson copula
density. We report the values of Spearman’s rho as a function of the dependance
parameter 6 in the approximation for m of order 10, 30, 50 and the corresponding
ones for the Kimeldorf and Sampson copula (KS). Figure IT and IIT show the
contourplot of the two copulae when 8 = 1.06 and m = 30. In Table I, values for
Spearman’s tho in KS are from Joe (1997), values for the Bernstein copula were
calculated by the authors. Because of computational difficulties the limit of the
dependence parameter to infinity was not calculated for the approximation.

All differences are due to polynomials being fairly slow in adjusting at turning
points. Improvements can be achieved by increasing the order of the polynomial,
keeping all computations manageable and straightforward. Integral evaluation
for the computation of Sperman’s rho for the Kimeldorf and Sampson copula
could not be performed on a PC using Maple.

To lend some rigor to this numerical example, we state the following.

14



Theorem 4. Let f EC[O 1] and % be Lipschitz Vj, then
) IJ

k

|(BE ) (@1, o) = f (21, 0y )| < ]V[ZM

2m

3

where BE s the k dimensional Bernstein operator and M is a constant.

Proof. See the Appendix. =

Notice that a more precise statement on the constant M in Theorem 4 can
be given, but for simplicity we just give a version that allows us to define the
speed of convergence.

There are properties of some copulae derived by limiting operations, i.e.
tail dependence.* For the case of tail dependence, Bernstein polynomials always
have limit equal to zero, that is no tail dependence. Just to give a hint about
the reason for this to happen, notice that convergence under the sup norm is not
sufficient for assuring that the Bernstein copula and its approximand converge to
an arbitrary limit at the same speed. Fortunately, it is the case that a Bernstein
copula can capture increasing dependence as we move to the tails. Notice that
the Kimeldorf and Sampson copula in our example above exhibits lower tail

dependence.

3 An Example

In order to make the above discussion less abstract, we provide an example in-
teresting in its own right and to clarify ideas. We consider two random variables
(i.e. log returns) with highly nonlinear dependence and an agent with negative

exponential utility function who wants to find the optimal portfolio weights.

15



Let z; and 25 be log returns on each assets, where the weights constrained to

add up to one simplify to the term w. Then, we face the following problem
sup —Eexp {—v[wz1 + (1 — w) 2]} .

Define W = wz; + (1 — w) 22, then, the Bernoulli utility function —exp {—yW}
is characterized by a constant Arrow-Pratt coefficient of risk aversion equal to 7.
As one referee mentioned, constant absolute risk aversion may be questionable
in this context, but is nevertheless central to much applied work due to its

properties. Notice that
—Eexp{-—W} (12)

is just equal to minus the Laplace transform of the wealth’s (W) probability
density function.

In particular, we simulate two series, z1, z2. we use the following data
generating process (DGP):

(1) for the marginals we use

pdf (z)) = ajexp {—a; |2 — |},

which is a double exponential with mean 4;;

(2) for the copula function we use the KS copula which was given in (11), i.e.

=

C(u,v) = (u_e +ov7% - 1)_ ,

which is known to generate lower tail dependence. The parameters for the DGP

are given in Table II.
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Using this DGP we generate 5000 observations. The correlation for z; and
29 is equal to 0.3468 and other sample characteristics are summarized in Table
III. The data are defined over the real line and can be thought as log differences
in prices. Although in portfolio problems it is appropriate to use arithmetic re-
turns, we use geometric returns. Arithmetic returns have the irritating prospect
of being bounded below. For pedagogical purposes we will compare our esti-
mates with the misspecified assumption of normality, then we need both models
to have the same range. The economic rationale for not bounding returns below
is to jettison the free disposal assumption. Thus we could interpret a model of
an investor who considers optimizing a portfolio of forward contracts, ownership
of which confers a liability on the holder.

Our investigator will make the following assumptions:

(1) To model the marginals, she uses a Weibull density of the following form

bj—1
a,b, 25 — s 7 i .
JJ(|J2 JD exp{—aj(}zj—uj})b]}7J:1’2;

notice that the exponential can be embedded in the Weibull for b; = 1. It is
noticed that Weibull distributions are frequently used in a range of practical
financial problems, especially as models for loss and risk.?

(2) To model the dependence between the marginals, she uses, incorrectly, a
Placket copula, i.e.

Clu,v:6) = %{(6—1)1—&-(6—1)@—&-7})

—[(1+(6—1)(u+v))2—46(6—1)uv 1

[N

see Joe (1997) for details.
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The parameters aj, bj, u; and ¢ are estimated from the simulated data. In
particular, p; was directly calculated as the mean from these data. As common
in estimation of multivariate distributions when the copula is used, the param-
eters were estimated in a two step procedure. The likelihoods for the univariate
marginals were separately maximized. Using the estimated parameters from the
univariate likelihoods, the likelihood for the copula was optimized with respect
to the dependence parameter; see Joe (1997) p. 299-301 for details. The param-
eters estimates are given in Table IV. For estimation of b;, we use the constraint
bj > 1 for both series. We used b; > 1 as constraint because, otherwise, the
integral does not converge.b

The parametric specification gives rise to an expression that is too complex
to evaluate as compared to a neat bivariate normal distribution. Therefore, we
resort to the Bernstein copula as a viable alternative for our calculations. In
this case, the coefficients do not need to be estimated because we are using the
Bernstein copula as an approximation to the erroneous copula. The Bernstein
copula approximation will allow us to find an approximation to optimal portfolio
weights by simple integral maximization.

Using the result in Appendix A, the joint pdf of z; and 29 using the Bernstein

copula density is given by the following,

pdf (21, 22) = cp(F1 (21) , F2 (22))

18



if z; > py,

m m v v
1 2
= 22 C(gvm@)
1)1:0’[)2:0
" "< rm)\ (v —m),
7=1,2 5;=0 i r (Sj + 1)
‘ b; vj+1+s;
bi—1 28 X |.’E‘7 MJ’
xajbj ’xj — J’ B s

where ¢ (u,v;0) = m%u“a’%l, and (...), is Pochhammer’s symbol and I'(...) is
the gamma function. Therefore, the problem is reduced to the evaluation of the
Laplace transform of a simple Weibull density function and this can be done by
expanding the exponential in order to get a series in terms of gamma integrals.
Details of the calculations can be found in Sancetta and Satchell (2001a). The
function was maximized with respect to the weight w which is associated with
the first asset. In order to check if our procedure outperforms simple alternatives,
the same calculation was carried out assuming normality. Our true benchmark

n
was derived optimizing the empirical Laplace transform % > exp {—yW:} using
=1

a simulated sample of 30,000 observations from the same joint distribution. It

19



can be shown that exp {—yW,} is Glivenko-Cantelli, i.e.

L&

=Y _exp{—yWi} = E(exp{—/Wi}), as.

t=1

uniformly in v and w; e.g. see Andrews (1987). The coefficients chosen for
the expected utility function as defined in (12) together with the results are
given in Table V.7 The order of the Bernstein polynomial in the approximation
was m = 15. The optimal weight using a nonparametric specification, was
also computed: in this case a nonparametric Bernstein copula density which is
defined in (14), i.e. a Bernstein copula with generator a (%, %{;) =Ch (31- 22),
where C,, (%, %) is the empirical copula and was chosen with m = 25.

It is interesting to note that despite the fact that the parametric copula we
estimate is misspecified, the results are fairly good. Also the nonparametric
approach provides reasonable answers. We did not investigate the change of
optimal weight with respect to different m. The normality assumption leads to
results that can be poor. It is necessary to realize that the poor performance is
mainly due to the nonlinear dependence. Asymmetric data should be expected
to lead to results that are even worse under normality. Asymmetry using our
framework could be accounted for, but this is not in the scope of the paper.

Personal calculations by the authors show that results can be reasonably good

even when the copula is misspecified as long as dependence is not too high.
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4 An Estimation Procedure

The study of the Bernstein copula would erroneously lead us to think that it is
only a tool for numerical analysis if we did not address the problem of estima-
tion. The main result of this section is Theorem 5.8 There are several possible
estimation procedure that can be employed to make the Bernstein copula op-
erational. For the sake of conciseness, we will only discuss one of the many
possible ones and provide consistency results: nonparametric Bernstein copula
density estimation where the coefficients of the copula are given by the empirical

copula.

4.1 Nonparametric Bernstein Copula Density

Recall the functional form of the Bernstein copula:

Cp(uy,...,up) = a(ﬁ,...,ﬂ—k)
qu:O kaZO m m
boim .
X H (v)u;”(l — )"
j=1 M7
Let C), (%, e %) be the empirical copula at (%, . %)7 ie.
1 n k
E ZI m [ujs < tvj] ) (13)
s=1 j=1

where I 4} is the indicator of the set A. The nonparametric Bernstein copula,

say Cp (u), is defined as the usual Bernstein copula where

U1 Vk U1 Vk
al=, ., =) =Ch (=, ..., =),
m m m m

Differentiating it is easy to see that the coefficients of the polynomial are equiv-

alent to a k dimensional histogram estimator (see Scott, 1992, for details on the
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historgram estimator),

m—1  m—1 ko k
EB = Z Z Al, 1 m? Z[ ﬂ [ujs < th]
v1=0 v =0 s=1 j=1
<mv. 1)“5”' (=)™, (14)
j=1,2 J

where we use ¢p to stress that it is a particular estimator and A; . ; is the &

dimensional difference operator, i.e.

1 1

k
ANTnY ﬂ [ujs <ty p = Z Z (71)11+....+zk 7 m [Ujs <t + %]
j=1

=0 1,=0 j=1

The optimal choice of m depends on the topology we use. We choose m to
minimize the mean square error of the density, i.e. min ||ég — cHg where ||...||5
is the Lo norm under the true probability measure, and c is the true copula

density. Just increasing m will reduce the bias but increase the variance of ¢g.

4.2 Consistency in MSE of the Nonparametric Bernstein

Copula

We want to choose (14) such that it is optimal under the Lo norm. There is
a lot to be said on this and on the properties of Bernstein polynomials in this
case. We state the following condition.

Condition 1. {u} (k x 1) is a sequence of independent strictly stationary
uniform [0, 1] random vectors with copula C (u) and copula density c(u) which
has finite first derivative everywhere in the k-cube.

Remark. The independence condition is not required, but we use it in order
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to shorten the proof as much as possible. From the proof of Theorem 5 it can be

seen that the results are still valid under appropriate mixing conditions.

Therefore, we content ourself stating the following.

Theorem 5. Let ¢g be the k dimensional Bernstein copula density. Under

Condition 1

i. Bias(ég) = O (m™1);

(a.) for uj € (0,1),V,

var (Cg) ~

(b.) for u; =0,1,V7,

m mean square error:

m?s (c (uw)+0 (m_l))

ép (u) — c(u)

(a.) for uj € (0,1),V7, if m—nj — 0 as m,n — oo;

(b.) for u; =0,1,Yj, if mTA — 0 as m,n — oo;

w. The optimal order of polynomial in a mean square error sense is:

(@) m=0 (nT) if u; € (0,1),V5;

(b)m=0 (nT) if u; € (0,1),V5;

w. If m—k > 2, &g (u) and Cpg (u) are Donsker, i.e. zp (u) = (¢ (u) — Eég (u))
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and Zg (u) = [C'B (u) — ECg (u)| converge to a zero mean Gaussian process

with continuous sample paths and covariance function

Ezp (u1) zp (u2)],

and

respectively.

The proof of Theorem 5 is given in the next subsection. The weak limit
of the infinite dimensional distribution of the nonparametric Bernstein copula
density and the empirical Bernstein copula are given because these can be used
to devise test statistics for independence based on some norm of the limiting
Gaussian process. The limiting distribution of the norm would not be known,
but the bootstrap can be used in this case. Recall that if a class is Dosker,
then it is Glivenko-Cantelli, i.e. convergence holds uniformly over the class.
Therefore, the results of Theorem 5 hold uniformly.

For comparison purposes, let h = m~! be the smoothing factor in the usual
sense. The bias is of the same order as the one for the histogram estimator. In
this respect, kernel smoothers would lead to a bias not higher than O (m*Q) .
The reason for not calculating the constant is that in order to find the term
that is O (m*Q) it is required to take a Taylor series at least to third order.
The result of taking a Taylor series up to second order does not seem to be a
rewarding exercise. Details are available upon request. Notice that it is not

possible to reduce the bias to O (m*2) by shifting the histogram. In this case
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the first term in the expansion would vanish, but other terms of same order
would not.

While the bias is of the same order as the histogram estimator, the variance
is of smaller order (except at the edges of the cube): var (ég) = O (mé) instead
of O (mk) as is the case for the histogram and kernel estimators. On the other
hand, for u; = 0,1, for all j’s, the variance is of the same order as for these other
nonparametric estimators. The case u; = 0,1 for only some j is not included
because the result is just a mixture of the two extreme cases: the variance goes
down by a factor that is O (m%) for all the coordinates inside the k-hypercube
while for the coordinates on the boundaries the contribution to the variance
is O(m). This just follows from the fact that Bernstein polynomials define
a Tensor product space; see Cheney and Ward (2000) for a discussion in this
context.

As m and n go to infinity, it follows that this estimator has rate of con-

k
m?2
n

— 0 inside the hypercube, versus % — 0 for other nonpara-

sistency
metric estimators. Inside the hypercube, the optimal order of smoothing is
m =0 (nﬁ) in mean square error sense, versus m = O (n%“) for the his-
togram and m = O (nﬁ) for a first order kernel.

This implies that the Bernstein polynomials require very little smoothing (i.e.
a large order of polynomial). This is due to the fact that Bernstein polynomials

are fairly slow to adjust as already mentioned in Section 2.
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4.3 Proof of the Theorem

The proof of part . in Theorem 5 is based on the normal approximation to the

binomial distribution, e.g. see Stuart and Ord (1994, p. 138-140). In particular,

let
Py (1) = (’:) W1 — )™,
and
P (v) = (2mu (1 — u) m) 7 eXp{m (- u)2}7 15)
then
25 () o Zo £ (2 P (0) o

A formal proof may be given through the Edgeworth expansion for z = (% — u)
in order to prove that the error is uniform. Taking squares of the two distribu-
tions (i.e. the binomial and the Gaussian),

if(%) (Posm (0))? = /f(%) (P (v)2 dv, (16)

— 00

where again the error holds uniformly. With this reminder, we prove Theorem
3.

Notation. Here, we use us to indicate the vector of rv’s. On the other
hand u will denote a fived, but arbitrary value. This generates no confusion as
long as one is willing to look at a function as a point in the space. Moreover,

Oic (u) = 2elu=)

- Ou; ‘ us=u-
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Proof of Theorem 5. Bias(ép) = E (¢g) — ¢ (u). Let t,, = =L. Now

m—1 m—1 mk n k m—1 . ) .
= Z o Z T ;ps,vl...vk H ( v; )Uj](l — Uj)m_ _vj,

U1 =0 Uk-ZO j:l
(17)
where
toy, +om to, +5n
Ps,vi-vp = T c (us) duls co duks-
to, ty,
By the mean value theorem
togtom  toytom
Ds,v1evp = +Z@ c(u”) (ujs —uj) | duqs - - - dugs,
to, Lo,
where |[[u*—u| < 1 and |...|| is the Euclidean distance. By Condition 1,
max J;c (u) < ¢ for some ¢ < oo, then
Loy + to; +
/ / Ojc (u*) (ujs — uj) duss - - - dugs
to,
Lo, + 7 Ly, +
< max@ e / / (ujs —uj) duqs - - - dugs
tj — Uy 1
= q( mk +O<mk+1 :
By independence, this implies
1 _c(u) ot -y O (m=(1+k) 1
S e ) ST

Recall that ¢ (u) is some arbitrary, but constant value. Bernstein polynomials

preserve the constant, i.e. B _,c(u) = c(u), on the other hand, by direct
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calculation

m—1
m—1\ o, me—l—v,  Wj
Z(tjuj)( v )“jj(luj) =

’UJ' =0 J

that is BY,_; (t; — u;) = 2L; recall that ¢; = 2. Tt follows that substituting in

(17),
E(ég)=c(u)+0 (m ),

remembering to multiply each term in (18) by m*. Therefore,

Bias (¢5) = O <l> .

m
For the variance, notice that the probability of one observation falling inside
a subset of the hypercube is equal to the probability of success in a Bernoulli
trial. We know that the probability of n successes, where n is the sample size,

is given by a binomial distribution. By the variance of n independent Bernoulli

trials
m—1 m—1 ka n
UCL’I‘(EB) = Z e Z (F Zps,vl---vk (1 _ps,’l)l""l)k))
= vE=0 s=1

s
3
[
=l
3
|
-
7N
3w‘ Sg
3
3
I
ki
&
>~ =
~_—
—~
;:J
3
|
-
=
=
[}

v1=0 v =0 s=1 Jj=1
2k m—1 m—1 k
_ c(u) tj —uj —(+k 2
LSS (3 o () | T (s )"
v1=0 v=0 j=1 j=1

where ~ means asymptotic equality, i.e.

. B m_Qk m—1 N m—1 c (u) k tj — u (k)
var(ég) = - Z Z - +qz—mk +O(m ) |

k
v1=0 v =0 j=1 j=

(ij,mfl (u))Q )

(19)
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where the O (m~(+%)) term is clearly different from the previous display. Notice
that we have mt; = vj, but v; = 0,..,m—1,ie. t;—p; = m—1 (v—f - %Mj)-

m m—1

Use (16) to approximate (19). Consequently, solve the following type of integral,

exp{ s (G — ) }
r = /(tvj 716‘7‘) d?)j

2m (m — 1) u; (1 — uy)]

R

m—1 vi . m

m m—1 m—luj
R

2
eXP{ u71 uJ (ﬁvﬁ—uj) }
dvj.

27 (m = 1) u; (1 - uy)]

X

Simply make the following change of variable, z; = ',m_lv ( ol uj) ,

with Jacobian \/(m — 1) u; (1 — u;) . Then

m—1
Iy = / m (%‘*Mj)

R
exp{ x2}
27r\/ —1)u; (1 —uy)
m—1

Uj.
2m/muj (1 — )

This shows that the integration results in a drop in asymptotic magnitude equal

d’l}j

to m~% for each dimension. Let \; = [u; (1 — uj)]% , then

var (é5) ~ | |4 (m —1)]* ﬁ)‘j (Cn(@u’c) +0 (m(k+1))>

1

Due to integrability of the reminder, one could use Holder inequality to show

that the orders of magnitude in the above display are correct. At at the opposite

29



edges of the hypercube, i.e. u=0,1, (ij,m,l (u))2 = Py, m—1(u), then
m?* [ c(u)
oy . m7T fcla) —(1+k)
var (¢g) = - < s +0(m )>
k k—1
= Zcw+o0 <m ) .
n n

The mean square error (MSE) convergence just follows by considering the lead-

ing terms for the square bias and the variance for the two distinct cases: MSE =
Bias (¢g)° + Var (¢g) . The optimal order of the polynomial follows by mini-
mization of asymptotic MSE with respect to m.

The finite dimensional distributions of the nonparametric Bernstein copula
density converge to a normal distribution. This follows from the fact that it
is the sum of bounded random variables and Condition 1 (weaker conditions
than iid are clearly sufficient for the central limit theorem). But the Bernstein
copula density has m —1 bounded derivatives (recall that Bernstein polynomials
are closed under differentiation) and any Bernstein polynomial is Lipschitz. By
Theorem 2.7.1 in van der Vaart and Wellner (2000, p. 155) the class of func-
tions that satisfy the just mentioned properties has finite ¢ bracketing numbers
of order exp {sfmk_?l } It follows that their entropy integral with bracketing
is finite. This is enough to show (see Ossiander ,1987, for the iid case or Pol-
lard, 2001, for generalizations) that the Bernstein copula density converges to a
Gaussian process with continuous sample paths. The same condition applies to
the copula because it is m times differentiable together with the same properties
of the density. m

From the proof it is clear that what drives the variance down is the fact
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that approximating the square of P, ,,—1 (u) leads to a normal approximation
times an extra term that is O (mfé) . In order to provide more intuition on this
result and the difference between the edges of the box and the points inside it,
we provide the following heuristic explanation. Bernstein polynomials average
the information about the function throughout its support. Therefore, while
slow at adjusting, they have a behavior that is not just local as is the case for
other nonparametric estimators. On the other hand, the result at the corners
of the hypercube is clear: the approximation at these points is exact and it is

not influenced by the behavior of the function in its domain, i.e. it is just local.

5 Conclusion and Some Further Extensions

We studied a new object in multivariate analysis called the Bernstein copula.
Furthermore, we showed that, subject to regularity, any copula can be repre-
sented (approximated) by some Bernstein copula. This copula representation
should allow us to take advantage of the properties of the copula function when-
ever multivariate normality is not a good assumption. Our optimal portfolio ex-
ample had the pedagogical purpose of showing how the Bernstein copula could
be used as an approximation to a copula and why one may want to discard the
simple normality alternative. Further, we made the procedure operational by
providing a nonparametric estimation procedure with its rates of consistency
and an interesting result for the variance.

This study of the Bernstein copula led us to consider many topics all at
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once. It is clear that a lot has been left out from this paper. We did not
discuss joint continuity of the Bernstein copula under the *-product defined by
Darsow et al. (1992); see Kulpa (1997) and Li et al. (1998). The *-product
is a powerful tool that allows us to define Markov processes and general time
series dependence concepts. The Bernstein copula is closed under this operation.
The link of the perturbation term and Spearman’s rho seems to suggest some
nonparametric estimation procedure which as now, we have yet to explore. Our
example for portfolio optimization could be generalized. Moreover, one could
take advantage of the simple closed form of the moment generating function of
the Bernstein copula and devise new measures of risk in portfolio optimization
so as to replace mean variance optimization. The kernel smother representation
has only been used indirectly in the proof of Theorem 5. Finally, alternative
estimation procedures have not been considered in detail. While the paper
provided a promising result for the variance of the nonparametric estimator,
this is one among many others that could be studied. For example, one could

look at the following estimation problems
max P, [lncB — /\n/(DaCB)Q} )
or
min P,, [(on — )+ M\ / (D%B)Q} :

where P,, is the empirical measure, (), is the empirical copula, A, is a smooth-

ing parameter going to zero as n — oo, the unqualified integral is a Lebesgue

dcp

B, and

integral, D is the differential operator of order «, i.e. Dlcg =
Jj=
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k . . .
cg = %' However, unlike the case of the nonparametric Bernstein copula

density, these estimators will not automatically lead to a copula unless con-
straints are imposed. Nevertheless, under suitable constraints, it seems plausi-
ble that the study of these estimators may lead to analogous results in virtue of
the kernel representation of the Bernstein copula. Some of the issues left out of

this paper are the subject of current research.

Notes
1. Our definition of & dimensional Bernstein polynomials is a generalization

of 2 dimensional Bernstein polynomials, to our knowledge, first given in Butzer

(1953).

z—a
b—a

2. By simple transformation: x € [a,b] — ¢t € [0,1], t = . In general,
we can define a transformation that makes the real line isomorphic to the unit
interval: x e R — ¢t € [0,1], t = & — =2,

3. The simple Bernstein approximation can be improved by taking linear
combinations; see Butzer (1952b). Let f(2) € Lipy be the 2l derivative of f,
then, Buzter (1952b) shows that his liner combination of one dimensional Bern-
stein polynomials (equation (10)) has error O (n™'=7) compared to O (n™277)

for the best polynomials of order n.

4. Lower and upper tail dependence are respectively defined as
AL = lir%Pr (w1 < ufug < u),
U—
and

Av = lim Pr (uy > ulug > u),

u—1
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where A\;, and Ay are between zero and one. No tail dependence corresponds to
theses probabilities being exactly zero.

5. Laherrére and Sornette (1998) show evidence that a Weibull distribution
provides adequate fit for daily financial returns. Calculations by the authors
confirm this. Moreover, extensions to model asymmetric returns are possible
and can be used in the context of the Bernstein copula.

6. The integral does not converge for b < 1 and it is only conditionally
convergent for b = 1.

7. The use of negative wealth implies that the coefficient of risk aversion
cannot be interpreted in the same way as in the case of negative wealth. In this
scenario, v > .75 implies a very high degree of risk aversion due to the fact that
the Bernoulli utility decreases exponentially fast for negative wealth. For this
reason, the results become particularly data dependent on the left tail.

8. Theorem 5 is an adapted version of the results in Sancetta and Satchell

(2001b) where nonparametric estimation is discussed at length.
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Derivation of the Joint Density of the Port-

folio’s Assets

For the sake of generality, we allow for k assets. Let

bj
exp{—aj ’.’L‘j — /Lj| }
a 2

y if @y >
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b;
exp {70,]' }Ij — /j,j| }
2

uj = , if zy < py,

k PR -
and [] (ajbj |xj — Mj’bj 1) exp {—aj ’xj — Mj’bj} be the Jacobian of u; — x;.
j=1
Substituting in (9) and using the relation (1 —u)” = > (—=1)*(?)u®, we can

S

write the joint density as

e(x1y .y ) = i iﬁ(%”%)

B exp{—aJ }mJ 1
b;—1 J .
X (ajbj |2 — pj]” ) . ,if x> py
m m v v
e(x1,.yz) = Z Z I6; (El,,i)
’L)]:O ’U]\-:O
k m—uvj (’U‘ _ m)
m J S
>< 7‘]
s () e
b] vj+14s;
b—1 exp {—aj }.’L‘j - /Aj| } .
X (ajbj |xj — Mj’ ) 5 ,if zj < py,

B Proofs

Proof of Theorem 2. Consider the following k& dimensional Bernstein linear

operator B such that

(BE f)(X) = i mz f (% ”’“)pvl,ml(xl)...pmw(xk),

)
m
1)1:0 ’L)K:() k
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where f €Cjo e (X €[0,1]°) and

ij,mj (l‘J) = <mj)xjj (1 - Ij)mj_vj'

Uj

By the theorem on linear monotone operators (see Sancetta and Satchell, 2001,

for its statement in k dimensions) it is sufficient to show uniform convergence

to f for the following cases: f(X) = 1,3@,:10?, 1< j < k. Now,

mq mg

zl)(X) = Z"'valﬂm (ml) o 'PUK,mK(mk) = 17

by the binomial theorem.

(Bp;)(X)

my mj mg Vs
LYY (_) Poy o, (1) - Pay o (27) -
) m;
U1 Vj VK
7nj
Uj) (mj> Vi mij—uv;
_J €T. (]_ _ x) J Y5
vzj (mj v ) ! !
m;
mj — 1! v—1 i—v;
mz x (1 — ;)™
! = (my — ) !(v; — DI !
J
1
47”_72 mj; — 1 vjfl(l o 4)mj_vj_1
z; o, ; z;
’Uj:O J

zjlry + (1 —2;)]" " = a,
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where the first equality follows by the binomial theorem.
m1 m mK v 2

B = 3D (1) P Poy (83)-+ P )
U1 vj VK J

g Vi 2 mas
J J Uj N\ —vj
- 3() (3)ummr

vj
_ ZJ v\ (my—1 22 (1 — ;)™
— \m; ) \v;—1/" !
’U_,—
mjfl el Uj*l mjfl vj M —s
= (1 — J j
mj ;(mj—]. ’Uj—]. xj ( Ij)
1 e mj—l Vi M — s
o > <vj1>‘”j](1_%‘) Y
’Uj:l
-1
= My x?+—xjﬂx§.
my; J

Proof of Theorem 3.
BENX) = F(X) = > Poyamy(w1) -+ Pog o, ()

X {f <£,,&> f(:vl,...,:ck)]
mi my

(o)
mq 27 my
m mpg 1 k

= D ) Puym, (81) - Poyg i (2r) / V fdr

v vk (®1,...,7x)

V=" (s1,00,86) 5 ooy % (81, ..., S)], Where f/i (s1,...,8%) = aﬂ%ﬁ’s"), and
r is a vector valued function that defines the path between the end points of the
integral. By definition, V f is a conservative vector field, so the path of integra-
tion is irrelevant. The above line integral can be split into k integrals along any

paths parallel to the axis and perpendicular to each other. For example, we can
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write

my 27T my, my
/
/ Vfidr = /fl(81,$2,$3,...,.’Ek)d81+...
(z1y00sr) 1
v
™5
. (% (%]
/
+ f — ey Sy Tk dSJ+
mip m2
Zj
'Uk.
™,
U1 V2 Vk—1
/
+/fk< ) PIREEY 5 Sk dslc
myp My N1
Tr

v
1
™y
. U1 (%] ) U1 (O
/ Y J
/f-7 (— — ...,sj,...,xk> ds; = f9 <m—,...,xj,:rj+1,...,xk Ef:rj
1 J

From here the crude result of the Theorem can be obtained assuming that

f'i € Lipp,1, ie. f'7 satisfies the Lipschitz condition with constant M and

exponent 1:

‘f’l (51, s hj, ,Sk) — f/1 (81, ey 85, ...,Sk)| < M; ‘hj‘ .
rLj

It follows that the last integral in (20) does not exceed M; [ (s; — x;)ds; =

zj
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i M; (& — mJ) . Therefore,

m;

|(BS"Lf)(X)7f(X)’ < Z ZPU1,m1 I1 P'UKymK(Ik)

i<>2

L
2
1—
= = [Ml + +A{kw

mg

for any X, where the first term in the right hand side of (20) is exactly zero

when the Bernstein operator is applied to (Z—J — Ij); see Proof of Theorem 2.
J

C Tables and Graphs

Table 1. Spearman’s rho for different values of the dependance parameter 6

0 0 .14 .31 .51 .76 1.06 151 214 3.19 556 oo
pg(KS) 0 1 2 3 4 5 6 7 8 9 1
ps(Bo) 0 .08 .16 .24 .32 4 48 57 65 T3 ¢
ps(Bzx) 0 .09 .19 28 .37 46 .56 .65 .75 .84 *

ps(Bso) 0 .09 .19 .29 38 48 58 .67 .77 .86 *

Table IT Parameters for the DGP

ar py G2 gy 0

1 05 2 01 06
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Table III. Descriptive Statistics (n=5000)

Mean  Variance Kurtosis

Z; 0.4968 1.9442 5.6247

Zo 0.0970 0.4899 6.0084

Table I'V. Parameter Estimates

ay by a2 bo 6

1.000750 1.015783 2.026432 1.000000 2.789959

Table V. Optimal portfolio weight for a negative exponential utility function

Empirical Placket Copula Nonparametric ~ Multivariate

~v Laplace (n = 30,000) B. Approximation Bernstein Colpula Normal

25 0.9641 0.9303 0.9835 0.9963
5 0.4172 0.4459 0.4502 0.5412
75 0.2809 0.2999 0.2820 0.3899
1 0.1676 0.2447 0.2136 0.3137
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Figure I. Kimeldorf and Sampson (KS) copula density (6=1.06)
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Figure II. KS copula (6=1.06), contour plot
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Figure III. Bernstein approximation to the KS copula (6=1.06, n=30), contour plot
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