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Abstract

We explore the effects of global style factors on the Morgan Stanley
Capital International universe of stocks from 1988 to 1998. An ini-
tial Bayesian analysis by Hall, Hwang and Satchell (2001) shows very
low posterior probabilities for the significance of the (constant) beta
coefficients in a linear factor model. When we allow for a flexible struc-
ture, in which betas follow conditionally autoregressive discrete time
random processes, introduced by Christodoulakis and Satchell (2000),
this result is reversed in nearly half of the cases. Style factor betas
are often found to fluctuate significantly around zero, exhibiting serial
correlation, persistence and thus predictability. We report results for
such style factors as Value, Growth, Debt and Size on all the individ-
ual stocks of the MSCI universe as well as on capitalization-weighted
and equally-weighted aggregate sector returns.

Keywords: MSCI Universe, Random Beta, Risk Premia, Style Fac-
tors



1 Introduction!

Linear factor models constitute the most popular class of models, amongst
both academics and practitioners, for the description of dependencies and
dynamics of financial asset returns. Their origin goes back to the seminal
work of Sharp(1964), Lintner (1965) and Black (1972) who jointly created
the Capital Asset Pricing Model (CAPM), and Ross (1976) who introduced
the Arbitrage Pricing Theory (APT).

Since then, a large number of extensions have been proposed in the litera-
ture to accommodate the observed properties of data, see Christodoulakis and
Satchell (2000), and several studies perform a comparative pricing analysis,
see for example Kan and Wang (2000), Hwang and Satchell (2000), Wang
(2000) and references therein. The importance of these models originates
from the fact that expected returns on risky assets constitute an indispensable
input for converting financial decisions into optimization problems. For ex-
ample optimal asset allocation in a mean-variance world (Markowitz (1952)),
forms a constrained quadratic optimization problem the optimal solution of
which is conditioned on the assets’ expected returns and covariance matrix.
Also, some recent approaches propose multicriteria methods for portfolio
selection, see for example Zopounidis (1993), Zopounidis et al (1995) and
Hurson and Ricci-Xella (2000), the latter link a Multicriteria Decision Aid
to APT, thus conditioning the optimality of their solution on assets’ expected
returns.

The range and nature of factors varies in different contexts. A particular

class concerns the style factors which, broadly speaking, can be thought
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of as the aggregate value associated with risks pertaining to a particular
investment philosophy, based on associated information. Thus, for example, a
Value factor could be interpreted as the risk term of an investment philosophy
that buys (sells) cheap (dear) stocks, where “cheap” compares the book value
of the company as contained in the company’s accounts versus its market
value as reflected in the stock price?. Our use of style factors in this paper is
motivated by the fact that styles such as Size, Value, Growth and Leverage
(debt financing within the corporate structure of the firm) turn out to be
frequently used explanatory variables in stock selection. We are agnostic as
to whether these variables actually refer to risks, to fads or to behavioural
phenomena.

The factor loadings known as beta coefficients, quantify the exposure of
an asset to the corresponding factor risk and determine its risk premia. The
importance of beta is also enhanced because of its contribution into the con-
ditional second moments of asset returns. Its interpretation as a measure of
price risk and its central role for financial decision making has motivated a
sequence of papers addressing its dynamic properties. Early studies detect
time variation of beta coefficients, and Blume (1975) and Collins et al (1987)
present theoretical and empirical arguments documenting a regression ten-
dency towards its steady state. Also, a co-movement between the factor beta
coefficient and the factor conditional variance has been found in studies such
as Schwert and Seguin (1990), Koutmos et al (1994) and Episcopos (1996). A
recent stream of papers, see Ferson and Harvey (1993), Ferson and Korajczyc
(1995) as well as Bekaert and Harvey (1997) and Christopherson et al (1999)

presents evidence for exact conditional systematic variation of factor betas

2The term style is also used to identify the management style, so if the returns of a
managed fund are highly correlated with US S&P500 returns and with other index returns,
proponents of management style claim that the fund has a US large-capitalization equity
style. We shall not follow this approach.



in that they correlate to economic macro- and micro-structure variables.

Hall, Hwang and Satchell (2001), henceforth HHS, develop a Bayesian
variable selection method in linear factor models and examine the signifi-
cance of (constant beta) global style factors for the MSCI universe of assets.
Their methodology, conditional on the sample data, estimates a posterior
probability that a particular style variable should be included. Empirical
results on such global styles as Value, Growth, Debt and Size, do not find
compelling evidence for global styles as useful explanatory variables.

This paper is motivated by the non-significance result of HHS and the
existing evidence on time-varying beta coefficients. In particular we apply
a recent methodology by Christodoulakis & Satchell (2000), who propose a
fully general framework in which assets and factors are jointly determined,
betas follow conditionally autoregressive processes and the conditional co-
variance matrix of the system is guaranteed positive definite at each point
in time. We apply this methodology on the HHS data set and find that
the global style factor non-significance result is reversed in nearly half of the
cases of the MSCI universe of assets. In particular, style beta coefficients are
often found to significantly fluctuate around zero, exhibiting autocorrelation
and persistence.

In section two we present our modelling approach and its basic properties,
in section three we present the MSCI data set and discuss the style factors,
their nature and construction. Section four contains our empirical results for
the individual assets as well as sector aggregate data and in section five we

present our conclusions.



2 AutoRegressive Conditional Beta Model

We follow the methodology and notation of Christodoulakis and Satchell
(2000), henceforth CS (2000), who propose an unconstrained modelling of
the covariance matrix originating from a multifactor model of asset returns.
The model adopts a Cholesky decomposition of a covariance matrix proposed
by Pourahmadi (1999a,b). This guarantees the positive definiteness of the
covariance matrix at each time and allows for a meaningful statistical in-
terpretation of its parameters in terms of time-varying conditional variances
and conditional factor betas.

Let y; be an N x 1 vector of asset excess returns generated by the following

process
k
Y+ = I'l’y,t + Z’Bjﬂf €j’t + & (1)
j=1
Tjp = Mg tejp for j=1,..k
and

()~ ((3) (5 %))

)

where x;, 3, is the j-th factor and N X1 vector of conditional betas respec-
tively, and p; ;, for i =y, z;, j = 1...k, are N x 1 vectors of conditional means.
I;_, denotes the information set available at time t. The covariance matrices
Yet, 2eyt are diagonal with dimensions N x N and K x K respectively, but

conditionally time-varying. In partitioned matrix notation the system writes

€ In —By Yt = Hyy

(Nx1) _ (NxN) (NxK) (Nx1) (2)
€t 0 IK Xt — I’l’x,t

(K x1) (KXN) (KxK) (Kx1)

where x; is the K x 1 vector of common factors and B; the N x K matrix of

factor beta coefficients and I, [k are identity matrices. Provided that B; is



conditionally known, the conditional covariance structure corresponding to

equation (2) is

Zs,t 0 _ IN _Bt ny,t Qy:r,t IN _Bt (3)
0 Ee,t 0 IK Qxy,t Qxx,t 0 IK

where €, and 2, are the asset excess return and factor covariance matrix
respectively and Q,, = Q;,y include the covariances between the N assets
and K factors. This is the Cholesky decomposition of €2, the joint covariance
matrix of N assets and K factors, in terms of the diagonal matrix ¥ with
positive elements as the conditional variances of asset idiosyncratic and factor
shocks and the matrix M, the off-diagonal block of which corresponds to
minus the factor beta coefficients (—B;), see Pourahmadi (1999a,b). The
matrices Y., ¥, and B; are allowed to be conditionally time-varying and
known. Solving with respect to €2, its north-west block represents the asset

return covariance matrix
i
Quyt = Xer + BiXes B, (4)

which is decomposed into its idiosyncratic variance X, ; plus a time-varying
combination of the factor conditional variances BtEQtB;. The latter will ap-
pear as a common component but with different time-varying combinations,
in all asset variances and covariances.

We now design the elements of (4) as functions of the available information
set I;_1. It is worth noting that (4) is guaranteed positive definite provided
that the elements of . ;, ¥.; are non negative, which leaves the modelling
of B; free of restrictions. A natural candidate for modelling conditional
variances could be a member of the ARCH family of processes, originated
by Engle (1982) and further developed by numerous other researchers, see

Bera and Higgins (1993) for an excellent survey. The choice of the form of



the ARCH-type process should accommodate the empirical properties of the
data, such as time dependences, non normality and asymmetries.
Following CS (2000) we allow factor beta coefficients to evolve as Auto

Regressive Conditional Beta processes of order p (ARCBeta (p)), of the form

- E eztejat I o 5
ﬂij,t = 5 | t-1 ] = Q450 + aij,lgij,tfl +oeee aij,pgij,tfp ( )

Uej,t
fort = 0,%£1,...
where
*
¢ o Eialht
it T 2
O-ej,t

k
€i¢ = Yir— EWie | 1) = Zﬁm €t T Eit
Jj=1

for asset i = 1,..., N and factor j = 1, ..., k. By independence, the conditional
beta of asset ¢ on factor j is effectively shocked by squared innovations on

factor j only so that &;;, = 3, (

e

2
Lt ) . Thus, if the j-th factor innovation

Oe:
ejt

f:i = vjy “ D(0,1) we have that’ E (Eij’t|lt_1) = B4 making equation
(5) be an unrestricted ARCH-like process in the spirit of Braun et al (1995).
Under stability of the process, a high order lag structure for ARCBeta(p)
can be parsimoniously represented as an ARCBeta (k,1) process. CS (2000)
prove results on the stationarity of the process as well as conditions for the
existence of its steady-state first and second moments.

Further, the i-th diagonal element of (4) is given by
2 L2 2 2
O = Zﬂzj,t(’ej T 05
Jj=1

Because of the product of random processes ﬁfj’tagj +» stationarity of the indi-

vidual processes is not sufficient to guarantee stationarity of o7,. CS (2000)



prove easily checkable sufficient conditions for the existence of a stationary
solution for products of such random processes of any order, and provide
closed-form expressions for their steady-state. They also prove closed form
expressions for the steady state covariance between the factor beta and factor

variance, as well as between betas on the same factor.

3 MSCI Universe and Style Factors

Our data set is identical to the one used by HHS (2001) thus making our
results directly comparable. Also, the discussion of the data set draws heavily
from that article. This is the Morgan Stanley Capital International (MSCI)
universe, comprised of 1523 stocks. We shall examine the period of October
1988 to September 1998 with monthly frequency observations which results
in time series of 120 data points. During this period there are 1154 stocks
with full data, thus our data matrix of equity returns is 120 x 1154.

The MSCI universe we use is drawn from twenty one countries and nine
sectors, it is therefore useful to think of it in terms of country-sector grids
of a 21 x 9 matrix. Because of significant differences in the relative fre-
quency of stocks within each grid, where some exhibit very small frequency,
some countries are pooled into greater geographical groups: Canada, France,
Germany, Japan, UK, US, the Other Europe group (Belgium, Denmark, Fin-
land, Ireland, Italy, Netherlands, Norway, Spain, Sweden, and Switzerland),
the Australasia group (Australia, New Zealand) and the Asia group (Hong
Kong, Malaysia, Singapore). Also the nine sectors are regrouped to six: Ba-
sic Industries, Capital Goods, Consumer Goods, Energy, Financial, and the
Other group (Resources, Transport, Utilities and Other Sectors). Thus our
new country-sector grid matrix is 9 X 6 dimensional.

An inspection of the data uncovers substantial differences in both the



value and the number of equities among countries and sectors. This arises
naturally for a number of reasons. It is therefore useful to consider value-
weighted returns versus equally weighted returns. A natural weighting scheme
would be to consider, at each point in time, the value of the i-th stock rel-
ative to the value of the group of stocks within its country-sector grid. In
particular

kil Sf,il

RS
where k,! denotes the k-th country - [-th sector grid, N*! the number of
stock in the k, [ country-sector grid, Sfj ;f the US dollar market value of equity

¢ in the £, [ country-sector grid and Zfikl’l wﬁ ’tl =1 for all &, 1.

3.1 Style Factor Mimicking Portfolios

The true style factors are typically latent variables and thus we need to
approximate them. The most sophisticated approach, used by market spe-
cialists, is to construct portfolios of assets that mimic the style factors them-
selves or their equilibrium risk premiums. These are called factor mimicking
portfolios (FMPs) and in our context their returns are designed to be highly
correlated with the (unobservable) factor values.

Examples of FMPs are portfolios constructed from eigenvectors in prin-
cipal component analysis. FMPs are a useful and increasingly common tool
in building linear factor models and often take the form of a hedge portfolio.
By construction pricing theory applies to it, so it can replace an observable
or prespecified factor on which pricing theory may not apply. The theory of
factor mimicking portfolios is discussed in Huberman et al (1987), Lehman
and Modest (1988) and Connor and Linton (2000).

In constructing FMPs, for each factor f the entire MSCI universe is

ranked according to an attribute of f. As in HHS (2001), we use style at-
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tributes for Value (V' L;), Growth (GRy), Debt (DE;) and Size (SZ;) defined

as

DP, + EP, + BP, + CP,

VLt - 5
RE;, + EG
GR, — %
DE, — Total Debt per Share

Book Value per Share
SZ, = In(Share Price; x Share Number;)

where
DP, = it pp, — Bt o St
CP = Cash Flow per Sharet RE, = FEarnings per Sharet
t — t —

Share Pm‘ce;7 Book Value per Shareé,lg
__ Book Value per Sharet o Book Value per Sharet
B“Pt - Share Pricet EGt =In Book Value per Sharet—24

For each attribute f,, an equally weighted hedge portfolio is then con-
structed which is long the top n-tile and short the bottom n-tile of the MSCI
universe ranked by f,. The resulting hedge portfolio is the factor mimicking
portfolio of factor f. A better diversification is produced for small n, thus

our data set is constructed for n = 3.

4 Empirical Results

We aim to examine the evolution of style factor betas over time using the
ARCBeta framework. As shown in section 2, the randomness of the factor
may also be the source of randomness for the beta coefficient in that they
are both shocked by the square factor innovation process. It is therefore
important to pay attention to the adequate modelling of the first and second
moments of the random style factors. This will then provide a minimal

information set to condition the evolution of beta coefficients.

10



For the period under examination, the MSCI universe consists of 1154
stock returns, which we wish to expose to four global style factors. This re-
quires to perform 1154 x 4 Maximum Likelihood estimation procedures using
numerical optimization. The size of the problem prevents the application of a
time series model selection procedure to identify the appropriate form for the
conditional mean, beta and variance process for each individual asset. Al-
though such a procedure would be appropriate for the exhaustive modelling
of each asset returns, in the context of the present paper it is unnecessary.
Our aim is to distinguish between time-varying and constant factor betas in
each MSCI sector and compare with the HHS (2001) non-significance result.

Thus we perform our empirical analysis assuming that each asset y; and

style factor x; returns are generated from the following process

Yig = My T ﬁij,t ejt+Eip + 0y 1 (6)
Tjp = g + €+ 5501 (7)
where
it = ZitOe; €t = VjitTejt
2 N (0,1) v N (0,1)
and
Bijt = bijo + bij,l/@i,j,tflvjz"tfl (8)

t = 1,...,1154, j =Value, Growth, Debt, Size and z;, v;; are uncorrelated
for all 7,7. The j style factor conditional variance, Ugj +» 1s allowed to be
generated by a process from the ARCH family.

The intuition behind this model is that dynamic betas, (. ,, are driven by

17,07
past squared scaled factor innovations vjz-tf x- Suppose that Size experiences
an extreme innovation. Then investment managers value stocks more as Size

than previously and the stocks’ responsiveness to the Size factor changes.

11



Whilst this story is a little loose, it does suggest a linkage between shocks
to factors and changes to exposures. Assuming that factor volatility, o; ;
, can be generated by an ARCH-like process which is also driven by past

squared innovations, 3, ., is expected to co-move with agj .- Thus, clusters of

ijot
high factor volatility can be associated with clusters of high responses to the
factor shocks, which reflects time-varying risk premia, see section 5.3 of CS
(2000).

Prior to performing Maximum Likelihood estimation for the full data
set, we model the factors as univariate processes. After appropriate model
selection, we find that Value is well represented by an MA(1)-GARCH(1,1)
process, Growth follows an MA(1)-EGARCH(1,1) process, while Debt and
Size are found to have constant means and ARCH(1) conditional variances.
We then use the factor maximum likelihood parameter estimates as starting
values, to facilitate convergence in the joint asset-factor estimation.

Under gaussian innovation processes, the conditional log likelihood func-

tion can be written as

T(N+K) 1 &

InL;; = —fln(%r)—§;ln 0 52

_1 i it / Ugi 0 - Eit

where T' = 120, N = K = 1. We wish to find the unknown parameters

of the asset and factor conditional means, variance and ARCBeta process
that maximize the log likelihood function. Equations (6), (7) and (8) and
the structure of GARCH-type processes suggest that the log likelihood func-
tion is highly non linear and a closed form solution is not available. Thus,
we use the BFGS algorithm to perform numerical optimization of the like-
lihood function. Other algorithms such as the Newton-Raphson can be as

appropriate although substantially less fast.
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It might be thought that the assumption of gaussian innovations may
well be unrealistic given the evidence on excess kurtosis in stock return data.
however this is present in data of higher frequency than monthly. Moreover,
gaussian innovations do not imply that returns are unconditionally gaussian.
Indeed, they follow a complex distribution based on sums and products of
normals which are capable of exhibiting some excess kurtosis, if indeed it is
present.

Further, we rely on the arguments of Bollerslev and Wooldridge (1992)
who prove that the maximum likelihood estimator based on a (falsely as-
sumed) gaussian distribution, will still be consistent and asymptotically nor-
mal, provided that the first two condition al moments are correctly specified.

We classify our empirical results on individual stocks according to the
six sectors presented in section 3. Table I presents the relative frequency for
three cases regarding factor betas: constant beta, zero-mean ARCBeta(1)
which corresponds to time-varying beta with zero steady-state and ARC-
Beta(1) which corresponds to time-varying beta with non-zero steady-state.
We report results for all assets in each sector and all style factors in each
subtable. We will not discuss all the results but discussion of a couple of
cases should aid the reader in interpreting the tables.

Consulting Table I we can see the number of times we have significant
coefficients for equation (8). In particular the second and third rows of each
suitable indicate the extent of time-varying exposure. Thus, Basic Industries
have a time-varying exposure to Debt forty per cent of the times on average
(% (b7 + .23)); Financials have a time-varying exposure to Size. Generally,
constant non-zero betas seem more common for Size and Growth that for
Value and Debt, indicating that the former have more persistent effects that

the latter. Value has always the largest frequency in the second row, sug-

13



gesting that value exposures are dynamic but regress around zero on average.
The last result can be compared with the results of HHS (2001), who find no
evidence of non-zero value exposures in a fixed parameter context.
Repeating the analysis, tables II to V present results on both capitalization-

weighted and equally-weighted aggregate sector returns and we see similar
patterns as before. Value has a significant slope b1, but an insignificant in-
tercept bg in virtually all cases for the cap-weighted returns. Growth never
has a significant slope by, but often has a significant intercept by (except for
Consumer Goods and Financials). Debt has an occasional significant slope
(Basic and Other Industries) whilst Size exhibits plenty of significant inter-
cepts but only for Financials with cap-weighted returns a significant slope.
Taking these results together, we see some evidence that Value has average
zero exposure but is significantly time varying around zero, as is Debt to
a lesser extent. Growth and Size are both significant on average in some

sectors but typically not time-varying.

5 Conclusions

Our paper has described and implemented a factor-based model of stock
returns, proposed by Christodoulakis and Satchell (2000), which allows for
stochastic common factors and dynamic beta coefficients. The model is ap-
plied to the problem of modelling global styles in the MSCI universe of assets
from 1988 to 1998; we find evidence that extends existing results in new di-
rections. In particular, we find evidence that Value and Debt are styles that
“come and go”, signifying time-varying risk premia, but that on average do
not appear significant; the results suggest the opposite characterization for
Growth and Size. Of course our results are likely to be sensitive to the time

period as well as the universe of assets chosen. Nevertheless this model has

14



a potential as a forecasting method for factor betas, asset second conditional

moments as well as providing a detailed statistical description of the data.
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6 Appendix

Table | : Frequencies of statistically Significant Parameters, Eq. (8)

Basic Industries
value growth debt size

Constant

8/44 (.18) 17/44 (.39) 10/44 (.23) 21/44 (.47
o oh ) SMA(18) 17/44(30) 10/44 (23) 21/44 (47)
Zero-mean
ARCBeta(1) 15/44 (.34) 5/44 (.\11) 25/44 (.57)  9/44 (.20)
(bg =0,b1 #0)
ARCBeta(1)

3/44 (.16 4/44 (.09) 10/44 (.23) 6/44 (.13
e zom ) BMA(I0) 4/44(09) 10/44(23) 6/44 (13)

Capital Goods
value growth debt size

Constant

(bO # 07 bl - O)
Zero-mean
ARCBeta(1)
(bo =0,b1 # 0)
ARCBeta(1)
(bO # 07 bl 7£ O)

47/387 (.12)

35/387 (.09)

150/387 (.38)

178 /387 (.46)
90/387 (.23)

65/387 (.17)

82/387 (.21)
171/387 (.44)

44/387 (.11)

197/387 (.51)
99/387 (.25)

67/387 (.17)

Consumer Goods

value

growth

debt

size

Constant
(bO 7£ 07 bl - 0)

54/277 (.19)

Zero-mean
ARCBeta(1)

(bo =0,b1 # 0)

133/277 (.48)

ARCBeta(1)
(bo # 0,b1 # 0)

50,/277 (.18)

94/277 (.34)
64/277 (.23)

35,/277 (.13)

49/277 (.18)
52/277 (.19)

14/277 (.05)

122/277 (.44)
88/277 (.32)

50,/277 (.18)
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Energy

value growth debt size
Constant
4/47 (.085) 12/47 (.25) 2/47 (.04) 17/47 (.36
oo gy /AT (085) 12/47 (25) 247 (04) 17/47 (36)
Zero-mean

ARCBeta(1)  19/47 (40) 5/47 (.10) 9/47 (.19) 12/47 (.25)
(bo = 0,b1 # 0)

ARCBeta(1)

2/47 (.042) 2/47 (.04 0/47 (0 8/47 (.17
et Loy /AT (042) 2/4T(04) 0/ (0) /47 (17)
Financials

value growth debt size

Constant

29/193 (.15) 54/193 (.28) 46/193 (.24) 106/193 (.55
o0 b — o) 29/193(15) 54/198 (38) 46/193 (24) 106/193 (.5)
Zero-mean

ARCBeta(1)  101/193 (.52) 45/193 (.23) 42/193 (.22) 88/193 (.45)
(o= 0.b, £ 0)
ARCBeta(1)

(bo # 0,b1 # 0)

20/193 (.10)  26/193 (.13) 23/193 (.12) 64/193 (.33)

Other Sectors

value growth debt size
Constant
21/206 (.10) &6/206 (.42) 37/206 (.18) 94/206 (.46
o0 by ) 21/206 (10) 86/20 (42) 37/206 (.18) 94/206 (40)
Zero-mean

ARCBeta(1)  94/206 (.45) 56/206 (.27) 38/206 (.18) 53/206 (.26)
(bp = 0,b1 #0)
ARCBeta(1)

(bg # 0,b1 # 0)

Notes to Table I: we present the number of statistically significant parameters in each sector/factor

17/206 (.08) 35/206 (.17) 13/206 (.06) 38,206 (.18)

grid for equation (8) ﬁij,t = bij,O + bij,lﬁi,j,t—lvjz',tfl' It is given as a ratio with respect to

the number of stocks in the corresponding sector and as a percentage in brackets.

17



Table Il : Sector Aggregate Results: fmp 1 (value)

Basic. Ind / value Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 2.43 .81 2.30 98
ma(1) 13 1.14 14 1.68

var .80 5.20 .78 5.99

bo -.07 -.12 .05 .16

b1 40 .35 -.33 -.23
Cap. Goods/value Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c .92 2.16 90 1.2
ma(1) A2 .60 -.07 =72

var 27.58 5.50 58.24 6.33

bo -.32 -1.38 .08 .29

b1 .35 2.94 -.75 1.31
Cons.Goods/value Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 1.3 3.8 .87 2.23
ma(1) .07 .36 -.04 -.24

var 16.02 6.18 15.99 5.79

bo -.42 -1.78 -.20 -1.08

b1 27 2.56 .32 3.19
Energy Sect/value Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 1.17 3.33 .82 1.84
ma(1) .09 .63 -.03 -.21

var 18.35 7.35 22.99 5.98

bo 21 99 .20 .79

b1 -.35 -2.51 -.29 -1.75

18



Financials / value Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
¢ 92 1.70 93 2.05
ma(1) -.07 -.76 -.14 -1.42
var 30.81 2.72 18.96 5.46

bo .64 241 .35 2.29

b1 -.31 -3.66 -.38 -4.44

Other Sect /value Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
C 73 1.86 .67 1.52
ma(1) .03 27 -11 -.82

var 20.47 6.12 18.11 6.09

bo .40 1.75 .32 1.48

b1 -.32 -2.75 -.31 -2.65

Notes to Table II: we estimate the system of equations (6), (7) and (8) for cap-weighted and
equally weighted aggregate sector returns and for all style factors. Mean and variance
parameters for the style factor are not reported since they do not vary between asset

categories. We thus report estimates for equations (6) and (8).
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Table 111 : Sector Aggregate Results: fmp 2 (growth)

Basic. Ind/growth Cap. Weighted Equally Weighted
parameter t-statistic estimate t-statistic

c A8 0.18 0.42

ma(1) -1.08 .22 1.07

var 6.6 25 5.65

bo 2.32 1.48 2.83

b1 0.90 0.08 0.7

Cap. Goods/growth Weighted Equally Weighted
parameter t-statistic  estimate t-statistic
c 2.5 73 1.64
ma(1) -1.10 .04 31

var 5.57 21 5.52

bo 1.82 1.39 3.0

b1 .67 0.1 1.06
Cons.Goods/growth Weighted Equally Weighted
parameter t-statistic = estimate t-statistic
c 4.4 .89 2.43
ma(1) -1.01 -.02 -.08

var 6.43 16 5.53

bo 14 .53 1.38

b1 .86 14 .84
Energy Sect/value Weighted Equally Weighted
parameter t-statistic  estimate t-statistic

¢ 3.9 .82 2.1

ma(1) -1.5 -.03 -.16

var 6.9 21 5.11

bo 2.5 1.16 2.37

b1 -.83 -.01 -.05
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Financials/growth Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
¢ 97 1.8 .96 2.28
ma(1) -.02 .20 18 -.24

var 33 5.9 20 5.24

bo 44 .66 .60 1.32

b1 19 1.4 .09 .80

Other Sect/growth Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
C .78 2.1 .70 1.9
ma(1) -.10 -.76 -.01 -.14

var 20 6.11 17 5.3

bo .99 2.34 1.16 2.8

b1 .16 1.8 A1 1.2

Notes to Table III: we estimate the system of equations (6), (7) and (8) for cap-weighted and
equally weighted aggregate sector returns and for all style factors. Mean and variance
parameters for the style factor are not reported since they do not vary between asset

categories. We thus report estimates for equations (6) and (8).

21



Table IV : Sector Aggregate Results: fmp 3 (debt)

Basic. Ind / debt Weighted Equally Weighted
parameter estimate t-statistic
c A7 .29
ma(1) 14 1.1

var 27 6.5

bo =27 -1.1

by .39 1.94
Cap. Goods/debt Equally Weighted
parameter estimate t-statistic
c ) 1.55
ma(1) 07 A7

var 23 6.3

bo A2 .64

b1 =21 -1.31
Cons.Goods/debt Equally Weighted
parameter estimate t-statistic
¢ .87 2.4
ma(1) -.03 -.20

var 16 5.8

bo -.001 -.29

b1 -97 -2.29
Energy Sect/debt Equally Weighted
parameter estimate t-statistic
c 77 1.8
ma(1) -.006 -.057

var 23.1 5.98

bo -.12 -.55

b1 A1 A7




Financials /7 debt Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
c .86 1.07 90 2.11
ma(1) -.06 -.04 .006 18

var 33 6.10 20 5.56

bo -.025 -.95 -.008 -.31

b1 =75 -1.86 -.87 -1.20

Other Sect/growth Cap. Weighted Equally  Weighted

parameter estimate t-statistic parameter t-statistic
C .71 1.92 .67 1.62
ma(1) -13 -.86 .008 18

var 21 6.17 19 6.21

bo -.002 -43 -.001 -.23

b1 -.99 -2.8 -94 -1.08

Notes to Table IV: we estimate the system of equations (6), (7) and (8) for cap-weighted and
equally weighted aggregate sector returns and for all style factors. Mean and variance
parameters for the style factor are not reported since they do not vary between asset

categories. We thus report estimates for equations (6) and (8).
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Table V : Sector Aggregate Results: fmp 4 (size)

Basic. Ind 7/ size Cap. Weighted Equally  Weighted
parameter estimate t-statistic parameter t-statistic
c 0.27 .50 0.21 0.59
ma(1) .003 .03 18 1.71
var 29 6.67 25 6.51

bo -0.6 -5.45 -0.28 -2.85

b1 .04 .63 .08 .90
Cap. Goods/size Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 1.12 2.88 .79 1.75
ma(1) -.09 =72 12 1.21

var 21 5.85 20 6.34

bo -0.5 -4.68 -.39 -4.31

b1 .02 0.5 .07 .88
Cons.Goods/size Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 1.38 4.71 .89 2.52
ma(1) =17 -1.24 -.007 -.23

var 14 6.10 15 5.61

bo -31 -4.48 -.25 -3.60

b1 .08 1.6 12 1.5
Energy Sect/size Cap. Weighted Equally Weighted
parameter estimate t-statistic estimate t-statistic
c 1.19 3.16 .82 1.86
ma(1) -.15 -91 -.006 -.15

var 18.6 7.35 23 6.0

bo -.042 -.48 -.02 =75

b1 .07 .07 .85 2.49
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Financials / size Cap. Weighted Equally Weighted

parameter estimate t-statistic estimate t-statistic
¢ 1.02 2.36 .87 2.15
ma(1) -.093 -1.43 .001 .06

var 25 4.58 18.82 5.40

bo -.56 -5.3 -.15 -1.68

b1 10 3.16 43 1.33

Other Sect /size Cap. Weighted Equally Weighted

estimate t-statistic estimate t-statistic

C .86 2.47 .65 1.63
ma(1) -.08 -.76 .003 A7
var 18 6.92 18 6.14
bo 37 .99 05 .55
b1 .035 .76 07 2.84

Notes to Table V: we estimate the system of equations (6), (7) and (8) for cap-weighted and
equally weighted aggregate sector returns and for all style factors. Mean and variance
parameters for the style factor are not reported since they do not vary between asset

categories. We thus report estimates for equations (6) and (8).
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