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ABSTRACT. By formulating a nested test of the asymmetric response model
of Bawa, Brown, and Klein (1981), the mean-lower partial moment CAPM (LPM-
CAPM) of Bawa and Lindenberg (1977) and the mean-variance CAPM of Sharpe
(1963, 1964), Lintner (1965) and Mossin (1969), this paper investigates the rela-
tive merits of symmetric and asymmetric risk measures using UK equity data for
differently sized companies and at different frequencies. Our analysis shows that,
when equity returns are not normal - which is the case for most daily and weekly
returns, and for a large portion of smaller firms - the CAPM is rejected in 30%-50%
of cases, and the optimal choice of alternative model is LPM-CAPM in over two
thirds of these. These, and our further results, have strong consequences for the
accurate measurement of equity risk, performance and prices, as downside and/or
asymmetric risk measures often outperform the traditional CAPM framework, thus
rendering it’s related and widely-used current approaches sub-optimal for some com-
pany sizes/data frequency combinations.

JEL Classifications: C10, G12

Keywords: Risk, Asymmetric Returns, High Frequency Data, Small Companies

1. INTRODUCTION
Correctly measuring the risk of an asset, or a portfolio of assets, is of fundamental im-
portance for asset pricing and performance measurement in Finance. The most popular

equilibrium model which yields a measure of systemic market risk, or “beta”, is the
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mean-variance CAPM of Sharpe (1963 and 1964), Lintner (1965) and Mossin (1969).
Empirically, this imposes a parameter restriction on the joint distribution of market and
portfolio returns, which can be tested using a linear data-generating function.

Given the continuing criticism of the variance as risk measure and the well-documented
poor empirical performance of CAPM (see the excellent survey of Jagannathan and Mc-
Gratten (1995) for an extensive bibliography on this), several asset-pricing models which
serve as alternatives to CAPM have been proposed. Motivated by the belief that risk is
ultimately related to shortfall rather than volatility, such models typically imply downside
or asymmetric betas (see Bawa and Lindenberg (1977), Harlow and Rao (1989), Satchell
(1996) or Pedersen (1999b)). These models demand a more general data-generating func-
tion for asset returns, do not depend on mean-variance rules, and imply the use of alterna-
tive risk and performance measures, which complement or generalise the traditional trio
associated with CAPM (introduced in Treynor (1965), Sharpe (1966) and Jensen (1972)).
Such non-traditional measures have already appeared in different guises in Finance liter-
ature and have the advantage of being able to capture asymmetries and fat tails in equity
returns (see Henriksson (1984), Henriksson and Merton (1981), Kim and Zumwalt (1979),
Fabozzi and Francis (1977 and 1979), Chen (1982), Bawa and Lindenberg (1977), Harlow
and Rao (1989), Sortino and Price (1996) or Pedersen and Satchell (1999)).

This paper empirically investigates which underlying data generating model best cap-
tures the essential features of some types of returns, thus defining risk and performance
measures based on the best empirical fit to the data, whilst remaining within the bound-
aries of reasonable theoretical justification. This is a topic which has already attracted
some interest. For instance, Price, Price, and Nantell (1982) and Homaifar and Graddy
(1990) examine non-nested tests, which focus on average value differences - or the number
of positive differences - in the “betas” derived from two alternative models over a large
class of assets. However, both these studies assume betas are uncorrelated across assets
and that volatility is constant across both assets and markets, which is clearly violated
for any set of real financial asset classes. Roll (1973) and Grauer (1981) also address this
problem, but use a simple visual comparison of the implied security markets lines to infer
their conclusions. Most recently, the problem of modelling asymmetric risks has been at-
tacked from the angle of modelling conditional skewness (see Harvey and Siddique (1999)
for references) and estimation of more general non-linear pricing kernels (an excellent
summary of these is given in Dittmar (2000)).

Our analysis begins with the work of Harlow and Rao (1989) and Eftekhari and Satchell
(1996), who present a nested test of differences between CAPM and the mean-lower partial
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moment CAPM (LPM-CAPM) of Bawa and Lindenberg (1977). The LPM-CAPM is the
only model which both explicitly derives a systemic risk measure directly comparable
with the CAPM beta, whilst assuming individuals have sound axiomatic downside risk
preferences. By illustrating how this test depends on a maintained hypothesis in the
form of a non-linear parameter restriction, we derive a test for LPM-CAPM against a
more general asymmetric response model. Thus we effectively construct a nested test
for the differences in three risk measures, which are capable of capturing increasingly
"non-normal” features of asset returns; the traditional mean-variance CAPM beta, the
LPM-CAPM downside risk beta, and a general asymmetric measure of risk introduced
in Bawa, Brown and Klein (1981), which was extended to performance measurement in
Pedersen and Satchell (1999).

We use ten years daily, weekly, and monthly returns for FTSE100, FTSE250, and
FTSE SmallCap constituents in order to test the three models, since both company size
and data frequency have been well-documented as affecting skewness and kurtosis in
returns. We find that high frequency returns reject the mean-variance CAPM model
more frequently than monthly returns. This is consistent with lower frequency data
(which are temporal aggregates of higher frequency data) approaching normality via the
Central Limit Theorem. We also find that the rejection rate of the mean-variance CAPM
model increases for smaller companies. This reflects the fact that small companies often
have more skewed and leptokurtotic returns due to lower trading volume, greater takeover
and acquisition speculation, and bankruptcy risk.

Conditional on returns data not rejecting a Bera-Jarque test for normality at the 5%
level, we confirm that the common perception that “when equity returns are conditionally
normal, use CAPM” is more or less accurate (in 88% of cases, this held true). Alarmingly,
though, for smaller companies and all companies with daily or weekly data - which were
non-normal in all of our cases - about 30-40% of cases typically required an alternative
model than CAPM. That is, whilst the CAPM is applicable for some small companies
and high frequency returns, one should conduct a more detailed analysis in these cases in
order to determine whether symmetric or asymmetric risk are the dominant explanatory
factors. Given the widespread and arbitrary use of CAPM in the industry today, this
could have severe consequences for risk and performance measurement, and asset pricing.

The paper is organised as follows: in the next section, we review the testing procedure
introduced by Harlow and Rao (1989) and later used by Eftekhari and Satchell (1996),
whilst Section 3 extends this and nests the three models we are testing. Section 4 considers

potential models of excess market returns and derives the precise forms of likelihoods
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needed for our analysis (with details in the Appendix). The data used for our main
empirical analysis is presented in Section 5 and results are discussed in Section 6. Section

7 is reserved for our conclusions.

2. THE HARLOW & RAO TEST FOR DOWNSIDE BETA
As alluded to in the Intnroduction, the two main theoretical models we shall test are
the Capital Asset Pricing Model (CAPM) of Sharpe (1963 and 1964), Lintner (1965) and
Mossin (1969), and the mean-lower partial moment CAPM (LPM-CAPM) of Bawa and
Lindenberg (1977). We refer the reader to the original texts for details of the theoretical
derivations of these models; for our purposes, we focus on the fact that the only difference
between them is that, rather than variance, the investors in the latter model minimise the

lower partial moment
1

| Emin [0, Ry(t) - Rp(0)])]” (1)
where R,(t) are portfolio returns at time ¢ and Ry(t) the riskfree rate at time ¢, rather
than. The use of downside risk measures such as (1) has been advocated by a large num-
ber of theorists and practitioners (see, for instance, Markowitz (1952), Fishburn (1980),
Bawa (1975), Menezes, Geiss, and Tressler (1980), Sortino and Van der Meer (1991),
Balzer (1994), Kijima and Ohnishi (1993), and Pedersen (1999a) where an extensive re-
cent bibliography can be found). For the models under consideration, this change of risk
measure has only one main implication for the resulting pricing equation, namely that
the equilibrium measure of risk, the “beta”, is different in the two models. However, the
CAPM is always implied when returns are spherically symmetric or quadratic utility is
assumed (see Bawa and Lindenberg (1997), Chamberlain (1983), Ingersoll (1987), Chow
and Denning (1994) or Satchell (1996)). Hence, CAPM is nested in LPM-CAPM, which
suggests a role for standard statistical techniques to test for differences in the models.
The next section reviews existing applications of such tests and Section 3, by examining
an implicit restriction these rely upon, extends the analysis to derive a new test of the
LPM-CAPM against a more general asymmetric response model; this test then forms the

basis of our empirical investigations in Section 5.

2.1. The General Data Generating Function. In order to describe the economet-

ric relationship between the models, we appeal to the sample estimates of the two key
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equilibrium risk measures discussed above. In sample terms, CAPM beta is

> cov (Rp, Ry,) t; (Rp(t) = Bp) (R (t) — Rin)
Boarm = var (Ro) - — 2)
S (Rult) ~ Fon)

and LPM-CAPM beta is

=

1

3 _ CLPMg, (Ry,Rp) |
LPM LPMp, (Rn)

(3)

> (min[0, Ry (t) — Ry(1)])?

=1

(Bp(t) = Ry(t)) min [0, Ry (1) — Ry (1))

The underlying model which can capture both these is the asymmetric response model
Ry(t) — Ry (t) = Brp Ry (t) + Bop Ry, () + 78(t) +p(t) (4)

where R, (t) = R,,,(t) — Ry(t) when R,,(t) < Ry(t) and zero otherwise, R}, (t) = R, (t) —
R;(t) when R,,(t) > Ry(t) and zero otherwise, and 6(¢) is an index function which is one
when R,,(t) > Ry(t) and zero otherwise!. This model was first introduced by Bawa,
Brown, and Klein (1981), but has since been adapted by Harlow and Rao (1989) and
Eftekhari and Satchell (1996). Note that the market portfolio is split, which allows us to
capture asymmetric responses of portfolio returns to changes in market conditions. The
disturbances, €,(t), are serially uncorrelated, independent of all other variables, and have
mean zero.

To place this firmly within popular finance literature, it is worth briefly establishing
further links to previous works. When 7 = 0, (4) is the equation used by Kim and Zumwalt
(1979) to test for differences in CAPM-beta in Bull and Bear markets. Their work built
on the analysis of Fabozzi and Francis (1977 and 1979) and itself was extended to include
time-varying betas in Chen (1982). An identical empirical framework also formed the
basis for the tests of Henriksson (1984) and Henriksson and Merton (1981), who studied
the performance of market timers in Bull and Bear market conditions.

Both Harlow and Rao (1989) and Eftekhari and Satchell (1996) advance by assuming
that 7 = ¢ (3, — B3,,) in (4), where ¢ is the conditional expectation of Ry, (t) given that
Ry (t) > Ry (1), ie.

p=FK [Rm (t) - Rf (t) |Rm (t) > Rf (t)] - PI'(R‘igg:;;(t]);f (t)) (5)

IFor convenience, this assumes both mean-variance CAPM and LPM-CAPM are valid (i.e. that all
alphas of the assets are zero). However, one could insert a constant in the regression - the following

analysis would still be valid.
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This restriction is employed since it allows on to derive the desired test for distinguishing
between the equilibrium models. In it’s present format, (4) without (5) does not allow
such a derivation (see Harlow and Rao (1989) for details). In particular, it can be shown
that, under the restriction imposed by (5), Blp =3 Lpw > Whilst BQP measures the response
of the portfolio to upside market returns. Also, when 7 = 0 and 3, = 35, in (4), 3117 =

BCAPM. Thus, by testing the hypothesis
Heapwm : By, = Bop and 7 =10 (6)
against the alternative

HLPM:ﬁlp#ﬂQp OI‘7T7£O (7)

given that 7 = ¢(8;, — f5,), one may establish a statistical difference between the two
models. The next section further elaborates on this and derives a new framework in which

the LPM-CAPM itself is tested against the asymmetric response model (4).

3. NESTING THREE ALTERNATIVE RISK MEASURES

We have thus highlighted how the critical assumption

™= ¢ (B1p — Bap) (8)

is needed to prove that the alternative model (7) in the original framework yields the
equilibrium LPM-CAPM beta?. However, it is also clear that (8) is a test of whether
LPM-CAPM is rejected against (4). Indeed, if (8) is rejected, both the LPM-CAPM and
the CAPM itself are rejected, and tests for their difference thus made redundant. Thus, we
note that by deriving our new nested testing procedure for LPM-CAPM, we also improve
the efficiency of the original test for differences between CAPM and LPM-CAPM.

To derive these tests, we shall start with the general case - i.e. (4) without assuming

(8) - and then derive a test for
Hy:m=¢ (61, — Bayp) 9)
against

Hiy :ﬂ-#¢(ﬁlp_ﬁ2p) (10)

2Note that when 7w = 0 and 3, = B, (8) is automatically satisfied for all ¢. Hence, (8) is redundant

under the null hypothesis Hcapar.
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A rejection of H; implies that the data is not well-described by either LPM-CAPM or
CAPM. This would speak in favour of the general asymmetric model (4) and its impli-
cations for risk and performance measurement, which were examined in Pedersen and

Satchell (1999). If we do not reject Hi, we test

H2 : /glp = ﬁ2p (11)

against

H2A : ﬁlp 7é /621) (12)

which then allows us to distinguish between CAPM and LPM-CAPM?.

We now present the main general steps in our procedure for testing these hypotheses.
The next section then discusses key distributions for the excess returns on the market.
Firstly, by adopting a suggestion by Eftekhari and Satchell (1996), we note that (4)
defines R, (t) as the conditional distribution of portfolio returns. If we assume that the
error €p(t) is distributed as a standard normal variable, the conditional likelihood of R,(t)
given R} (t), R,,(t) and §(t) is given by
1

e
oV 2w

Xp —% (Rp(t) = 81,y Ry (t) — Bop Ry (1) — 7 8(1))°

P (Ry ()| Rpn(8), RE(0)6(0)) = »

(13)

Given the joint marginal distribution of R, (¢), R, (¢) and 6(¢), one can thus calculate a

full joint probability density function of {R,(t), R;,(t), R} (t),6(t)};

pf (Ry(t), Ry, (t), Ry,(1),6(t)) = pdf (Rp(t)|R,,(t), Ry,(1),6(t)) pdf (R, (1), Ry, (), 6(1))
(14)

where the first terms is given by (13) and the second determined by choosing an appro-
priate assumption for market returns (which we discuss in the next section). Given this
joint distribution, full likelihood functions can then be derived under all hypothesis. Note
that even if excess returns on the market were normal, this joint distribution (14) is not
necessarily multivariate normal, since we explicitly condition on R} (¢), R;,(t) and 6(¢) in
(13) and weigh them by the coefficients Bips Bop and respectively*. Hence, even in such
conditions, the CAPM will not be implied within our framework unless certain parameter

restrictions are satisfied..

3Note that Hy implies Hoapas - see (6) - since if 7 = ¢(8;, — B8s,) and By, = Ba,,, then clearly m = 0.

Also, Hy4 immediately implies Hy,pps - see (7). Hence, the stated hypothesis are sufficient.
4In fact, we can not in general obtain the functional form for the density function of R, (t). However,

the moment-generating function can be obtained and consequently expressions for the central moments

of Rp(t) can be deduced (see Pedersen (1998) for details).
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Thus, once marginal distributions are determined for the excess market returns and the
full unrestricted likelihood function of {R,(t), R;,(¢), R} (t),6(t)} written down, Likeli-
hood Ratio Tests can easily be constructed by explicitly imposing (in turn) the restrictions
(9) and (11), and comparing the resulting likelihood estimates; this forms the overall ap-
proach we take to test for the appropriate model to use for different size companies
and with different data frequencies. We next address the question of which assump-
tions should be chosen for the probability density function of excess market returns,
pdf (R,,(t), R (t),6(t)), in the context of our chosen empirical analysis based on UK

returns data, enabling us to complete the last bit of the theoretical derivations.

4. EXCESS RETURNS ON THE MARKET
The problem of specifying a marginal distribution, pdf (R, (t), R (t),6(t)), has recently
been addressed by Knight, Satchell, and Tran (1995), whose general approach is to split

the contributions of upside and downside excess returns using the identity
X(t) = p+6(t)X1(2) — (L —6(t)) Xao(t) (15)

where both X7 () and X3(¢) are non-negative variables, §(t) is a switching variable, and
 is a constant. To be consistent with (4), we set =0, X(t) = R, (t) — Rs(t), X1(t) =
R} (t), and X5(t) = —R,,,(t). The negative sign in front of R, (t) follows from the fact

™m

that R (t) <0, whilst we require X5(¢) > 0 in (15). Hence, (15) becomes
Rn(t) — Ry (t) = 8() Ry, () — (1= 6(t)) [ R, (1)] (16)

so we sample from R} (¢) when 6(t) = 0 and from —R,,(t) when §(t) = 1. The joint

marginal density function of R} (t), R;,(t) and 6(¢) is thus given by

1-6(t)

[pdf (— Ry, ()] x [pdf (R}, (1)) (17)

Depending on the data, different assumptions can be made about R,,(t), R, (t) and 6(t)

™m

and the explicit unconditional likelihood of { R, (t), R;,(t), R} (t),6(t)} thus derived using
(14). We advocate the use of two such ”split” distributions given the data to be analysed.

For our empirical analysis, we employ daily, weekly and monthly UK equity returns
over the period from 1 August 1991 to 31 July 2001; the FTSE All-share index and a
three-month UK Treasury Bill are used to calculate market returns and the risk-free rate.

The summary statistics of the returns on the All-share are given in Table 1. The results

indicate that the normal distribution may be suitable for monthly All-share returns, whilst
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- not unexpectedly - the Bera-Jarque test comfortably rejects normality for the weekly and
daily returns. Further investigation shows the significance of fat tails is the key source of
the non-normality in the daily market returns whilst weekly returns have both significant
skewness and excess kurtosis.

As a benchmark, the normal distribution has been fitted to excess returns on the
FTSE All-share and the results are summarised in Table 2. Note that whilst all means
w are insignificant (t-ratios below 1.65), and thus the market risk premium is not sta-
tistically different from zero, the volatilities are all significant. However, because of the
non-normality of the daily and weekly market returns shown in Table 1, the estimates in
Table 2 may not adequately reflect the excess market returns in these cases.

Distributions such as those modelled by (16) allow alternative separate modelling of
negative and positive excess returns, which is appropriate given the above observations,
the Bera-Jarque tests and our objectives. In particular, we choose two different distri-
butions; a mixture of truncated normal distributions which are continuous (CMTN) and
a structure mixing Gamma distributions (MG). Although they have very different tails
characteristics and behaviour at zero, we shall show that they are both well-suited for our
purposes; excess market returns are better specified with the two split distributions than
with the normal distribution in high frequency data such as daily and weekly returns.
What is more, we shall see that all the results of our main tests are virtually identical
using these different distributions, suggesting that our procedure is quite robust. We next

describe them in greater detail and derive the resulting likelihoods for testing (9) and

(11).

4.1. Continuous Mixed Truncated Normal (CMTN) Distributions. Our first
candidate distribution is a continuous mixed truncated normal distribution. (CMTN),
which nests the normal distribution but allows for asymmetry and excess kurtosis (fat
tails). To derive this, initially suppose that R (¢t) and —R,,(t) are given by normal

distributions truncated below, i.e.

1 1 1 R;Z(t)ﬂq)z
df (R (¢)) = ( 7 18
pdf (R}, (1)) 1_®mm@[m —c (18)

for R (t) > 0 and zero elsewhere, where u; and o are the mean and standard deviation

of a normal distribution with c.d.f. @R;(t). Similarly

. 1 1 (g
pwe&Amzl_éRMMmlw _ )] (19)
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for —R_

—(t) > 0 and zero elsewhere, where u, and o2 are the mean and standard devi-

ation of a normal distribution with c.d.f. ®_5- (1)’ thus, R, (t) is modelled as a normal
distribution truncated above.

Expressing (I)Ri(t) and (I)—R;L(t) in terms of ®, the c.d.f. of the standard normal
distribution and using (17), the joint marginal likelihood of R}, (t), R,,(t) and §(t) can be
given by

8(t) 1-6(t)
+ —n 2 —R, — K 2
p () (1-p)  -3(magme)

(20)

where §(¢) is an independent Bernoulli switching variable, which is one when R,,(t) >
R¢(t) and zero otherwise. In its present form (20) does not describe a distribution which
is continuous at zero; continuity is, however, a most desirable feature of distributions
used in statistical analysis. In addition, most financial return data - including the FTSE
All-share we use in our empirical section - has large clusters around zero which would
support such an assumption. Consider therefore the following Lemma, whose proof is in

the Appendix.

Lemma 1. The restriction

oo(1—P| —£2
p= 2 2( [ 02]) 2 (21)
__% 2

20 20
e - + € m
n(i-e=5]) * e(1-0[-22])

is sufficient for continuity of the density whose likelihood is given by (20).

We label this combined distributional assumption - i.e. (20) where p is given by (21) -
as a continuous mixture of truncated normal distributions (CMTN). In Pedersen (1998),
the assumption (21) was tested using monthly FTSE returns data, and did not reject
continuity even at the 25% significance level®.

Table 3 reports the estimates of the CMTN for daily, weekly and monthly excess market
returns. Note that for both daily and weekly data, p; and py are negative, suggesting that
the estimated CMTN is significantly affected by kurtosis and thus the probability density
function is not bell-shaped. By imposing p; = p, and o; = o2, we used a Likelihood

Ratio Test (LRT) to test the assumption of normality in the data. The (LRT) statistic is

5We note that a further assumption of differentiability - which restricts the asymmetry allowed - was

rejected at the 10% level (see Pedersen (1998) for details).
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computed by
2(LLy — LLR) ~ x*(k) (22)

where LLy; is log-likelihood of the CMTN distribution, LLg is the log-likelihood of the
normal distribution, and x?(k) the chi-squared distribution with k degrees of freedom,
where k is the number of restrictions. Using the log-likelihood values of the normal and
CMTN distributions in Table 5, we calculated the LRT statistics for daily, weekly and
monthly returns and find that the LRT statistics are all significant and thus the returns
are better specified with the CMTN distribution.

As part of the choice of distribution, we shall also consider how well candidate dis-
tributions model ¢. The parameter is key for our analysis and also helps us compute
how well the sample estimate of the market risk premium is replicated. For the normal

distribution, we need the following Lemma, which is also proved in the Appendix.

Lemma 2. If z~ N (u,a2), then

2

06_57
¢:E[z|z>0]=u+m[1_¢(_%ﬂ (23)
and
Elz)z<0]=p— 227 (24)

Va2 (-4)

where ® (.) is the cumulative density of a standard normal variable.

The estimates of ¢ and E [R,,(t) — R¢(t) |Rm(t) < R¢(t)] can be obtained using Lemma
2, whilst p can be assessed from (21). For the CMTN distribution, the estimates of
daily ¢ and E[Ry,(t) — Rf(t) |Rm(t) < Ry(t)] are 0.63% and -0.63% respectively. Since
o = 0.0085 and p = 0.0003, the probability of negative excess returns is ® (—g) =
® (—0.035) = 0.48, so the daily market risk premiumis E [R,,(t) — R¢(t)] = (0.52)(0.63%)+
(0.48)(—0.63%) = 0.03%. The similar numbers for weekly and monthly returns indicate
that, for weekly returns, ¢ = 1.50%, and the market risk premium is 0.09%, whilst, for
monthly data, ¢ = 2.96%, and the market risk premium is 0.42%. Note that these confirm
the estimate of p recorded in Table 2.

As these results are positive, and we can explicitly model "upside” and ”downside”
returns, CMTN forms the first of our alternative distributions of excess market returns
to be used in our tests of the main hypothesis (9) and (11). We hence derive the log-
likelihood function of {R,(t), R;,(t), R} (t),6(t)} using the probability density function
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of (14), when the conditional density of R,(t) given R} (¢), R;,(t) and () is (13) and the

™m

marginal distribution as specified by (20). This, and the log-likelihood functions under
the main hypothesis (9) and (11), are all given in the Appendix.

4.2. Mixed Gamma Distributions. Our second candidate distribution for excess

market returns (i.e. potential model for R} (t), R, (t) and §(t)) is the Mixed Gamma

m

(MG) proposed by Knight, Satchell, and Tran (1995). The distribution assumes that both
R (t) and —R,,(t) are described by Gamma distributions

Az ! exp(—Ax
—F(af( ) x>0

pdf (z) = (25)

0 otherwise
in which T' denotes the Gamma function, @ > 0 and A > 0, and §(¢) is an independent
Bernoulli switching variable which is one with probability p and zero with probability 1—p.
Under these assumptions, Knight, Satchell, Tran (1995) show that the joint likelihood of
R} (t), R,,(t) and 6(¢) can be given as

8(t) 1-6(t)

PAT[RE (D)™ exp [\ Ry (1)]
F(Oél)

' (az)

x l(l )N (=R ()™ exp [~ha(— Ry (1)

(26)

where the parameters (a1, A1) are from the Gamma distribution for R (¢) and (as, \2)
from the Gamma distribution modelling — R, (¢). This has very different tail character-
istics than the CMTN distributions in the previous section (see Knight, Satchell, and
Tran (1995) for further details). In addition, whilst the truncated normal distribution is
unrestricted, the MG distribution (25) must have density of zero at zero. Consequently,
we shall allow very different features of excess market returns to be picked up depending
upon the choice of distribution.

The result of fitting the MG distribution to the market excess returns is given in
Table 4. All estimates are significant and for monthly returns the results are similar to
those reported in Hwang and Satchell (2001) and Knight, Satchell, and Tran (1995); large
values of A\ and A2, and a3 > 1 and @z > 1. The density has maximum value (i.e.
mode) at (a; — 1)/A; when «; > 1; for example, for the monthly returns, the conditional
densities for positive and negative excess returns have maximum value at (a; — 1)/ A =
(1.3368 — 1)/46.4211 = 0.0073, and —(a2 — 1)/X2 = —(1.1187 — 1)/34.1302 = —0.0035,
respectively. Likewise, ¢ is easily deduced from model parameters. Since the expectation
of a Gamma distribution (25) is §, ¢ = §* and E[Rin(t) — Ry (t) [Rim(t) < R (t)] = —52.

The probability of returns being below the risk-free rate is explicitly measured via the
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parameter estimation of p. Hence, for daily data, we get ¢ = 1.19/191.05 = 0.62% and
E[Rn(t) — Rf(t)] = 0.53(0.62%) +0.47(—0.64%) = 0.03%. The similar numbers for lower
frequency data are, for weekly, ¢ = 1.38% and a market risk premium of 0.09% whilst, for
monthly data, we get ¢ = 2.88% and a market risk premium of 0.42%. The comparison
here with those of the CMTN and normal distributions confirms that despite the fact that
the segmented fittings and the probabilities differ, the distribution-wide parameter (i.e.
the market risk premium) is identically estimated for all three frequencies.

We saw earlier that using the log-likelihoods values, CMTN specifies the excess market
returns better than the normal distribution. More general comparisons between all three

distributions are possible with the Akaike Information Criterion (AIC)%
AIC =2(LL— N) (27)

where LL is the log-likelihood of the estimation and N the number of parameters to be
estimated. This was introduced in Akaike (1973) and is well-discussed in Judge, Griffiths,
Carter-Hill, and Lee (1985) and Maddala (1992); the higher the AIC, the better the fit.
Table 5 reports the likelihood, model selection criteria and estimated values of ¢ for all
fitted distributions. For the daily data, the AIC was 16905 for the normal distribution
against 17075 for MG, indicating that the advantages we shall gain in using CMTN,
which has five parameters, is not offset by loss in estimation efficiency. This is also clearly
reflected for weekly data (2644 for normal, 2652 for CMTN, and 2654 for MG). How-
ever, for monthly data, most affected by Central Limiting effects, the normal distribution
(436.8) and the CMTN distribution (438.2) both dominate the MG distribution (431.3),
this being perfectly consistent with the Bera-Jarque statistics in Table 1.

Although the market risk premiums are the same for all three distributions, there are
some differences in the way the asymmetry is modelled, as also evident from differences in
the estimate of ¢. The additional benefit demonstrated through the rejection of normality
in favour of CMTN and/or MG is clear through the values of AIC. As the MG distribution
fits the data better than the normal distribution, but has very different properties around
zero and in the tails than the CMTN, it forms an appropriate alternative distributional

assumption for excess market returns, especially for high frequency data. Given the

6We note that there are alternative approaches to model selection than using the Akaike criterion. One
could decide that the number of parameters is secondary and simply look at likelihood. Alternatively, if
concerned with sample sizes, one could use the Schwartz Bayesian criterion SB = LL — % logn where n is
the sample size, introduced in Schwartz (1978). As the AIC is the most common model selection criterion
used in the literature and we make no prior assumption about which criterion should be preferred, we

stay with the AIC in this paper.
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parameters are identically estimated but the MG have higher AIC, we shall thus also
apply MG for the test of our main hypothesis (9) and (11).

When we assume that the joint marginal density function of R} (¢), R, (t), and §(t) fol-
lows MG - as in (26) - and the conditional density function of R, (t), pdf (R,(t)|R;,(t), R} (t),6(t)),
is normal as in (13), we can obtain the joint probability density function of { R, (t), R}, (t), R, (t), 6(¢)}
using the equation suggested in (14). This forms the second alternative joint distribution
in our tests of the main hypothesis, and the derivation of the relevant likelihood functions
for testing our main hypothesis (9) and (11), can be found in the Appendix.

This completes our theoretical derivations of the tests which will be used in our em-
pirical analysis. To summarise, we have shown how the original tests of Harlow and Rao
(1989) and Eftekhari and Satchell (1996) depend upon an untested restriction (8) which, if
not satisfied, implies the alternative model in their tests, the LPM-CAPM, is misspecified.
In addition, we have showed that by formulating a test for this maintained hypothesis, we
nest both the CAPM and LPM-CAPM in the general unrestricted framework (4), and give
the form of the specific hypothesis, (9) and (11), which need to be tested to distinguish
between them. Consequently, the test allows the data to tell us whether to use the stan-
dard risk and performance measures of Sharpe (1966), Treynor (1965) and Jensen (1972),
which derive from CAPM, the Sortino and Price (1994) performance criteria, which is
justified by LPM-CAPM, or the more general asymmetric measures corresponding to the
unrestricted version of (4), which were introduced and formally analysed in Pedersen and
Satchell (1999). As the testing requires an explicit assumption to be made on the marginal
distribution of excess market returns, we have considered the particular features of the
daily, weekly and monthly returns on the FTSE All-share, and provided evidence for
appropriate distributional assumptions. Finally, by combining marginal and conditional
distributions, we have derived the log-likelihood functions for our main hypothesis tests,
which we now apply to equity returns with different frequencies and for differently-sized

companies.

5. APPLICATION TO SMALL AND LARGE UK COMPANIES DATA

We now examine equity data for small and large UK companies (and for different frequen-
cies) and use the results to comment upon some stylized facts and whether, for some types
of financial returns data, we find evidence favouring symmetric and asymmetric market
risk measures.

Larger companies generally have a greater number of shareholders, larger volume of

trade and higher frequency of trading. Monthly returns are additions of many trades and,
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by the Central Limit Theorem’, approach normality. Small companies often have fewer
shareholders and thinner markets with low trading frequency and volume, so that monthly
returns do not exhibit the same degree of central limiting and, consequently, should be
"less normal”. This we dub the ”frequency effect”. Further, Cosh and Hughes (1995)
argue that small companies fail more often than larger due to their youth, inexperience
and often quite narrow product ranges, which would imply that investors need to account
for bankruptcy risk. This, together with takeover, merger and acquisition speculation,
encourages the presence of more outliers in returns, which skews the distribution and/or
gives fat tails. (For a more detailed examination of the general structures of small compa-
nies, one should consult works of Hughes and Storey (1994) and Storey, Keasey, Watson,
and Wynarczyk (1987).) This second effect, we label the ”size effect”.

Based on these observations, we have two hypotheses: (1) as company size decreases,
we should move from CAPM to LPM-CAPM to asymmetric model as the preferred struc-
ture, and (2) as frequency increases, we should likewise be moving from CAPM through
LPM-CAPM to (4). We shall examine these claims in detail. Further, we consider if -
in some particular equity data groups - we can conclude that conventional models based
on CAPM are suitable, and - where not - how serious the problem is. Presenting the
LPM-CAPM as an alternative model, we then also see if this provides adequate coverage
for the areas where issues arise or if one needs (4), with it’s lack of theoretical founda-
tion, to capture appropriate risk in returns. Finally, we shall comment upon the obvious

consequences of our results for risk management based on CAPM-type measures.

5.1. Data. The UK stock market is covered by indices generated by FTSE Interna-
tional. In order to be admissible for these indices, securities must satisfy conditions of
investibility, size and liquidity®. The largest eligible companies comprising 98%-99% of
total market capitalisation constitute the FTSE All-share for the following year. The
All-share is further split into several sub-indices; the FTSE100 contains the largest 100
companies; the FTSE250, the next 250 largest companies; the FTSE350 comprises both
of these, and the FTSE SmallCap contains those companies too small to be included
in the FTSE350. Finally, the FTSE Fledgling index (henceforth Fledgling) covers those
companies too small to enter the All-share index.

Dimson and Marsh (1998) analysed the returns of all UK companies with market

7Strictly speaking, for central limiting arguments to apply, we implicitly assume that the distribution

of single return moves has finite variance. This is an assumption we make unreservedly.
8Details of these and the criteria that individual companies must satisfy are given on the FTSE

International website on the World Wide Web: www.ftse.com.
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capitalisation under £188m; effectively complementary to the FTSE350, this covered the
FTSE SmallCap, Fledgling and Alternative Investment Market companies. We refer the
reader to their report for details and further references, but give two relevant findings
here: firstly, Dimson and Marsh find evidence that the volume of trading in shares of
small companies is far below that of FTSE100 companies; in fact 97% of the value of
the All-share is invested in companies which have market capitalisation over £188m. In
addition (see Dimson and Marsh (1998), page 62, Exhibit 51), the correlation between
small companies and the All-share has steadily increased as smaller businesses have be-
come more sensitive to fluctuations in the domestic market, which has resulted in beta
with the FTSE All-share becoming larger and more significant.

Our sample period for the daily, weekly, and monthly FTSE100, FTSE250, and FTSE
SmallCap constituents is from 1 August 1991 to 31 July 2001, which is the same as in
Tables 1 to 5 for the analysis of the FTSE All-share index returns. Therefore, during the
sample period, we have 2525 daily returns, 521 weekly returns, and 120 monthly returns
for each stock?. Note that since the constituents of the indices have changed during the
sample period, we used stocks included in the indices as of the 4th of September 2001. The
number of stocks available at the beginning of our sample period is less than the number
of stocks in the indices at the end of our sample period. Our results may be affected by
this exclusion of stocks in the early period of our sample. The number of stocks available
to us for the whole sample period are 77, 163 and 197 for FTSE100, FTSE250 and FTSE
SmallCaps respectively'®. We now examine this data in relation to our size and frequency
effects.

The ”Size Effect”. As we are interested in the relative properties of large and highly
liquid stocks to those of small and less trading stocks, we investigated the properties of
the FTSE100, FTSE250 and FTSE SmallCap stocks separately in Tables 6a-6¢ in the
Appendix. As reported by Dimson and Marsh, we confirm that average returns on top
companies are larger than those on the middle and small companies, suggesting the stable
engine of FTSE All-share growth over the last 10 years having been through Large-Cap

stocks. For example, the monthly average return for the FTSE100 stocks has a mean

9The series is the Total Return Index from Datastream, which assumes dividends are re-invested.

Pyy1(14+DY;
Total returns, r¢, are calculated as r; = In [w

, where P; = price at time ¢t and DY; =
dividend yield at time ¢. When selecting suitable proxies for small and large companies, it is clear that
no one definition is necessarily correct. In particular, over a given time horizon, companies may change
size to become “large” or “small”. Our chosen sample, however, contains those companies which have

been among the top 100 companies for ten years, which seems as good a criterion as any.
10For the daily returns, the number of equities for the FTSE250 is 159.
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of 1.20% and inter-quartile range of (0.7%, 1.5%), whilst those for the FTSE250 and
FTSE SmallCaps have means of 1% and 0.8% and interquartile ranges of (0.6%, 1.3%)
and (0.3%, 1.3%) respectively.

However the real top performers were typically smaller companies, along with the most
spectacular failures, as can be seen from comparing the Maximum and Minimum rows
and the interquartile ranges for the three different size related groups. As expected, the
estimates of skewness and kurtosis show that the FTSE SmallCap stocks are more skewed
and fat-tailed; for example, for the case of monthly returns, 77% of companies reject
normality at the 5% level, versus 61%-62% amongst the larger companies, a difference
which is more pronounced as the significance level of the test increases. In general, Bera-
Jarque statistics for the FTSE SmallCap stocks’ returns are much larger than those for
the FTSE250 stocks’ returns which are again larger than the FTSE100 stocks’ returns.
The main source of the trend seems to be kurtosis; that is, the smaller the firm, the more
leptokurtotic their returns.

The ”Frequency Effect”. As mentioned previously, the Central Limit Theorem
would dictate that lower frequency returns should be ”"more normal”, since they are
temporally aggregated returns of higher frequency returns (e.g. daily returns). This
effect is found regardless of the type of data and appears more prevalent than the size
effect. Indeed, by glancing at Tables 6a-6c¢, it is apparent that - regardless of size - the
data becomes strongly non-normal at higher frequencies. For instance, the Bera-Jarque
statistics for daily returns for even FTSE100 companies having an interquartile range of
(1614, 9255), compared with (65, 432) and (2.7, 34.8) for weekly and monthly frequencies
respectively.

Overall, Table 6 suggest that both size and frequency are important factors to decide if
returns are normal, with frequency having the stronger effect. However, as we will conduct
our analysis at all frequencies individually, we shall of course test statistically if the
economic reasonings for smaller companies having more non-normal returns are powerful
enough to merit use of a separate model. In summary, we expect our tests to confirm that
CAPM is generally not appropriate for high frequency returns of all companies, whilst
low frequency returns of large companies may be well explained with CAPM. For smaller
companies with low frequencies, it is harder to form a precise hypothesis and the data
will have to do the talking. Also, as for the question of which asymmetric model (LPM-
CAPM or the general asymmetric model (4)) is best to apply where CAPM is unsuitable,
a directional bias should be expected, which would favour the asymmetric model where

data are more extremely non-normal, the LPM-CAPM filling the gap between these and
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those for which the CAPM is favoured.

6. RESULTS

We now present the results of the tests of the main hypotheses using the two distributions,
CMTN and GM, as discussed in the previous section. The number of rejections of H; and
Hs at the 10% significance level are summarised in Table 7. As explained in the previous
section, when H; is rejected, returns are better specified with the asymmetric model in
(4). Hence, this tells us the theoretically justified models are incapable of capturing the
risk in the returns. On the other hand, when Hj is not rejected, we further test Ho. When
Hj is rejected, we choose the LPM-CAPM and finally, if H> is not rejected, we favour
CAPM.

Firstly, we note that the results in Tables 7a-7c are almost identical for the two mar-
gional distributional assumptions (GM and CMTN). This suggests that our test is robust
for different distributions. From now on, we hence explain our findings referring to the
numbers in Table 7 pertaining to the MG distribution. We first look at the case of daily
returns. For the FTSE SmallCap stocks, about 50% of cases still support the CAPM
whilst about 27% and 23% support the asymmetric and LPM-CAPM models, respec-
tively. Whilst this result may be surprising given that the mean-variance CAPM model is
widely used without thorough specification tests, it should be noted that joint normality
is not necessary but merely sufficient for CAPM. However, it is noteworthy that this
result informs us that some 50% of small companies would be wrongly valued/priced etc.,
if daily data was used in a CAPM. For the larger companies such as the constituents of
FTSE100, we find that 71% support the CAPM whilst the asymmetric model is chosen
less than 10% of cases. Thus, size plays a role in determining the applicability of CAPM
for daily data. In total, 40% of firms are better modelled using alternatives to CAPM, of
which LPM-CAPM is preferred in over two thirds of the cases.

For weekly returns, Table 7b shows a similar pattenr except the acceptance rate of
CAPM is increased by about 10-15% for all three size groups. When the frequency of
returns is monthly, Table 7c shows that the percentage not rejecting the CAPM is about
80% across different company sizes, whilst about 13% of stocks are best specified with
LPM-CAPM models and the asymmetric model again only chosen for 6% of stocks. Thus,
although not a large percentage, the CAPM is still misused in about 20% of cases, even
when we are talking about FTSE100 companies and monthly data, which is the most
typical frequency used by analysts and corporate financiers today. We also note that the

"size effect” seems most prevalent with daily returns. Figures la-lc summarises these
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findings.

Finally, we note that Table 7c also reveals that when (monthly) returns are normal,
CAPM is appropriate in about 88% of cases'!. Hence, the common rule of thumb that
"whenever you are dealing with normal equity returns, the CAPM is the right model”,
appears to be supported by our evidence although some cases are still modelled better
with asymmetric risk regardless of the normality of returns. More importantly, however,
it is clear that whenever we are dealing with non-normal returns - which includes any
analysis with weekly and daily frequency data and a significant chunk of smaller company
and monthly data, a customised testing procedure - a model of which is introduced in
this paper - is necessary to adequately determine which model should be applied when

performing risk analysis, pricing or asset valuations.

7. CONCLUSION

Determining an “appropriate” data-generating function which captures essential features
of portfolio returns is fundamental for empirical risk measurement, valuations and perfor-
mance measurement. Whilst studies have sporadically attempted to illustrate the levels of
differences between the CAPM and classes of ”asymmetric” risk models, the fundamental
belief still appears to be that using the CAPM gives an accurate enough picture of the
necessary features of risk and return for most equity data. In this paper, we have analysed
more precisely which data and company types may more readily be thrown into a CAPM
and which require more careful analysis, focusing on company size and data frequency in
particular.

Using a recent paper by Knight, Satchell, Tran (1995), which addressed the problem of
splitting distributions, we have presented an extension to the empirical testing procedure
of Harlow and Rao (1989) and Eftekhari and Satchell (1996). This extension, which relies
upon accurately modelling excess market returns using asymmetric distributions, enables
us to nest the lower partial moment CAPM of Bawa and Lindenberg (1977) - and so also
the traditional CAPM - in a more general asymmetric response model. Consequently,
we are able to distinguish between three different models using standard econometric
techniques.

We have analysed daily, weekly, and monthly returns of three different size UK com-
pany groups. Our results confirm that daily and weekly returns require most attention,
in that non-traditional frameworks need to be applied in a large number of cases. On

the other hand, CAPM works well for monthly returns of large companies, though some

HNote that conditional normality of portfolio returns is not sufficient for the CAPM to be valid.
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doubt reigns over the use of monthly data on smaller firms. Finally, we confirm that
when dealing with normal equity returns, the CAPM is indeed the preferred model, being
chosen in 88% of cases. Most strikingly of our findings, however, is that when dealing
with non-normal returns, which includes all analysis with daily and weekly data, separate
testing is needed to determine the ”correct” model. For these cases, the CAPM is still
7 favourite”, typically chosen in 55-80% of cases. Moreover, the LPM-CAPM chosen in a
further 15%-30% of cases, indicating that it is a solid alternative to CAPM in most cases
where CAPM is rejected. This does provide some comfort for proponents of equilibrium-
based ”beta”-type risk measures, whilst promoting the LPM-CAPM. Indeed, only in the
most extreme cases, some 6-7% on average, did both CAPM and LPM-CAPM get rejected
in favour of the general asymmetric model (4). This indicates that - since LPM-CAPM
nests CAPM - one could apply LPM-CAPM to all data, knowing that CAPM is automat-
ically implied when appropriate, and capture the risk characteristics in almost all equity
returns studied.

We hope the findings of this paper will fuel the ongoing debate between proponents
and opponents of symmetric, downside and asymmetric risk measures in the academic
literature. Further, since it is clear that, in some cases, CAPM per se is not in practice
the best model, we hope that practitioners also will pay more attention to the fact that
accurate financial risk analysis, equity valuation and asset pricing in general, may contain
inaccurate measurements which can be improved. Indeed, there has been a more general
acceptance of general risk and performance measures such as those introduced in Sortino
and Price (1994) and Pedersen and Satchell (1999), which are generalisations of the con-
ventional measures in Sharpe (1966), Treynor (1965) and Jensen (1972). Our findings
in this article will hopefully also help these constructs gain further popularity amongst

analysts of markets with highly skewed and kurtotic returns.
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8. APPENDIX
PROOF OF LEMMA 1

By the continuity of individual truncated normal distributions, discontinuity can occur

only at zero. To eliminate this, we need

1 Rh®-m)? 1 Raw-u)®
() (=)
(1-9 [—%l})crl 27 (1-9 [—52} Yoo/ 21
! Rif, (£)=0 : Ry (£)=0
or indeed
m 2
pe (%) (1—pe ()

(- [—g—l})al 3 (1- 0|2V (28)

which can be rearranged to give (21) l

PROOF OF LEMMA 2
If = [z]z > 0] has a p.d.f. given by (18), then
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Letting y = £=£, so that « = oy + p and dz = ody, noting that ®,(0) = ® (—£), where

®(.) is the cumulative density of a standard normal variable, we get
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Again letting y = £=£, so that = oy + 1 and dx = ody, noting that ®,(0) = & (—£),
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where ®(.) is the cumulative density of a standard normal variable, we get
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THE KEY LOG-LIKELTHOOD FUNCTIONS UNDER CMTN
With the conditional distribution modelled by (13), the “unrestricted” model (4) under
the CMTN assumption has log-likelihood given by
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where @ is the c.d.f. of the standard normal distribution. Consequently, under CMTN,
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The “restricted” log-likelihood under H; is derived by substituting (31) in (29) and thus

given by
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We use the Likelihood Ratio Test in (22) to test H;. The model in (29) is unrestricted one
whilst (32) is the restricted model. When testing Hs, (32) is the “unrestricted” model,
and the “restricted” log-likelihood is found by further imposing 3;, = 85, giving
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THE KEY LOG-LIKELTHOOD FUNCTIONS UNDER MG
The joint likelihood function for {R,(t), R}, (t), R,,(t),6(¢)} at time ¢ is the product of

m

the marginal likelihood (26) and conditional likelihood (13). By taking logarithms of this
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product, summing over a sample of size T', we have a log-likelihood of
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for the unrestricted model corresponding to the general asymmetric model - i.e. (4) when
Hy is rejected - under the assumption of MG'. Since E [R},(t) R/ (t) > 0] = §*, H, the
test of LPM-CAPM versus the general asymmetric model (4) - defined in (9) - becomes

Hy 7= % (B — Bap) (36)

which is tested against

Hia:m 7’é (51;; Bay) (37)
The restricted likelihood under H; is calculated by substituting (36) into (34), which gives
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If we reject (36), the data do not support an equilibrium model (i.e. LPM-CAPM or
CAPM), but favour the general asymmetric model (4). If (36) is not rejected, we test

121t is difficult to say much about this distribution analytically; indeed, the density function corre-
sponding to this likelihood is not readily available. However, in Pedersen (1998), Corollary 1 establishes

that its moment-generating function is

1,2,2 A «1 A 2
o= (52 ) e () ] )

where A1 > sf85 and A2 > —sB;. From this, its moments can be recovered by evaluating the derivatives
of the logarithm of (??7) at s = 0 (see, for instance Degroot (1989), page 202). As the first four central

moments take up ten pages of algebra, they are omitted but available on request from the author.
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LPM-CAPM against CAPM by considering Hs : 34, = (3, using the Likelihood Ratio
test where (38) is the unrestricted likelihood, and the restricted likelihood, obtained by
substituting 3, = B,, in (38), is

T
TnvZE - Thho — QLZ = By [Bon(t) — Ry (1)])?

M*ﬂ

+TInp+ TiagIn )y + (g — 1)) 8(t) In R} (1) Alzé HRE(t

t

—Tl ln( ( )) —|—T21

1

1—p)+Teazln s +

/—\

[1=8(t)] [-R,(1)] - T2In(T(a2))  (39)

Mﬂ

T
042 — 1 Z R;l(t)] - )\2
t=1

t

1

If H, is rejected, we can then conclude that the most suitable model describing the data
is LPM-CAPM and therefore 3;,, is the "correct” risk measure. If Hj is not rejected, we

have illustrated strong support from CAPM.
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Table 1 Returnson FTSE All-Share I ndex

Standard Excess
Frequency | Maximum Minimum Mean Deviation Skewness Kurtosis Bera-Jarque
Daily 0.057 -0.039 0.000 0.009 -0.069 2.500* 659.298*
Weekly 0.101 -0.062 0.002 0.019 0.262* 1.991* 92.022*
Monthly 0.100 -0.110 0.009 0.039 -0.420 0.114 3.589

Notes: The sample period for the daily, weekly, and monthly FTSE All-Share Index returns starts from 1 August 1991
to 31 July 2001. During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns.
* represents significance at 5% level.

Table2 Maximum Likelihood Estimates of Normal Distribution
on the Excess M arket Returns

Frequency Parameter Estimate t-statistic
Dally n 0.0003 1.616
S 0.0085 71.062
Weekly n 0.0009 1.048
s 0.0191 32.279
Monthly n 0.0042 1.184
S 0.0386 15.492

Notes: The excess market returns are calculated with the FTSE All-share Index
and 3 month Treasury bill. See notesin Table 1 for other detailed explanation on data.

Table3 Maximum Like&ihood Estimates of Continuous Mixed
Truncated Normal Distribution on the Excess Market Returns

Frequency Parameter Estimate t-statistic

m -0.0215 -3.262

Daily Sq 0.0143 9.444
m, -0.0622 -2.066

S, 0.0216 4.817

m -0.0236 -1.522

Weekly Sq 0.0271 5.857
m, -0.0255 -1.499

S, 0.0266 5.428

m 0.0098 0.942

Monthly Sq 0.0322 5.582
m, -0.0953 -0.659

S, 0.0689 1.979

Notes: See notesin Table 2 for the data.




Table4 Maximum Likelihood Estimates of Mixed Gamma Distribution

on the Excess M arket Returns

Frequency Parameter Estimate t-statistic
p 0.5287 53.223
a; 1.1878 28.910
Daily I, 191.0516 23.395
a, 1.1499 27.370
I, 179.8201 22.002
p 0.5585 25.675
a; 1.1452 13.539
Weekly I, 82.7621 10.874
a, 1.3321 11.888
I, 85.8034 9.834
p 0.6000 13.416
a; 1.3368 6.650
Monthly I, 46.4211 5.505
a, 1.1187 5.510
I, 34.1302 4.404

Notes: See notesin Table 2 for the data.

Table5 Summary of Fitsto the FTSE All-Share Index Returns

Frequency Distribution Log-Likelihood Value AIC

Normal 8454.28 16904.56 0.0069

Daily MG 8542.36 17074.72 0.0062
CMTN 8536.26 17064.51 0.0063

Normal 1323.97 2643.93 0.0155

Weekly MG 1332.06 2654.12 0.0138
CMTN 1329.94 2651.89 0.0150

Normal 220.41 436.83 0.0323

Monthly MG 220.63 431.26 0.0288
CMTN 223.12 438.24 0.0296

Notes: See notesin Table 2 for the data.




A. Daily Returns

Table6 Summary Statistics of FTSE100 and FT SE250 Constituents

Statistics Maximum  Minimum Mean Inter -quartile 5% significance
L ower Upper (in %)

Maximum 0.358 0.066 0.141 0.102 0.160
FTSE100 Minimum -0.050 -0.778 -0.166 -0.179 -0.104
Constituents Mean 0.002 0.000 0.001 0.000 0.001
(77 Equities) Standard Deviation 0.032 0.012 0.020 0.018 0.022
Skewness 1.665 -7.902 -0.128 -0.214 0.300
Excess Kurtosis 219.384 1451 12.011 3.879 9.341

Bera-Jarque 5089882.353 232.504 90445577 1614.250  9254.809 100%
Maximum 0.616 0.043 0.148 0.095 0.178
FTSE250 Minimum -0.043 -1.143 -0.165 -0.197 -0.083
Constituents Mean 0.002 -0.001 0.000 0.000 0.001
(159 Equities)  |Standard Deviation 0.042 0.008 0.017 0.012 0.019
Skewness 3609 -15.556 -0.014 -0.228 0.597
Excess Kurtosis 573.784 2.540 26.514 7.371 21.965

Bera-Jarque 34739356.485 696.499 514498.987| 5840.233 50850.484 100%
Maximum 1.900 0.047 0.232 0.112 0.281
FTSE Small Cap |Minimum -0.047 -1.204 -0.251 -0.311 -0.109
Constituents Mean 0.002 -0.001 0.000 0.000 0.001
(197 Equities)  |Standard Deviation 0.074 0.006 0.020 0.012 0.024
Skewness 18577  -18.173 -0.023 -0.684 1121
Excess Kurtosis 666.143 2.703 59.235 17.493 62.290

Bera-Jarque 46824837.378  769.516 1204213.433| 32720.363 412085.546 100%




B. Weekly Returns

Statistics Maximum  Minimum Mean Inter -quartile 5% significance
L ower Upper (in %)

Maximum 0.446 0.099 0.201 0.151 0.234
FTSE100 Minimum -0.078 -0.833 -0.219 -0.252 -0.155
Congtituents Mean 0.008 0.000 0.003 0.002 0.003
(77 Equities) Standard Deviation 0.072 0.028 0.044 0.039 0.048
Skewness 1.498 -3.854 -0.119 -0.237 0.143
Excess Kurtosis 54.497 0.080 4.636 1.720 4.442

Bera-Jarque 65760.878 2.324 1696.915 65.407 432.022 99%
Maximum 1.182 0.082 0.230 0.157 0.257
FTSE250 Minimum -0.059 -1.170 -0.218 -0.252 -0.134
Congtituents Mean 0.008 -0.003 0.002 0.001 0.003
(163 Equities)  Standard Deviation 0.108 0.018 0.042 0.033 0.048
Skewness 2714 -5.731 0.185 -0.085 0471
Excess Kurtosis 87.306 0.672 6.765 2.674 6.785

Bera-Jarque 168318.199 9.813 3334.236 159.949  1069.210 100%
Maximum 2.255 0.078 0.315 0.158 0.377
FTSE Small Cap |Minimum -0.065 -1.098 -0.299 -0.377 -0.155
Congtituents Mean 0.008 -0.006 0.002 0.001 0.003
(197 Equities)  [Standard Deviation 0.171 0.018 0.050 0.032 0.062
Skewness 6.403 -7.393 0.238 -0.278 0.751
Excess Kurtosis 122.560 1.153 12.771 4.882 13.929

Bera-Jarque 330826.775 28.912 9288.084 517.501  4270.626 100%




C. Monthly Returns

Statistics Maximum  Minimum Mean Inter -quartile 5% significance
Lower Upper (in %)

Maximum 0.829 0.154 0.263 0.196 0.286
FTSE100 Minimum -0.132 -0.928 -0.286 -0.356 -0.202
Condtituents Mean 0.035 -0.001 0.012 0.007 0.015
(77 Equities) Standard Deviation 0.145 0.058 0.085 0.070 0.091
Skewness 1.047 -2.785 -0.258 -0.567 0.062
Excess Kurtosis 17.477 -0.433 1.807 0.285 2.386

Bera-Jarque 1682.356 0.016 56.283 2.740 34.772 61%
Maximum 1.182 0.095 0.290 0.198 0.338
FTSE250 Minimum -0.120 -1.170 -0.307 -0.348 -0.206
Congtituents Mean 0.034 -0.014 0.010 0.006 0.013
(163 Equities)  |Standard Deviation 0.231 0.042 0.092 0.072 0.104
Skewness 1.604 -2.818 -0.217 -0.473 0.059
Excess Kurtosis 17.557 -0.348 1.887 0.520 2171

Bera-Jarque 1636.193 0.077 60.472 3.346 30.751 62%
Maximum 1.735 0.110 0.390 0.225 0.451
FTSE Small Cap [Minimum -0.122 -1.522 -0.39%4 -0.483 -0.221
Congtituents Mean 0.036 -0.025 0.008 0.003 0.013
(197 Equities)  |Standard Deviation 0.337 0.042 0.112 0.079 0.138
Skewness 2.532 -2.939 -0.070 -0.447 0.330
Excess Kurtosis 22.435 -0.305 2.897 0.880 3.453

Bera-Jarque 2689.439 0.157 110.702 6.769 68.805 77%

Notes: The sample period for the daily, weekly, and monthly stock returns starts from 1 August 1991 to 31 July 2001.
During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns.




Table 7 Percent of Rejectionsfor theH1 and H2

A. Daily Returns

H1 Rejected H1 Not Rejected [Neither H1 nor

Bera-Jarque but H2 Rejected |H2 Rejected

Asymmetric Model  [LPM-CAPM CAPM
Rejected 77 7 (9.1%) 15 (19.5%) 55 (71.4%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE100 Total 77 7 (9.1%) 15 (19.5%) 55 (71.4%)
Constituents Rejected 77 7 (9.1%) 16 (20.8%) 54 (70.1%)
CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 77 7 (9.1%) 16 (20.8%) 54 (70.1%)
Rejected 159 23 (14.5%) 42 (26.4%) 94 (59.1%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE250 Total 159 23 (14.5%) 42 (26.4%) 94 (59.1%)
Constituents Rejected 159 24 (15.1%) 41 (25.8%) 94 (59.1%)
CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 159 24 (15.1%) 41 (25.8%) 94 (59.1%)
Rejected 197 54 (27.4%) 44 (22.3%) 99 (50.3%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE Small Cap Total 197 54 (27.4%) 44 (22.3%) 99 (50.3%)
Constituents Rejected 197 55 (27.9%) 42 (21.3%) 100 (50.8%)
CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 197 55 (27.9%) 42 (21.3%) 100 (50.8%)




B. Weekly Returns

H1 Rejected H1 Not Rejected |Neither H1 nor

Bera-Jarque but H2 Rejected |H2 Rejected

Asymmetric Model  [LPM-CAPM CAPM
Rejected 76 5 (6.6%) 9 (11.8%) 62 (81.6%)
MG Not Rejected 1 0 (0.0%) 0 (0.0%) 1 (100.0%)
FTSE100 Total 77 5 (6.5%) 9 (11.7%) 63 (81.8%)
Congtituents Rejected 76 4  (5.3%) 9 (11.8%) 63 (82.9%)
CMTN Not Rejected 1 0 (0.0%) 0 (0.0%) 1 (1.3%)
Total 77 4 (5.2%) 9 (11.7%) 64 (83.1%)
Rejected 163 7 (4.3%) 32 (19.6%) 124 (76.1%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE250 Total 163 7 (4.3%) 32 (19.6%) 124 (76.1%)
Constituents Rejected 163 5 (3.1%) 32 (19.6%) 126 (77.3%)
CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 163 5 (3.1%) 32 (19.6%) 126 (77.3%)
Rejected 197 20 (10.2%) 49 (24.9%) 128 (65.0%)
MG Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
FTSE Small Cap Total 197 20 (10.2%) 49 (24.9%) 128 (65.0%)
Congtituents Rejected 197 22 (11.2%) 46 (23.4%) 129 (65.5%)
CMTN Not Rejected 0 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 197 22 (11.2%) 46 (23.4%)| 129 (65.5%)




C. Monthly Returns

H1 Rejected H1 Not Rejected [Neither H1 nor

Bera-Jarque but H2 Rejected |H2 Rejected

Asymmetric Model  [LPM-CAPM CAPM
Rejected 49 3 (6.1%) 7 (14.3%) 39 (79.6%)
MG Not Rejected 28 2 (7.1%) 1 (3.6%) 25 (89.3%)
FTSE100 Total 77 5 (6.5%) 8 (10.4%) 64 (83.1%)
Constituents Rejected 49 3 (6.1%) 7 (14.3%) 39 (79.6%)
CMTN Not Rejected 28 2 (7.1%) 1 (3.6%) 25 (89.3%)
Total 77 5 (6.5%) 8 (10.4%) 64 (83.1%)
Rejected 112 11 (9.8%) 17 (15.2%) 84 (75.0%)
MG Not Rejected 51 0 (0.0%) 8 (15.7%) 43 (84.3%)
FTSE250 Total 163 11 (6.7%) 25 (15.3%) 127 (77.9%)
Constituents Rejected 112 10 (8.9%) 18 (16.1%) 84 (75.0%)
CMTN Not Rejected 51 0 (0.0%) 9 (17.6%) 42 (82.4%)
Total 163 10 (6.1%) 27 (16.6%) 126 (77.3%)
Rejected 161 11 (6.8%) 21 (13.0%) 129 (80.1%)
MG Not Rejected 36 0 (0.0%) 3 (8.3%) 33 (91.7%)
FTSE Small Cap Total 197 11  (5.6%) 24 (12.2%) 162 (82.2%)
Constituents Rejected 161 14 (8.7%) 21 (13.0%) 126 (78.3%)
CMTN Not Rejected 36 0 (0.0%) 3 (8.3%) 33 (91.7%)
Total 197 14 (7.1%) 24 (12.2%) 159 (80.7%)

Notes: The sample period for the daily, weekly, and monthly stock returns starts from 1 August 1991 to 31 July 2001.
During the sample period, we have 2525 daily returns, 521 weekly return, and 120 monthly returns.
10% level of significanceis used to test statistics. The numbers in the brackets represent represent the percentage
of the number of cases chosen for a model among the rejected (not rejected) case.




Figure 1A Percent of the Choice of the Three Models for Daily
Returns Obtained with MG Distribution
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Figure 1B Percent of the Choice of the Three Models for Weekly
Returns Obtained with MG Distribution
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Figure 1C Percent of the Choice of the Three Models for Monthly
Returns Obtained with MG Distribution
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