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1 Introduction

In recent years, Value-at-Risk (VaR) has become the standard method to measure the market risk of
a portfolio of financial assets. VaR is an estimate of the maximum potential loss to be expected with
a certain probability over a given time period. This measure of risk is widely used by practitioners
and regulators because of its conceptual simplicity and flexibility. It summarizes all the possible
market risks in a single number, and it can take into account various kinds of exposures and risks.
However, VaR calculation is subject to various sources of model error such as the model
specification, the used data set, and the method employed for the parameters estimation [see Beder
(1995), Crouhy, Galai and Mark (1998), and Figlewski (1999)]. The objective of this study is to
investigate the relationship between mis-estimating correlation and the induced VaR model error.
Understanding this relationship is a necessary prerequisite for measuring market risk accurately.
Correlation is one of the parameters that needs to be estimated so as to implement any
parametric VaR model. Any bias in the measurement of correlation between the portfolio assets will
yield an erroneously calculated VaR. Despite the plethora of correlation estimators proposed in the
literature, the correlation mis-estimation is inevitable'. More importantly, in periods of market stress,
where VaR is supposed to be used for, the correlations deviate significantly from the estimated
values [see Boyer, Gibson and Loretan (1999), Rebonato and Jickel (2000), and Bhansali and Wise
(2001) for a discussion of cases where the statistical techniques can not provide accurate estimates of

correlation].

! Traditionally, correlation has been modeled as a constant and unconditional variable. However, the empirical evidence
[see Kaplanis (1988), and Longin and Solnik (1995) among others] shows that the stability of correlation is a debatable
assumption. The Risk Metrics™ Group of J.P. Morgan (1996) proposed the exponentially weighted moving average
correlation estimator so as to take into account the time-variability of correlation. In addition, several multivariate
GARCH volatility models have been developed in the literature [see Bollerslev, Engle and Wooldridge (1988), Engle and
Kroner (1995), Alexander (2001), Tse and Tsui (2002), Engle (2002)]. As an alternative to historical measures of
correlation, a number of researchers [see among others Siegel (1997), Campa and Chang (1998), and Walter and Lopez
(2000a)] have derived implied correlations from currency options. For a comprehensive review of existing correlation
models, see also Alexander (1998).



A number of studies [e.g., Beder (1995), Alexander and Leigh (1997), Davé and Stahl (1997),
Jackson, Maude and Perraudin (1997), and Walter and Lopez (2000b)] compare VaR models that use
different multivariate volatility models. Their results indicate that different correlation estimators
yield significantly different VaR figures. However, the evidence about which is the best correlation
estimator within a VaR framework is far from being conclusive.

This paper takes a different route. Accepting that any correlation model estimates the
(unknown) ‘true’ correlation with some error, the question “Does it matter which (false) correlation
estimator shall we use for VaR purposes?” arises. We address this question by examining whether
there is a systematic relationship between correlation mis-estimation and the induced VaR mis-
calculation. This is important for effective risk management. For instance, in the case that there is
such a relationshii), the VaR model error issue (due to correlation mis-estimation) becomes
important; the risk manager should look for the method that estimates correlation with the lowest
possible error. On the other hand, if no such systematic relationship exists, the risk manager can
switch between the existing correlation estimators without affecting in a significant way his (already)
mis-calculated VaR. Then, he can focus on identifying the effect of other sources of model error on
his VaR calculation.

First, we examine semi-parametrically the “correlation mis-estimation” effect on VaR by
considering a general class of unbiased correlation estimators. This is a general approach that makes
almost no assumptions about the type of the correlation models used. The only assumption made
refers to the distribution (normal) of the correlation errors. Next, we study parametrically the effect
of mis-estimating correlation on VaR by using three popular correlation estimators: the moving
average, the exponentially weighted moving average, and the GARCH correlation model. In both
approaches, the relationship between VaR and correlation errors is examined for linear and non-

linear portfolios. We calculate VaR by employing two different methods: the variance-covariance



and the Monte Carlo (MC) simulation methods. This allows us to iﬁvestigate also whether the VaR
model error arising from mis-estimating correlation depends on the type of portfolio, and the method
used to calculate VaR.

We find similar results for both the semi-parametric and the parametric analysis: the VaR mis-
estimation increases significantly, as the correlation error increases. Moreover, the VaR of well-
diversified linear portfolios is more exposed to mis-estimating correlation. For option portfolios, the
magnitude of the VaR error sensitivity depends on the moneyness level, the time-to-maturity and the
(unknown) ‘true’ correlation. In particular, the correlation bias effect is more pronounced for short-
maturity in-the-money options. Furthermore, we find that the sensitivity of the VaR induced bias to
correlation errors depends on the method that is used to calculate VaR; the results indicate that the
calculated via MC simulation VaR is more sensitive to correlation mis-estimation. These results hold
for both linear and non-linear portfolios, and they have important implications for risk management.

The rest of the paper is organized as follows: Section 2 describes the variance-covariance and
the MC simulation methods we employ to calculate VaR. Section 3 describes the methodology used
to investigate the relationship between VaR error and correlation mis-estimation. In Sections 4 and 5,
the sensitivity of VaR error due to correlation mis-estimation is measured by developing and
applying the semi-parametric and parametric approaches, respectively. Results are shown for various

linear and non-linear portfolios. Section 6 concludes, and discusses the implications of the research.

2 Methods to Calculate Value-at-Risk

VaR is defined as the largest loss that a portfolio is likely to suffer if it is left unmanaged during a

fixed holding period. More precisely, for a given time horizon T and a confidence interval a, the a%



T-period VaR is the portfolio loss x in market value over the time horizon T that is not expected to be

exceeded with probability a, i.e.,

Prob(47I,<x)=a (1)

where 4711, = II,+r — II; is the change in the portfolio value (Profit/Loss, P/L hereafter) over the
holding period 7. The portfolio value 7, at time # is a function of the nominal amount #; invested in

the ith asset, and the price P;, of the ith asset at time ¢, i.e.

11=f(W,F,), i=I,...,n. 2)

where 7 is the number of assets in the portfolio.

Several methods have been developed to calculate VaR. These are classified within three main
approaches: the variance-covariance, the historical simulation, and the MC simulation approach [see
Jorion (1996), Duffie and Pan (1997), and Linsmeier and Pearson (2000) for a detailed description of
these methods]. For the purposes of our study, we calculate VaR using the variance-covariance and
the MC simulation methods since only these require estimates of the volatilities and the pair-wise
correlations of the portfolio assets. Next, we describe briefly the Delta-Normal (DN) and Fallon’s

(1996) Delta-Gamma (DG) variance-covariance methods, as well as the MC simulation method.

2.1 Variance-Covariance Methods: The Delta-Normal Approach

In the case that the instruments in a portfolio depend linearly on the market factors, the DN risk

measurement model developed by Garbade (1986) can be used. Assuming that the portfolio returns



follow a multivariate normal distribution and that they are serially independent, the DN portfolio

VaR(a, T, p) that corresponds to a confidence interval @ and holding period T is given by:
VaR (0, T,p)=2,00T - iy 3)

where z, is the inverse normal cumulative probability function corresponding to probability a, o7 is

!
the portfolio’s standard deviation, 7 is the expected portfolio P/L, and p is a (E(n;z)lx]} vector
n—2)!

of the pair-wise correlation coefficients p;;. The portfolio standard deviation is calculated by:

On =\/2W,-203 +232 2 W00, @

i=1 i=l j#i
where o; is the standard deviation of the ith asset returns.
2.2 Variance-Covariance Methods: The Delta-Gamma Approach

The DN approach is inappropriate for portfolios consisting of non-linear instruments, i.e. instruments
whose prices are non-linear functions of the market variables (e.g., options). In such a case, a DG
approach could be used. This improves on the DN method by using a second order Taylor series
expansion so as to capture non-linearity. For the purposes of our study, we use Fallon’s (1996) DG
method that can be described as follows. |
Assume a portfolio consisting of » options written on n underlying (non-dividend paying)

assets, respectively. To calculate the option portfolio VaR, the underlying asset prices are considered



as the factors affecting the portfolio value (market factors). In a Black — Scholes (1973) setup, the
price Vj, at time ¢ of the option written on the ith asset is a function of the underlying asset price P; at
time ¢, the option strike price .X;, the option’s time-to-maturity (T; — 7), the risk-free rate r; and the

standard deviation g; of the ith asset, i.e.
V;le(Pil’Xi’T;_t’rf’o-i)' ©)

The change in the value of the ith option is approximated by a second-order Taylor series expansion,
ie.

AVi= A; (AP) + % T; (AP)? + ©; 4t , (6)

where 4;, I'; and ©; are the delta, gamma, and theta of the option on asset i, respectively, AV; = V; ;i1
— Vi, A4P;= Piyor— Piy,and At = (t + T) —t = T is the VaR horizon.

The return of the ith asset is defined as R; = 4P; /P;, where R; is assumed to follow a normal
distribution with zero mean and variance o°. Then, the change in the portfolio value is a function of

the change AV; in the value of each option:

Al =Y 4, EATR+éRTFR+2@,At, (7

i=l i=1

where A” denotes the (1x#) transposed vector with elements 4;P;, R denotes the (nx1) vector of asset
returns, and I" denotes the (nxn) diagonal matrix with diagonal elements, I;P;.
The a percentile of the A7 distribution is approximated by the Cornish-Fisher (1937) expansion

that uses the first four (known) moments %, k3, k; and k, of the (non-normal) 417 distribution, i.e.:



VaR(a,T) =~k —w, * [k, . (8)

where
w,=z +i(zz —1)*k3+i(z3 -3z, )*k, —i(zf -5z,)*k]
a a 6 a 24 a a 36 a a

1 n

ke, = Sirace [rz]+) 6,4¢,
i=l

ky=A4"X A + % trace [T 5)],
ks= (34T X [T 2] A + trace[T" Z]°)/(k:)*?,

ki= (1247 Z [T Z]? A+3 trace[l’ £]*)/ks,

where X is the variance-covariance matrix of the portfolio asset returns, and ‘trace’ is an operator

that sums the diagonal elements of a matrix.
2.3 Monte-Carlo Simulation

MC simulation is recognized by researchers as the most powerful method to compute VaR. In
contrast to the variance-covariance approach, MC simulation can take into account nonlinear
positions, time-variation in volatility, fat tails, and a wide range of exposures and risks. On the other
hand, the main drawback of this method is that it becomes computationally expensive for portfolios
containing a large number of assets.

To calculate a portfolio’s VaR, we adopt the standard assumption that the price of the ith asset

follows a Geometric Brownian Motion, i.e.



2
Pi,1+A1 =L €Xp |i(:u, - %)At + o; éz\/E] 5 (9)

where y; is the instantaneous drift of asset i and ¢&; is a normally distributed random variable with
mean zero and variance one.

Using equation (9), a path for the ith asset is simulated up to time 7. The simulated portfolio
market value /I at the end of the holding period T can be calculated using the portfolio value
function [equation (2)]. To calculate /77 in the case of option portfolios, an option pricing model
needs to be used so as to calculate each option price V;r at time 7. This procedure is repeated a large
number of times (simulation runs) to create a distribution of /7. In our study, we use 30,000
simulation runs and N = 100 time steps. The time interval 4¢ is set equal to 0.01 (7/N=1/100). Let 17,
be the (known) portfolio value at time . We subtract 7, from each simulated value I7 to build the
portfolio P/L probability distribution. The VaR(a,7) of the portfolio is the a percentile of this
probability distribution. In the case that the portfolio asset prices are uncorrelated, then the random
number generation of ¢;’s can be done independently for each asset. However, in general the asset
prices are correlated. To create correlated random numbers, the Cholesky decomposition is used [see
Jorion (1996) and J.P. Morgan RiskMetrics (1996) for a detailed description of the Cholesky

decomposition].
3 Correlation Mis-Estimation and Value-at-Risk: The Methodology
Volatility and correlation estimates are required for VaR calculation using either variance-covariance

or MC simulation methods. In practice, these estimates are subject to errors. We focus on measuring

the sensitivity of VaR calculation to errors in the estimated pair-wise correlations. Each one of the



standard deviations of the portfolio assets are assumed to have been estimated accurately. The
general methodology can be described as follows.

Let a class of K correlation estimators exist, and p;, be the pair-wise correlation estimate

between assets i and j based on the &tk correlation estimator, £ = 1,...,K. Hence,

Py =Py +&4 k=1...K, (10)

where p;; is the ‘true’ pair-wise correlation between assets i and j, and g is the pair-wise
correlation estimation error for any given estimator £.

Let VaR(o,T,p) be the ‘true’ portfolio’s VaR, corresponding to probability a and holding period

!
T, where p is the [ﬁx] ] vector of the ‘true’ pair-wise correlation coefficients p;. Let
n—2)!
/
VaR(o,T,p,) be the estimated portfolio’s VaR, where p, is the [ﬁ—/xl } vector of the
n—2)!

estimated pair-wise correlation coefficients p,, corresponding to the kth correlation estimator. We

define the VaR Percentage Error, VPE (a,T P> Py ) , corresponding to the ktA correlation estimator
as:

R VaR (e, T, p, )-VaR(a,T,
KPE (T B~ ( %&LTA 2, (b

3.1 The Steps

The general setup described by equations (10) and (11) forms the basis to develop the semi-

parametric and parametric approaches described in Sections 4 and 5, respectively. These two

10



approaches differ only on the way the correlation estimation error is obtained. Once we obtain the K
correlation errors, the two approaches are developed in the following five steps:
Step 1: For each pair of assets, we fix the values of the ‘true’ correlation coefficients pj;.

Step 2: We calculate the ‘true’ VaR(a, 7, p) using the ‘true’ correlation coefficients pj;.

Step 3: We calculate the K estimated VaR (., T, p,) for the K different correlation estimators,
respectively.

Step 4: We calculate VPE (o, T, p,p, ) for each one of the K correlation estimators by using
equation (11).

Step 5: We measure the relationship between VPE(o,T,p,p,) and &;x This is done by

regressing the (Kx1) vector VPE (o, T, p,p, ) on the (Kx1) vector g, i.e.:

VPE(a,T,p.p, )=b*¢,, +u (12)

ij.k

In both the semi-parametric and parametric approach, the above methodology is applied to
linear and non-linear portfolios. This enables us to examine whether the correlation bias effect
depends on the type of portfolio. Two methods are used to calculate VaR: variance-covariance and
MC simulation. This allows us to study whether the sensitivity of VPE to correlation errors depends

on the method used to calculate VaR. We examine this by performing the following two regressions:

VPE(a,T,p,p; ), =bi (€4 )+,

VPE (o, T.p.p,),. =b (e,.]:_k )+u2 (13)

11



where VPE (o, T, p,p, ), . and VPE(e,T,p,p, ), are calculated using the variance-covariance and

MC simulation method, respectively. The same correlation errors are used to calculate VPE( * )yvc

and VPE( * )mc. Then, the null hypothesis Hj and the alternative H; hypothesis are stated as follows:

Ho.‘ b] = bz,

Hj: b; #b,.

Acceptance of the null hypothesis implies that the correlation mis-estimation effect on VaR does not
depend on the method employed to calculate VaR. In order to test the null hypothesis, we estimate

the following regression:

VPE =b (¢, )+ 3 [D * (¢;,)] +u, (14)

where VPE " and &, are (2Kx1) vectors containing the pooled data from the variables VPE( - )yc and

VPE( * )mc, and g4, respectively, used in equation (13). D is a multiplicative dummy variable that is
equal to zero for observations from the first set (variance-covariance method) and equal to one for
observations from the second set (MC simulation method). Thus, 6 = b, — b;.

The equivalent to H, and H; corresponding Hy" and H;" hypotheses are formulated now as:

Ho*.' o= 0,

Hl*.' o0 #0.

12



In the case that the results from the two methods do not differ significantly, § will be zero. In
the case that the H;" hypothesis is accepted, the implication is that the sensitivity of VaR mis-
calculation to correlation errors depends on the method that is employed to calculate VaR. Hence, if
0 > (<) 0, the correlation bias effect is greater (lower) if the MC simulation (variance-covariance)
method is used®.

In Sections 4 and 5, we apply the described methodology within a semi-parametric and a

parametric framework, respectively. For the purposes of our study the one-day 95% VaR is

calculated.

4 The Semi-Parametric Approach

4.1 The Methodology

In this section, we describe the semi-parametric methodology used to investigate the effect of mis-
estimating correlation on VaR. Our approach is semi-parametric in that we do not use specific
correlation estimators. On the contrary, we consider a general class of K estimators. On the other
hand, the cost of this is that we must make explicit hypotheses on the correlation error distribution
[see also Jacquier and Jarrow (2000) for a discussion on error distributions in the context of option
model risk]. We assume that the correlation estimation errors &;; are random numbers drawn from a

normal distribution with mean 4, and standard deviation g, i.e.

gijk ~ N, 09), k=1,..K (15)

% The way we set up the equality coefficients test, allows us to tell which one of the two beta coefficients is greater. In
contrast, standard techniques for testing the equality of the regression coefficients such as the Chow or Wald type tests
are not informative about the relative size of the coefficients under scrutiny.

13



We choose ;= 0 and o, = 0.03. Assuming a zero mean implies that we examine a class of
unbiased correlation estimators. This choice of g, is based on the empirical evidence on the
correlation errors across various estimators, as documented in the papers of Walter and Lopez
(2000a, Exhibit 5, p. 75), and Engle (2002, Table 1, p. 345). We calculate the standard deviation of
the various measures of correlation errors that are reported in both papers.’

Once we specify the correlation errors distribution, the five steps described in Section 3 are
implemented. In Sections 4.2 and 4.3 we apply the described semi-parametric approach to linear and

non-linear portfolios, respectively.

4.2 Linear Portfolios

We consider the case of a portfolio consisting of two long stocks. We assume that the portfolio
position on each asset is 15,000 dollars, and that the standard deviations of the daily returns of each
asset are 0.02 and 0.04, respectively. As a first step, we draw 50 random numbers (correlation errors,
i.e. K =50) from a normal distribution N(0, 0.03). We calculate 50 portfolio’s VPE by considering
the ‘true’ correlation coefficient and each one of the 50 different correlation estimators. Then, the
regression described by equation (12) is performed. The analysis is repeated for different ‘true’
correlation coefficients (p = -0.9, -0.8,..., 0.8, 0.9) so as to examine the “mis-estimating correlation”

effect on VaR for a range of ‘true’ correlations. The same 50 correlation errors are used for every

3 Walter and Lopez (2000a) calculate the one-month mean forecast correlation error for each one of six different cross-
currency pairs by using eight different correlation forecast methods. For each cross-currency pair, we calculate the
standard deviation of the mean forecast error across the eight different estimators. The standard deviation of the mean
forecast error ranges from 0.007 to 0.074 across the cross-currency pairs; it is 0.03 on average. Engle (2002) calculates
the mean absolute error using eight different correlation models for various correlation structures. Similarly, for each
correlation structure, we calculate the standard deviation across the eight different correlation models. We find that the
standard deviation of the correlation error ranges from 0.013 to 0.058 having an average value of 0.03.

14



‘true’ correlation coefficient. This ensures that the results from our analysis are comparable across
the ‘true’ correlations since we do not allow for any variation in the random numbers.

We apply both the DN and the MC simulation methods to calculate VaR. y, [equation (3)] and
ui [i = 1,2, equation (9)] are set equal to zero since the used VaR holding period is short. In the MC
simulation application, the initial prices of asset 1 and 2 are set to 100 and 150, respectively.
Moreover, we simulate the asset price path by using the same set of random numbers for every ‘true’
correlation value. This allows us to study the VPE and ¢; relationship across ‘true’ correlations,
without introducing any ‘noise’ from using different random number streams in the MC simulations.

Table 1 shows the results (beta coefficient and #-statistics in parenthesis) from regressing

VPE on ¢ [equation (12)] across ‘true’ correlations ranging from —0.9 to 0.9.

Table 1. Correlation Mis-Estimation Coefficient: Semi-Parametric Approach and Linear Portfolios

True Correlation DN VaR MC VaR
0.9 0.233 (1333.2) 0.283 (25.9)
0.8 0.244 (1271.2) 0.207 (34.2)
0.7 0.257 (1209.2) 0.285 (101.7)
0.6 0.270 (1147.1) 0.274 (78.9)
0.5 0.286 (1085.1) 0.297 (30.3)
0.4 0.303 (1023.0) 0.321 (66.5)
0.3 0.323  (961.0) 0.405 (82.9)
0.2 0.345 (898.9) 0.351 (103.6)
0.1 0.371 (836.9) 0.347 (49.5)
-0.1 0.435 (712.8) 0.414 (186.7)
-0.2 0477  (650.7) 0.443 (66.2)
-0.3 0.527 (588.6) 0.553 (78.4)
-0.4 0.589  (526.5) 0.591 (157.0)
-0.5 0.668 (464.4) 0.694 (191.7)
-0.6 0.770  (402.3) 0.832 (215.9)
-0.7 0911 (340.1) 0.883 (103.9)
-0.8 1.114 (277.9) 1.196 (173.5)
-0.9 1.434 (215.6) 1.644 (239.2)

Note: Results from regressing VPE on correlation error across various ‘true’ correlation coefficients. The #-
statistics are reported in parenthesis.

15



In all cases, the value of the #-statistic indicates that the positive coefficient of the correlation
error is significant. The presence of a strong linear relationship between VaR mis-estimation and
correlation errors is also confirmed by the high values (more than 95%) of R’ (not reported here).
Thus, the higher the error in estimating correlation, the higher the VaR mis-estimation is. In addition,
the coefficient increases as the level of the ‘true’ correlation decreases for most ‘true’ correlations.
Some exceptions occur for the calculated via MC simulation VaR. This result has an important
implication. The VaR error is more sensitive to correlation estimation errors in the case of well-
diversified linear portfolios (i.e. portfolios with negatively correlated assets).*

Finally, we test whether the sensitivity of VPE to correlation errors depends on the method
used to calculate VaR. Table 2 shows the results from the regression described in equation (14). We
can see that ¢ is insignificant only in a few cases (22%). This indicates that in general, the degree to
which the correlation mis-estimation affects VaR depends on the method used to calculate VaR. In
particular, it seems that the VaR error is more sensitive to correlation mis-estimation when MC
simulation is used. This is because ¢ is significantly positive in most of the remaining cases (71%).
Hence, risk managers should place more emphasis on estimating correlation accurately, if MC

simulation is used to calculate VaR.

4 For the case of DN VaR, it is possible to derive analytical expressions for the sensitivity of VaR mis-estimation to

correlation errors as the ‘true’ correlation changes. VPE can be written as:
n oVPE (., T,p,p, )
W 6.6 €. o ——— 77 2Pk
% 2§§W,WJG,GJ£M { 08,4 22 2 2 ( 2 a2 Y5 (2 a2
VPE (o, T, p, p, ) =1+ —L1— -1. Then, — =W W} (0767 )7 (of +67)<0.
O-l'[ py

The negative sign is in line with our results.

16



Table 2. Comparison of DN and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Semi-Parametric Approach and Linear Portfolios

True Correlation Estimated J coefficient
0.9 0.051
0.8 -0.037
0.7 0.028
0.6 0.004*
0.5 0.011*
04 0.018
0.3 0.083
0.2 0.006*
0.1 -0.024
-0.1 -0.021
-0.2 -0.033
-0.3 0.026*
-0.4 0.002
-0.5 0.026
-0.6 0.061
-0.7 0.103
-0.8 0.079
-0.9 0.200

Note: Results of the regression VPE™ = b, ( e,;.‘,‘, )+ o [D *( 8;.,‘_ )] + u. The asterisks denote insignificance at
the 5% level.

4.3 Option Portfolios

In this section, we apply the semi-parametric approach to portfolios consisting of two plain-vanilla
European call options’. The options are written on two non-dividend paying stocks 4 and B,
respectively, that exhibit correlation p4p. In total, eighteen different option portfolios are considered,
these are constructed for three different times-to-maturity, T = 10, 30 and 60 days, and six different
current levels of moneyness, M = -20%, -10%, -5%, 5%, 10%, 20%°. To calculate VaR, an option

pricing model needs to be employed. We choose the widely used Black-Scholes (1973) model’. The

> We also applied the semi-parametric analysis to put option portfolios. The results were similar to the call option
portfolios. Therefore, we prefer not to report them. We also found that the results are not affected by the VaR confidence
level.

§ The call “moneyness”, M = (P; -X;)/P;, is defined as the percentage difference of the ith underlying asset price from the
ith option’s strike price.

7 Lehar, Scheicher, and Schittekopf (2002) compare the Black-Scholes, GARCH and stochastic volatility option pricing
models in terms of pricing errors and VaR forecasting performance. They find that the more complex models improve on
the Black-Scholes methodology only for pricing purposes.
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risk-free rate is assumed to be 10%, the daily standard deviations of assets 4 and B are 0.02 and 0.04,
respectively, and the initial stock price of assets 4 and B are 100 and 150, respectively. VaR is
calculated using both the DG approach and the MC simulation approach. The same set of correlation
errors is used as in Section 4.2, so as to ensure that the results are comparable between the linear and
the non-linear portfolio cases.

Tables 3, 4, and 5 show the estimated beta coefficients from regressing the options portfolio
VPE on correlation errors for 7 = 10, 30, and 60 days, respectively. The results are reported across
various ‘true’ correlations and moneyness levels. We can see that there is a significant positive
relationship between correlation errors and VPE®. This holds for both the DG and MC simulation

methods.

Table 3. Correlation Mis-Estimation Coefficient: Semi-parametric approach and non-linear portfolios
(Options time-to-maturity is 10 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.012  0.002* 0.100 0.048 0.169 0.124 0.223 0.244 0.217 0.258 0.200 0.267
0.8 0.012  0.001* 0.102 0.077 0.174 0.135 0233 0.179 0.227 0.185 0.209 0.185
0.7 0.012  0.030 0.104 0.084 0.180 0.139 0.244 0.237 0.237 0.249 0.218 0.234
0.6 0.012  0.016 0.105 0.090 0.186 0.155 0256 0.255 0.249 0.248 0.227 0.221
0.5 0.012  0.010 0.107 0.092 0.193 0.167 0269 0.253 0.261 0.278 0.238 0.258
0.4 0.012  -0.005 0.109 0.056 0.200 0.164 0284 0.277 0.276 0278 0.250 0.327
0.3 0.012 -0.008 0.111 0.092 0.208 0.133 0301 0.310 0.291 0.341 0.263 0.247
0.2 0.012 0.015 0.113 0.090 0216 0.173 0319 0313 0309 0.297 0.278 0.286
0.1 0.012 0.012 0.116 0.086 0.224 0.195 0340 0.283 0.329 0.299 0.294 0.263
-0.1 0.012  0.024  0.120 0.137 0.244 0.236 0392 0.355 0377 0.366 0.333 0.334
-0.2 0.012  0.025 0.123 0.148 0.256 0.232 0424 0.392 0407 0.391 0.356 0.336
-0.3 0.012  0.024 0.125 0.153 0.268 0.274 0.461 0.435 0443 0.426 0.383 0.416
-0.4 0.012  0.020 0.128 0.180 0.281 0.334 0.506 0.503 0.485 0.505 0.415 0.441
-0.5 0.012  0.022 0.130 0.181 0.296 0.343 0.560 0.603 0.535 0.573 0.452 0.499
-0.6 0.012  0.041 0.133 0243 0.313 0.396 0.627 0.690 0.597 0.679 0.497 0.464
-0.7 0.012  0.048 0.136 0222 0.331 0.536 0.711 0.785 0.676 0.705 0.551 0.586
-0.8 0.012  0.015 0.139 0319 0352 0.575 0.822 0.991 0.778 0.886 0.618 0.731
-0.9 0.012  0.017 0.142 0364 0375 0.861 0973 1440 0916 1.147 0.705 0.741

Notes: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various
levels of moneyness. The time-to-maturity of both options is 10 days. The asterisks denote insignificance at
the 5% level.

8 Only four exceptions occur for deep OTM options (M =-20%) having 10 days to maturity.
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Table 4. Correlation Mis-Estimation Coefficient: Semi-parametric approach and non-linear portfolios
(Options time-to-maturity is 30 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.083 0.059 0.156 0.145 0.185 0.206 0.215 0.260 0.217 0.264 0.209 0.271
0.8 0.084 0.081 0.160 0.151 0.192 0.177 0.224 0.175 0226 0.178 0.218 0.182
0.7 0.085 0.104 0.165 0.132 0.199 0.195 0.234 0237 0237 0.244 0.228 0.248
0.6 0.087 0.131 0.170 0.166 0.207 0.217 0.245 0.216 0248 0.229 0.239 0.219
0.5 0.088 0.058 0.175 0.212 0215 0.211 0.257 0.272 0261 0.298 0.251 0.284
0.4 0.089 0.089 0.181 0.151 0.224 0.239 0.271 0.279 0275 0.291 0.264 0.318
0.3 0.090 0.073 0.187 0.146 0.234 0.185 0.286 0.300 0.291 0.318 0.278 0.279
0.2 0.091 0.063 0.194 0.156 0.244 0.217 0.303 0.252 0.308 0.265 0.294 0.261
0.1 0.092 0.078 0.201 0.158 0.256 0.218 0.321 0.298 0.328 0.323 0.313  0.308
-0.1 0.095 0.110 0.216 0.202 0.283 0.277 0.367 0313 0376 0.315 0357 0.324
-0.2 0.096 0.117 0.225 0.239 0299 0.291 0.395 0.389 0.406 0.400 0.384 0.392
-0.3 0.098 0.148 0.235 0.273 0316 0.333 0.428 0416 0441 0431 0415 0421
-0.4 0.099 0.116 0.245 0.299 0336 0.371 0466 0474 0.483 0.495 0452 0475
-0.5 0.100 0.116 0.256 0.278 0.358 0.431 0.512 0.546 0.533 0.566 0.497 0.541
-0.6 0.102 0.136 0.268 0.328 0.383 0.426 0.567 0.645 0.594 0.660 0.551  0.526
-0.7 0.103 0.189 0.281 0.379 0.412 0.504 0.636 0.692 0.671 0.709 0.618 0.641
-0.8 0.105 0.166 0.296 0452 0.446 0.636 0.724 0.868 0.771 0.880 0.704 0.816
-0.9 0.106 0.153 0312 0476 0.485 0.741 0.839 1.148 0.906 1.152 0.817 0.901

Note: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various
levels of moneyness. The time-to-maturity of both options is 30 days. The asterisks denote insignificance at

the 5% level.

Table 5. Correlation Mis-Estimation Coefficient: Semi-parametric approach and non-linear portfolios
(Options time-to-maturity is 60 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.129 0.126 0.173 0.198 0.190 0.232 0.210 0.264 0213 0.267 0.212 0.271
0.8 0.132 0.145 0.179 0.175 0.197 0.184 0.218 0.184 0222 0.181 0.221 0.182
0.7 0.135 0.132 0.185 0.173 0.205 0.206 0.228 0.235 0.233 0.245 0.231 0.250
0.6 0.138 0.151 0.192 0220 0.213 0.232 0.239 0.212 0.244 0.216 0.242 0.220
0.5 0.142 0.162 0.199 0.226 0.222 0.221 0.250 0.256 0.256 0.275 0.254 0.287
0.4 0.145 0.096 0.206 0.201 0.231 0.262 0.263 0.304 0.269 0.304 0.268 0.318
0.3 0.149 0.127 0.214 0.169 0.242 0.188 0.277 0.275 0.284 0.291 0.282 0.288
0.2 0.153 0.124 0.223 0.207 0.253 0.247 0.293 0.246 0301 0.247 0.299 0.257
0.1 0.157 0.160 0.232 0.208 0.266 0.243 0.310 0.301 0319 0.319 0.318 0.315
-0.1 0.165 0.179 0254 0.247 0.295 0.292 0.352 0.331 0.365 0.329 0.364 0.334
-0.2 0.170  0.199 0.266 0.284 0.313 0316 0.378 0.362 0.393 0.386 0.392 0.411
-0.3 0.175 0225 0.280 0316 0.332 0342 0408 0.412 0425 0426 0424 0425
-0.4 0.180 0.192 0.295 0.357 0.354 0382 0442 0.464 0464 0482 0.463 0.482
-0.5 0.185 0.203 0312 0324 0.379 0458 0483 0.536 0.509 0.546 0.509 0.548
-0.6 0.191 0.249 0330 0370 0.407 0445 0.533 0.548 0.565 0.591 0.566 0.553
-0.7 0.197 0316 0351 0427 0.440 0.533 0.593 0.642 0.634 0.675 0.637 0.662
-0.8 0.203 0323 0374 0552 0479 0.662 0.668 0.818 0.722 0.856 0.728 0.851
-0.9 0.210 0.286 0.400 0.537 0.524 0.694 0.765 0.991 0.839 1.044 0.848 0.970

Note: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various
levels of moneyness. The time-to-maturity of both options is 60 days. The asterisks denote insignificance at

the 5% level.
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The magnitude of the beta coefficient changes as the ‘true’ correlation, the moneyness level,
and the time-to-maturity changes. In most cases, for any given time-to-maturity and moneyness
level, the sensitivity of VPE to correlation errors increases as the ‘true’ correlation decreases. This is
consistent with the linear portfolio case results’. Some exceptions occur when VaR is calculated with
MC simulation, and the ‘true’ correlation is positive.

For any given ‘true’ correlation, the sensitivity of VPE to correlation errors across the three
expiries and the various levels of moneyness takes its maximum value for 7 = 10% and M = 5% and
10%. This result imply that the risk manager should be more concerned about the choice of the
correlation estimator in the case that the institution’s portfolio contain short-dated options within the
range of 5% - 10% moneyness level.

Finally, we test whether the sensitivity of VPE to correlation errors depends on the method
used to calculate VaR. Tables 6, 7, and 8 show the results from running the regression described by
equation (14) when the time-to-maturity is 10, 30 and 60 days, respectively. In most of the option
portfolios (82%), the correlation bias effect on VaR depends on the employed method. In the
majority of such significant cases (66%), the effect from the correlation bias is greater when the MC

simulation method is used. These results are consistent with the linear portfolio case.

® This result does not necessarily imply that the VaR of well-diversified option portfolios is more exposed to correlation
errors. This is because the option portfolios may not be diversified, even though the underlying assets portfolio may be
well diversified (the sign of correlation though, will be the same for both the option and the underlying asset portfolio).
The extend to which the magnitude of the option portfolio correlation will be the same as that of the underlying asset’s
portfolio depends on the options delta, i.e. it depends on the options moneyness level and the time-to-maturity.
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Table 6.

Comparison of DG and MC simulation VPE Sensitivity to Correlation Estimation

Errors: Semi-parametric Approach and Non-linear Portfolios (Options time-to-maturity is 10 days)

Cogg;tion M=-20% M=-10% M=-5% M=-5% M=10% M=20%
0.9 0.248 0.160 0.091 0.037 0.043 0.060
0.8 -0.010 -0.030 -0.040 -0.050 -0.040 -0.020
0.7 0.018 -0.020 -0.040 -0.010 0.012 0.016
0.6 0.004 -0.030 0.028* -0.000 0.028 -0.010%*
0.5 -0.000* -0.030 0.017 -0.020 0.017 0.017
0.4 -0.020 -0.050 -0.040 -0.010 0.003 0.077
0.3 -0.020 -0.020 -0.080 0.009 0.050 -0.020%*
0.2 0.003* -0.020 -0.040 -0.010 -0.010 0.009*
0.1 0.000%* -0.030 -0.030 -0.060 -0.030 -0.030
-0.1 0.012 0.017 -0.010 -0.040 -0.010 0.002*
-0.2 0.014 0.026 -0.020 -0.030 -0.020 -0.020
-0.3 0.012 0.028 -0.020 -0.030 -0.020 0.033
-0.4 0.008 0.052 0.020 -0.000 0.020 0.026
-0.5 0.011 0.051 0.037 0.044 0.037 0.047
-0.6 0.029 0.109 0.082 0.063 0.082 -0.030
-0.7 0.035 0.079 0.024* 0.071 0.024 0.034
-0.8 0.003* 0.168 0.208 0.159 0.100 0.109
-0.9 0.007 0.206 0.451 0.435 0.221 0.034

Notes: Results of the regression VPE = b, ( 8;‘,{ )+ 06 [D *( 8;.“. )] + u. The time-to-maturity of the options is

10 days. The asterisks denote insignificance at the 5% level.

Table 7. Comparison of DG and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Semi-parametric Approach and Non-linear Portfolios (Options time-to-maturity is 30 days)

Corjgt;;;e’tion M=-20% M=-10% M=-5% M=-5% M=10% M=20%
0.9 0.177 0.105 0.075 0.046 0.043 0.051
0.8 -0.000%* -0.009 -0.014 -0.049 -0.049 -0.04
0.7 0.018 -0.033 -0.004* 0.003* 0.007 0.020
0.6 0.044 -0.004* 0.010 -0.063 -0.020 -0.02
0.5 -0.030 0.037 -0.004* 0.019 0.037 0.033
0.4 0.000* -0.030 0.015 -0.012* 0.016 0.054
0.3 -0.020 -0.041 -0.049 0.014 0.027 0.001
0.2 -0.030 -0.038 -0.027 -0.050 -0.043 -0.03
0.1 -0.010 -0.043 -0.038 -0.024 -0.005 -0.00%*
-0.1 0.015 -0.014 -0.006 -0.054 -0.061 -0.03
-0.2 0.021 0.014 -0.008 -0.006* -0.006 0.008*
-0.3 0.038 0.038 0.016 -0.012* -0.010 0.006*
-0.4 0.055 0.055 0.035 0.008 0.012 0.022
-0.5 0.022 0.022 0.073 0.034 0.033 0.044
-0.6 0.034 0.060 0.043 0.077 0.066 -0.02
-0.7 0.082 0.087 0.086 0.051 0.035 0.020*
-0.8 0.059 0.142 0.178 0.131 0.099 0.104
-0.9 0.040 0.155 0.242 0.293 0.235 0.079

21



Notes: Results of the regression VPE = b, ( 6;‘,‘_ )+ o [D *( 8;_k)] + u. The time-to-maturity of the options is
30 days. The asterisks denote insignificance at the 5% level.

Table 8. Comparison of DG and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Semi-parametric Approach and Non-linear Portfolios (Options time-to-maturity is 60 days)

cOrg?;ion M=-20% M=-10% M=-5% M=-5%  M=10% M=20%
0.9 0.131 0.087 0.070 0.051 ~0.008* 20.01*
0.8 0.013 0.004 -0.013* -0.035 -0.029 -0.03
0.7 -0.003* -0.012 0.001* 0.007* 0.001* 0.010
0.6 0.012 0.029 0.019 -0.026 -0.002%* 0.009
0.5 0.021 0.027 0.000* -0.002* 0.002* 0.008
0.4 0.049 -0.005 0.030 -0.017 0.004* 0.012
03 -0.022 -0.045 -0.054 -0.002* 0.024 0.030
0.2 -0.029 -0.016 -0.006* 0.003* 0.007 0.012
0.1 0.004* -0.025 -0.023 -0.010* 0.001* 0.010
-0.1 0.014 -0.007 -0.003* -0.022 -0.039 -0.03
02 0.029 0.018 0.003* 0.016 -0.016 0.001*
03 0.050 0.036 0.010 0.005* -0.010% -0.00*
0.4 0.012* 0.062 0.028 0.022 0.021 0.020
05 0.018 0.013 0.079 0.052 0.023 0.025
0.6 0.058 0.040 0.038 0.016* 0.038 0.023
0.7 0.110 0.070 0.089 0.046 0.085 0.070
0.8 0.113 0.169 0.171 0.136 0.079 0.064
0.9 0.072 0.127 0.158 0217 0.203 0.165

Notes: Results of the regression VPE™ = b, (¢€;,)+ 6 [D * (€;,)] + u. The time-to-maturity of the options is

60 days. The asterisks denote insignificance at the 5% level.

S The Parametric Approach

So far, we have conducted a semi—parametric analysis. In this section, we perform a parametric
analysis by using specific correlation estimators. The effect of mis-estimating correlation to the
induced VaR error is studied by using three widely—used specific correlation estimators: the moving
average (MA), the exponentially weighted moving average (EWMA), and the GARCH BEKK
model.

The specific estimators are applied to a simulated time series of the portfolio’s asset prices. The

simulated sample is generated by joint MC simulation using a known ‘true’ correlation value and the
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volatilities assumed in Section 4.2. Then, the VPE(o,T,p,p,) is calculated for each ‘true’
correlation, and the specific correlation estimators p,,. Hence, in contrast to the semi-parametric

approach, the correlation error is not drawn directly from an assumed distribution. It is determined
implicitly as the difference between the estimated correlation and the ‘true’ correlation. Next, we

describe the used correlation estimators, and the results from the parametric analysis.

5.1 The Correlation Estimators

The moving average (or rolling) correlation estimator of two time-series is measured over a rolling
window of specific length consisting of consecutive data points taken from the two time series. The

h-day moving average correlation estimator between assets i and j at time T is defined as follows:

T-1

- (Ru - E ) (Rj,r - Ej )
I=T-h . (16)

pif: 7-1 _ 5 [ —
|2 &, -R) 5 (%)

=T-h t=T-h

where R;, and R;; are the returns of asset i and j at time ¢, respectively. R, and R ,are the mean

returns of assets i and j, respectively.
The proposed by RiskMetrics™ EWMA correlation estimator uses a smoothing constant 4

(0<A<1), so as to take into account the most recent data. The EWMA correlation estimator at time 7'

is defined as:

~

-1
AR, -R)(R,, -Rj)
-h ) 17)

ﬁij - T-1 T-1
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The employed scalar and diagonal BEKK models are multivariate GARCH(1,1) models that

are nested in the full BEKK model [Engle and Kroner (1995)] written as:

H,=Q+A'e, ,A+B'H,_B, (18)

where H, is the (nxn) conditional variance-covariance matrix at time ¢ with diagonal elements h,;,z ,
and off-diagonal elements A;;,. £ is a (nx1) parameter vector, and 4, B are (nxn) parameter matrices.
In the case of scalar BEKK A4 and B are scalar parameters and, in the case of diagonal BEKK, A4 and

B are diagonal (nxn) matrices. The correlation estimates are derived as follows:

By =, (19)

where I;,.,, and l;j_, are the estimated conditional variances of assets i and j, respectively, and ﬁ,.j_, is

the estimated conditional covariance between assets i and ;.

Thirteen different models are used to estimate correlations: six MA models corresponding to
six different rolling windows (4 = 20, 30, 60, 90, 120), five EWMA models corresponding to five
different lambda parameters (A = 0.7, 0.8, 0.9, 0.94, 0.97, 0.99), a scalar BEKK GARCH (1,1) model,
and a diagonal BEKK GARCH(1,1) model. Hence, the VPEyc and VPE,c series used in equations
(13) and (14) are (13x1) vectors, respectively. The portfolio profiles, as well as the MC simulation

inputs are the same with those used in the semi-parametric analysis.
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5.2 Linear Portfolios

We apply the parametric approach to the linear two-assets portfolio. Table 9 shows the results from
regressing VPE on correlation error [equation (12)] for various ‘true’ correlation coefficients. The
beta coefficient is positive and significant in all cases. In addition, the sensitivity of VPE to
correlation errors decreases as the ‘true’ correlation increases. Some exceptions occur for positively

correlated assets in the case that VaR is calculated via MC simulation.

Table 9. Correlation Mis-Estimation Coefficient: Parametric Approach and Linear Portfolios

True Correlation DN VaR MC VaR
0.9 0.233 (341.4) 0.231 (17.3)
0.8 0.243 (509.6) 0.223 (19.7)
0.7 0.251 (282.8) 0.259 (56.9)
0.6 0.262 (274.2) 0.281 (94.2)
0.5 0.275 (250.1) 0.270 (79.1)
04 0.289 (212.3) 0.308 (69.9)
0.3 0.306 (193.9) 0.336 (70.8)
0.2 0.326 (175.1) 0.358 (91.0)
0.1 0.350 (162.5) 0.360 (95.4)
-0.1 0.420 (224.1) 0.404 162.0)
-0.2 0.465 (210.7) 0424 (55.4)
-0.3 0.515 (145.2) 0.516 (62.9)
-0.4 0.593 (83.8) 0.606 (53.2)
-0.5 0.630 (200.3) 0.650 (118.9)
-0.6 0.814 (61.7) 0.846 (76.8)
-0.7 0.968 (63.1) 1.015 (45.7)
-0.8 1.066 (193.9) 1.114 (85.6)
-0.9 1.328 (115.7) 1.520 (61.1)

Note: Results from regressing VPE on correlation error across various ‘true’ correlation coefficients. The ¢-
statistics are reported in parenthesis.

Table 10 shows the results from running the regression described by equation (14). The results
regarding the J coefficient significance are somewhat mixed. In 50% of the cases the J coefficient is

not significant. However, in 78% of the significant cases the ¢ coefficient is positive. These results
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indicate that the use of the MC simulation to calculate VaR magnifies any correlation bias effect on

VaR, just as it was the case with the semi-parametric approach.

Table 10. Comparison of DN and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Parametric Approach and Linear Portfolios

True Correlation Estimated J coefficient
0.9 -0.002*
0.8 -0.020*
0.7 0.008*
0.6 0.019
0.5 -0.005*
04 0.031
0.3 0.031
0.2 0.032
0.1 0.009

-0.1 -0.015
-0.2 -0.041
-0.3 0.000*
-0.4 0.013*
-0.5 0.020
-0.6 0.032*
-0.7 0.048*
-0.8 0.049
-0.9 0.922*

Note: Results of the regression VPE = b, (. 8;-,1: )+ 0 [D *( 8,.;.',{. )] + u. The asterisks denote insignificance at
the 5% level.

5.3 Option Portfolios
In this section, we apply the parametric approach to portfolios containing options. Tables 11, 12, and
13 show the correlation mis-estimation coefficient b from regressing VPE to correlation errors for

10, 30 and 60 days to maturity, respectively. The results are reported for different ‘true’ correlation

values and across various levels of moneyness (—20%, -10%, -5%, 5%, 10%, and 20%).
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Table 11. Correlation Mis-Estimation Coefficient: Parametric Approach and Non-linear Portfolios
(Options time-to-maturity is 10 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.0117  0.006* 0.100 0.063 0.169 0.122 0223 0201 0.217 0.207 0.200 0.216
0.8 0.0123  0.005* 0.102 0.076 0.174 0.109 0232 0.188 0.226 0.197 0.208 0.194
0.7 0.0120 0.017  0.103  0.067 0.178 0.137 0.239 0.232 0.233 0.239 0214 0.233
0.6 0.0119 0.023  0.104 0.076 0.183 0.132 0249 0.243 0.242 0.250 0.222 0.227
0.5 0.0121 0.013  0.106 0.086 0.189 0.149 0260 0.239 0.252 0.253 0231 0.244
0.4 0.0122 0.012  0.108 0.079 0.195 0.159 0273 0.264 0.264 0271 0241 0.271
0.3 0.0123 0.006 0.110 0.078 0.201 -0.004 0.287 0.281 0.278 0.293 0.252 0.283
0.2 0.0118 0.005 0.112 0.083 0.209 0.156 0304 0302 0.294 0316 0.265 0.274
0.1 0.0119 0.006 0.114 0.085 0.218 0.170 0324 0.305 0.313 0.309 0.281 0.292
-0.1 0.0122 0.020  0.120  0.109 0.240 0.203 0.380 0.351 0.366 0.353 0324 0.289
-0.2 0.0116 0.027  0.122  0.139 0253 0.240 0.415 0.382 0400 0.367 0350 0.359
-0.3 0.0121 0.018  0.124  0.149 0265 0.251 0453 0418 0435 0429 0377 0.378
-0.4 0.0122 0.020  0.128 0.171 0.282 0.320 0.508 0.508 0.487 0.502 0.417 0.447
-0.5 0.0120 0.024  0.130 0.170 0.290 0.336 0.535 0.539 0.512 0.522 0.435 0.466
-0.6 0.0116 0.032  0.134 0237 0317 0455 0.651 0.727 0.620 0.663 0.513 0.533
-0.7 0.0119 0.027  0.137 0278 0336 0.547 0.740 0.868 0.703 0.781 0.569 0.623
-0.8 0.0121 0.022  0.139 0.290 0348 0.571 0.798 0.931 0.755 0.819 0.603 0.695
-0.9 0.0115 0.019 0.142 0.343 0368 0.693 0.926 1.238 0.871 1.096 0.676 0.768

Notes: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various levels
of moneyness. The time-to-maturity of both options is 10 days. The asterisks denote insignificance at the 5% level.

Table 12. Correlation Mis-Estimation Coefficient: Parametric Approach and Non-linear Portfolios
(Options time-to-maturity is 30 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.083 0.082 0.156 0.137 0.185 0.166 0.215 0.201 0.217 0.205 0.209 0.205
0.8 0.084 0.082 0.160 0.134 0.191 0.160 0.223 0.188 0.226 0.188 0.218 0.192
0.7 0.085 0.081 0.163 0.155 0.196 0.192 0230 0.226 0.232 0.238 0.224 0.232
0.6 0.086 0.090 0.167 0.153 0.202 0.187 0239 0.240 0.242 0.242 0.232 0.238
0.5 0.087 0.098 0.172 0.166 0.209 0.200 0.249 0.240 0.252 0.255 0.242 0.254
0.4 0.088 0.080 0.177 0.183 0.217 0.221 0260 0.258 0.264 0271 0.253 0.268
0.3 0.089 0.078 0.182 0.167 0.226 0.220 0.273 0.288 0.278 0.302 0.266 0.293
0.2 0.091 0.066 0.189 0.175 0.236 0.211 0.288 0.298 0.293 0.308 0.280 0.293
0.1 0.092 0.070 0.196 0.174 0.247 0.215 0307 0.287 0.313 0.306 0.298 0.314
-0.1 0.095 0.099 0213 0200 0.277 0244 0357 0335 0365 0340 0.347 0.310
-0.2 0.096 0.108 0.223 0.232 0.295 0281 0.388 0.362 0398 0.376 0377 0.374
-0.3 0.097 0.074 0.233 0.262 0.313 0320 0.420 0.402 0433 0.426 0.408 0.420
-0.4 0.099 0.118 0.245 0.286 0.337 0.380 0.468 0.4838 0.485 0.505 0.454 0.478
-0.5 0.100 0.109 0.251 0.304 0.348 0.394 0491 0.519 0.510 0.531 0476 0.503
-0.6 0.102 0.166 0.271 0356 0.391 0477 0.587 0.646 0.616 0.662 0.571 0.593
-0.7 0.104 0.172 0285 0.424 0420 0.559 0.659 0.771 0.698 0.789 0.641 0.703
-0.8 0.105 0.202 0.293 0425 0.439 0599 0705 0.791 0.749 0.814 0.684 0.768
-0.9 0.106 0.141 0307 0.485 0.473 0.722 0.803 1.058 0.863 1.079 0.780 0.887

Notes: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various
levels of moneyness. The time-to-maturity of both options is 30 days. The asterisks denote insignificance at
the 5% level.
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Table 13. Correlation Mis-Estimation Coefficient: Parametric Approach and Non-linear Portfolios
(Options time-to-maturity is 60 days)

True M=-20% M=-10% M=-5% M=5% M=10% M=20%
Correlation DG MC DG MC DG MC DG MC DG MC DG MC
0.9 0.129 0.138 0.173 0.165 0.190 0.187 0.210 0.213 0213 0.206 0.212 0.205
0.8 0.132 0.136 0.179 0.159 0.197 0.172 0.218 0.191 0.222 0.193 0.220 0.191
0.7 0.134 0.125 0.183 0.187 0.201 0.203 0224 0.228 0.228 0.229 0.227 0.237
0.6 0.137 0.137 0.188 0.191 0.208 0.197 0233 0.231 0.237 0.235 0.235 0244
0.5 0.140 0.158 0.194 0.194 0.216 0.212 0.242 0.240 0247 0.249 0.245 0.253
0.4 0.143 0.146 0.201 0.217 0.224 0.243 0.253 0.262 0.259 0.263 0.257 0.269
0.3 0.146 0.143 0.208 0.203 0.233 0.239 0.265 0.285 0.271 0.295 0.270 0.299
0.2 0.150 0.141 0.216 0.208 0.244 0.229 0279 0.278 0.287 0.294 0.285 0.297
0.1 0.154 0.132 0226 0.214 0256 0240 0297 0.296 0.305 0.306 0.303 0314
-0.1 0.164 0.154 0.250 0.239 0.289 0.263 0.343 0.309 0355 0.315 0.353 0324
-0.2 0.169 0.188 0.264 0.270 0.308 0.304 0371 0.348 038 0.370 0.384 0.385
-0.3 0.174 0212 0.277 0294 0.328 0.343 0.401 0403 0418 0.409 0417 0416
-0.4 0.180 0.203 0.296 0.338 0.355 0.396 0444 0471 0465 0.487 0.465 0.485
-0.5 0.184 0217 0305 0371 0.368 0421 0465 0493 0.488 0.511 0.488 0.513
-0.6 0.192 0.267 0335 0402 0416 0486 0.550 0.593 0.585 0.623 0.587 0.610
-0.7 0.198 0.294 0.356 0476 0450 0.571 0.613 0.709 0.658 0.743 0.661 0.732
-0.8 0.202 0320 0.370 0.526 0471 0.605 0.652 0.736 0.703 0.782 0.707 0.771
-0.9 0.208 0318 0.393 0.558 0.511 0.698 0.734 0.951 0.802 1.004 0.809 0.974

Notes: Results from regressing VPE on correlation error for various ‘true’ correlation coefficients and various

levels of moneyness. The time-to-maturity of both options is 60 days. The asterisks denote insignificance at
the 5% level.

We can see that for both the DG and MC simulation methods there is a strong linear positive
relationship between VPE and correlation errors'’. These results are in line with those obtained from
the semi-parametric analysis on the options portfolios. The magnitude of the correlation error
coefficient depends on the ‘true’ correlation, the moneyness level and the time-to-maturity in the
same way as in the semi-parametric approach.

In most of the cases, for a given level of moneyness and time-to-maturity, the sensitivity of VPE
to correlation errors decreases as the ‘true’ correlation increases. (This does not hold for a number of
cases when VaR is calculated via MC simulation and the ‘true’ correlation is positive). Moreover, for
any given level of ‘true’ correlation, the correlation error coefficient takes its maximum value in the

case of short-dated ITM options (M=5% and 10%).

9 Two exceptions occur for deep OTM option portfolios (M = -20%) and 10 days to maturity.
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Tables 14, 15, and 16 show the results from testing whether the effect of correlation errors on
VaR depends on the method used to calculate VaR; the results are reported for 10, 30 and 60 days-
to-maturity, respectively. We can see that in 76% of the cases the correlation bias effect depends on
the method used to calculate VaR. In 65% of these cases, the beta coefficient is higher when VaR is
calculated using MC simulation. This implies that the option portfolios calculated VaR is more

sensitive to correlation errors, in the case that MC simulation is used to calculate VaR.

Table 14. Comparison of DG and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Parametric Approach and Non-linear Portfolios (Options time-to-maturity is 10 days)

Corfglu;ion M=-20% M=-10% M=-5% M=-5% M=10% M=20%
0.9 -0.006* -0.037 -0.047 -0.022 -0.010* 0.016*
0.8 -0.007* -0.026 -0.065* -0.045 -0.029 -0.014*
0.7 0.005 -0.036 -0.041 -0.007 0.007 0.019
0.6 0.011 -0.029 -0.051 -0.006* 0.008 0.006*
0.5 0.001* -0.020 -0.039 -0.021 0.001%* 0.013
0.4 -0.001* -0.029 -0.036 -0.009 0.006* 0.031
0.3 0.000 -0.032 -0.206 -0.006 0.016 0.031
0.2 -0.007 -0.029 -0.053 -0.001* 0.022 0.009
0.1 -0.005 -0.030 -0.048 -0.019 -0.004* 0.011
-0.1 0.008 -0.011 -0.037 -0.029 -0.013 -0.035
-0.2 0.015 0.017 -0.013 -0.034 -0.032 0.009*
-0.3 0.006* 0.025 -0.014* -0.035 -0.006%* 0.000%*
-0.4 0.007 0.043 0.038 0.000%* 0.015%* 0.030
-0.5 0.012 0.040 0.046 0.004* 0.010* 0.032
-0.6 0.020 0.103 0.138 0.076 0.043 0.020%*
-0.7 0.015 0.141 0.211 0.128 0.077 0.054
-0.8 0.010 0.151 0.224 0.133 0.064 0.092
-0.9 0.008 0.202 0.325 0.312 0.225 0.091

Notes: Results of the regression VPE™ = b, (€;,)+ 6 [D * (¢,,)] + u. The time-to-maturity of the options is
10 days. The asterisks denote insignificance at the 5% level.
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Table 15. Comparison of DG and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Parametric Approach and Non-linear Portfolios (Options time-to-maturity is 30 days)

Cogg;ion M=-20% M=-10% M=-5% M=-5% M=10% M=20%
0.9 -0.002* -0.018 -0.019* -0.014* -0.011* -0.004*
0.8 -0.002* -0.026 -0.031 -0.035 -0.038 -0.026
0.7 -0.004* -0.008 -0.003* -0.003* 0.005 0.009
0.6 0.004 -0.014 -0.016 0.002* 0.000* 0.006
0.5 0.011 -0.006* -0.009 -0.009 0.003* 0.003*
0.4 -0.008 0.007 0.004* -0.003* 0.007* 0.015
0.3 -0.012 -0.016 -0.005 0.015 0.025 0.028
0.2 -0.024 -0.013 0.015 0.009 0.015 0.012
0.1 -0.022 -0.022 -0.032 -0.020 -0.007* -0.007*
-0.1 0.004 -0.013 -0.033 -0.022 -0.026 -0.037
-0.2 0.012 0.009 -0.014 -0.026 -0.023 -0.003*
-0.3 -0.023* 0.029 0.008* -0.018* -0.008* 0.012
-0.4 0.019 0.041 0.043 0.020 0.020 0.023
-0.5 0.009 0.052 0.046 0.028 0.021 0.027
-0.6 0.064 0.085 0.086 0.059 0.045 0.022
-0.7 0.068 0.140 0.139 0.112 0.091 0.061
-0.8 0.097 0.132 0.160 0.086 0.065 0.084
-0.9 0.035 0.178 0.249 0.255 0.217 0.107

Notes: Results of the regression VPE" = b, (. E;._k )+ 06 [D *( e;._k )] + u. The time-to-maturity of the options is
30 days. The asterisks denote insignificance at the 5% level.

Table 16. Comparison of DG and MC Simulation VPE Sensitivity to Correlation Estimation Errors:
Parametric Approach and Non-linear Portfolios (Options time-to-maturity is 60 days)

Lene M=-20% M=-10% M=-5% M=-5% M=10% M=20%
Correlation

0.9 0.008* -0.008* -0.003* 0.004* -0.006* 0.005*
0.8 0.004* -0.020 -0.025*% -0.027 0.025 -0.026*
0.7 -0.009 0.005* 0.002* 0.004 0.011 0.006
0.6 0.000* 0.003* -0.011 0.000 0.183 -0.008
0.5 0.018 0.001* -0.004* -0.003* 0.006* -0.002*
0.4 0.003* 0.016 0.019 0.009 0.012 0.014
0.3 -0.003* -0.005* 0.006 0.020 0.022 0.013
0.2 -0.008 -0.008 0.014 -0.001* 0.030 -0.011
0.1 -0.022 0.011 -0.016 -0.001* 0.004* -0.011
0.1 -0.010 0.011 0.026 -0.034 -0.002* -0.064
0.2 0.019 0.006* -0.004* -0.023 -0.018 -0.025
0.3 0.038 0.016 0.016 0.002* 0.010% -0.039
0.4 0.023 0.042 0.041 0.027 0.036 0.018
0.5 0.034 0.066 0.053 0.028 0.034 -0.021
0.6 0.075 0.066 0.070 0.044 0.078 -0.054
0.7 0.096 0.119 0.121 0.096 0.123 -0.038
0.8 0.118 0.156 0.134 0.084 0.116 0.012*
0.9 0.109 0.166 0.187 0.216 0.295 0.042

Notes: Results of the regression VPE™ = b, (. 8;.,,‘_ )+ 6 [D *( 8;-',\_ )] + u. The time-to-maturity of the options
is 60 days. The asterisks denote insignificance at the 5% level.
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6. Conclusions

We have examined explicitly the systematic relationship between errors in estimating correlation and
the resulting error in calculating VaR (Percentage VaR Error, VPE). Understanding this relationship
is important for measuring market risk accurately. First, a semi-parametric approach that considers a
general class of unbiased correlation estimators was developed; correlation estimation errors were
simulated from an assumed normal distribution. Then, the effect of mis-estimating correlation on
VaR was studied parametrically by applying specific correlation estimators (moving average,
exponentially weighted moving average and GARCH-type models) to simulated data. Both
approaches were implemented using specific linear and non-linear portfolios containing options.
VaR was calculated with variance-covariance (delta-normal and delta-gamma), and Monte Carlo
(MC) simulation methods. Using various portfolios and techniques to calculate VaR enabled us to
explore whether the sensitivity of the mis-calculated VaR to correlation errors depends on the type of
portfolio and the employed method.

The results are similar for both the semi-parametric and parametric analysis and they have at
least four important implications for effective risk management. We found that VPE is significantly
sensitive to mis-estimating correlation; as the correlation estimation error increases, the VaR mis-
calculation increases. This holds for both linear and option portfolios where VaR is calculated by
either variance-covariance or MC simulation methods. Therefore, the choice of a model that
estimates correlation with the lowest possible error is important for risk managers.

Furthermore, we found that the sensitivity of VPE to correlation errors depends among others on
the level of the ‘true’ correlation. As the level of the ‘true’ correlation decreases, this sensitivity

increases. This implies that the calculated from linear portfolios VaR will be more sensitive to
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correlation errors for well diversified linear portfolios. In the case of option portfolios, this implies
that the correlation bias effect increases as the correlation between the underlying assets decreases.

Moreover, the correlation bias effect to VaR depends also on the options moneyness level, and
the time-to-maturity. The results show that the option portfolio VaR is more sensitive to correlation
errors in the case that the portfolio contains short-maturity ITM options. This result is not welcomed
by the risk manager, since most of the options trading activity is concentrated on short-expiry, near-
the-money options.

Finally, our results indicate that the VaR sensitivity to correlation mis-estimation depends on the
method that is employed to calculate VaR. Using MC simulation rather than variance-covariance
methods increases this sensitivity. This reveals an extra limitation of the technique in addition to its
time-consuming nature. Therefore, the accuracy of VaR results obtained from MC simulation should
be verified via various backtesting methods. Furthermore, it is well known that for linear portfolios
the risk manager is in principle indifferent between using variance-covariance and MC simulation
methods; the calculated via MC simulation VaR converges to the calculated via variance-covariance
VaR. However, since the correlation bias effect on VaR depends on the employed method, the use of
MC simulation should be avoided even for small linear portfolios, if possible.

The proposed methodology can be applied to more complex portfolios containing more assets
with long and short positions and more complex non-linear positions, such as option spreads. The
effect of correlation errors should also be studied in the context of option pricing (e.g., basket
options) and asset allocation. Moreover, the semi-parametric approach may be modified by allowing
for more general structures of the correlation estimation error in the spirit of Jacquier and Jarrow
(2000). These issues are well beyond the scope of the current paper, but they deserve to become

topics for future research.
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