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Pricing of Implied Volatility Derivatives

Abstract

Starting from the description of the real mechanism on the basis of which implied
volatilities are actually quoted by traders in option markets, we construct the risk neutral
dynamics of the implied volatility to price implied volatility futures and forward starting
compound options. These are exotic derivative contracts whose payoff depends on the fu-
ture implied volatility. In particular, we obtain the risk neutral drift restriction that must
be satisfied by each single stochastic implied volatility on the volatility surface invariant
both to time to maturity and to (forward) moneyness. Also, we show that the instanta-
neous spot volatility is a point of this volatility surface, so we can apply our technique to
determine its risk neutral dynamics.

Key words: implied volatility, instantaneous spot volatility, futures options, VOLAX,
forward starting option, compound option.

JEL Classification: G12, G13.



1 Introduction

In this paper we construct the risk-neutral dynamics for the implied volatility surface
in order to price exotic implied volatility contracts. These derivatives allow investors
to hedge against changes in volatility. Indeed, as reported in Grunbichler and Longstaff
(1996), “investors would now be able to manage their risk in two dimensions, price risk and
volatility risk, an opportunity previously out of reach for all but the large and sophisticated
option users.”

Examples of such derivatives are options and forward contracts on the CBOE’s Market
Volatility Index (VIX), the VOLAX futures contract listed in the Deutsche Terminborse
(DTB) since January 1998 and the forward starting (at the money forward) compound
option that has been recently treated in the OTC markets. The VIX is calculated from
eight near the money short-term volatilities on the S&P100. The underlying of the VOLAX
futures is the VDAX, an implied volatility of a synthetic at the money straddle with three
months to expiry. The settlement price of this volatility futures contract is based on the
implied volatilities of the DAX index options. A forward starting at the money compound
option is an implied volatility option because basically it is an option on the implied
volatility of the underlying option. On the expiry date the holder of the option will
compare the at the money implied volatility, that makes the Black-Scholes price equal to
the futures-option market price, with the implied volatility that makes the Black-Scholes
price equal to the strike of the compound option and will decide whether it is worth
exercising.

Therefore, as opposed to volatility contracts like variance swaps whose payoff depends
on the realized variance of the asset, the payoff of exotic implied volatility derivatives
depends on the implied volatility of an option written on the reference asset.

A simplistic approach to price these exotic contracts is to use the forward implied
volatility computed from the current term structure of implied volatilities. This approach
is flawed from a theoretical point of view. Indeed, as pointed out by Britten-Jones and
Neuberger (2000), using the forward implied volatility is equivalent to assuming that the
realized variance is simply the square of the implied volatility and this is true only when
we have a flat smile. :

Even more founded stochastic volatility models that proxy the implied volatility by
the instantaneous volatility, see for example Grunbichler and Longstaff (1996), neglect the
feature of the contracts whose underlying is the implied volatility. Moreover, as found
out in an extensive empirical study by Canina and Figlewski (1993), the implied volatility
has virtually no correlation with the future volatility, and it does not incorporate the
information contained in recent observed volatility.

In order to price implied volatility derivatives, a model for the implied volatility surface
is required. Therefore, similarly to the idea pursued by Brace et al. (1997) with their
market model for interest rates options, we reproduce in a formal setting the option traders’
practice of quoting implied volatilities in moneyness and time to expiration terms. By
convention the implied volatility is then transformed in a price by the Black-Scholes and
Black formulas.

These two formulas have been extremely successful despite the numerous flaws and
limitations of assumptions on which their derivation relies. In particular, the assumption
of constant volatility has always been questionable and from an empirical point of view it
is systematically contradicted. In order to overcome this limitation, the financial literature
has proposed stochastic volatility models, such as Hull and White (1987), Stein and Stein
(1991) and Heston (1993). These models assume different equilibrium mean reverting
stochastic processes for the instantaneous variance of the spot price and derive an option



formula with two state variables, i.e. the stochastic spot price and the stochastic spot
volatility. Unfortunately, these models cannot in most cases be fitted to really quoted
market option prices for different strikes and different maturities, see Das and Sundaram
(1999). Furthermore, it is required the specification of a functional form for the volatility
risk premium and usually this specification is arbitrary and is chosen mainly on the basis
of analytical tractability.

For these reasons, Derman and Kani (1998) built a risk neutral model consistent with
market option prices for both the term structure and the strike structure of local volatil-
ities, pursuing the same fashion followed to derive the risk neutral model of the term
structure of forward interest rates by Heath et al. (1992). The great improvement of the
framework developed by Derman and Kani (1998) relies on the virtual possibility of exactly
calibrating all option prices quoted in the market during every point in time. However,
it is extremely difficult to be implemented owing to the non-markovianity of the modeled
local volatilities, which prevents the model itself from being of immediate practical use.

To overcome the intrinsic complexity of the framework developed by Derman and
Kani (1998), Schénbucher (1999) and Ledoit and Santa-Clara (1999) derived much more
practical implied volatility market models, which represent the counterpart of what Brace
et al. (1997) developed when modeling directly risk neutral market dynamics for LIBOR
and swap rates. The great breakthrough of the approach followed by Schénbucher (1999)
and Ledoit and Santa-Clara (1999) is that for the first time in the financial literature the
implied volatility, i.e. the volatility that plugged in the Black-Scholes formula gives an
option price matching an actual market option price, is modeled as an input rather than as
an output. This original way of modeling is justified by the fact that the implied volatility
is a different way to quote an option price, using the Black-Scholes formula as a market
convention. Then, quoting different implied volatilities for different strikes and maturities
is a simple way to cope with the fallacies of the Black-Scholes assumptions. Given that
we accept the view that the presence of a smile helps to take into account deviations of
real markets from model assumptions, implied volatilities assume therefore the dignity of
independent variables.

In other words, according to this view the option price depends on two underlying state
variables: the spot price of the underlying security and the implied volatility. In particular,
Schonbucher (1999) models the absolute implied volatility of which he finds the risk neutral
drift restriction. On the other hand, in a way closer to the market practice, Ledoit and
Santa-Clara (1999) model indirectly the relative (in terms of maturities and moneyness of
the options) implied volatilities with respect to absolute option prices in order to find risk
neutral drift restrictions similar to the ones calculated by Schénbucher (1999).

In this paper with the aim of pricing implied volatility derivatives we derive directly
the risk neutral drift restriction on the relative implied volatilities by making option prices
relative in terms of times to maturity and moneyness of the options themselves. In this
way, our state variables are the real implied volatilities that are actually quoted by the
option market makers, who ignore spot levels and expiration dates when making quotes.
For this reason, our model is a market model of implied volatilities close to market practice,
because we model just the variables that are quoted in the market.

In the second section we explain how implied volatilities are quoted in option markets
by traders and we show how the futures-option prices, where the implied volatilities are
plugged, are invariant to time to maturity and relative strike. Then, in the third section we
determine the functional form that has to be taken by the drift of the implied volatility to
be consistent with risk neutral invariant futures-option prices. Also in the third section,
we show that, as time to maturity goes to zero, the at the money implied volatility
converges to the instantaneous spot volatility. In this way, we are able to find the risk



neutral dynamics of the instantaneous spot volatility that, plugged in the underlying asset
dynamics, allows for exotic option pricing consistently with the implied volatility surface
evolution. This result is due to the double nature of the instantaneous volatility that both
affects the underlying asset dynamics and belongs to the implied volatility surface related
to the plain vanilla options quoted on that asset. Finally, in section four we show how
our methodology can be simply implemented to price exotic derivatives such as implied
volatility futures and forward starting compound options. An interpolation procedure for
the implied volatility surface is introduced, allowing for Monte Carlo simulations of the
implied volatility dynamics. We compare our results with the prices obtained for the same
derivatives when, not coherently with the absence of arbitrage, the square of the at the
money implied volatility multiplied by the time to maturity is used as a proxy of the total
future variance of the underlying security price.

2 Description of the market mechanism to quote implied
volatilities

As said in the introduction, the pricing formulas by Black and Scholes (1973) for options
and Black (1976) for futures-options are often used as market conventions. All the pa-
rameters of these two option formulas are directly observed in financial markets except
the volatility term. As a consequence, according to this accepted market practice, we use
the Black-Scholes and the Black formulas to compute the volatility parameter which is
implied in quoted option prices, and we refer to the obtained variable as to the implied
volatility.

Despite this view of financial practice commonly held in the academia, what happens
in financial markets is just the opposite. In other words option traders do not quote option
prices directly. Instead, since there is an increasing monotone relation between volatilities
and option prices (higher option prices correspond to higher volatilities regardless of being
calls or puts), traders behave as if the formulas by Black and Scholes (1973) and Black
(1976) were the “true” option pricing formulas and make quotes just of the unknown
volatility terms. For this reason, option trading is also commonly referred to as volatility
or to be more precise implied volatility trading. This means that the common market
convention of using the formulas by Black and Scholes (1973) and Black (1976) produces
the birth of a new market variable, the market implied volatility, which is not necessarily
related to the instantaneous volatility or to the future total variance of the underlying
security price. Therefore, we believe that in order to produce what we can call a market
model for implied volatilities close to market practice, we should develop a methodology
which takes correctly into account how traders actually quote market implied volatilities.

In particular, when quoting market implied volatilities, option traders ignore com-
pletely both the absolute level of the spot and the maturity date. In fact, option traders
quote implied volatilities in moneyness (with respect to the futures price) and time to
expiration terms.

Table 1 can be of help to understand the real mechanism that actually happens when
market implied volatilities are quoted. Traders always quote an implied volatility for every
single time to maturity and every single strike value relatively to the futures price at that
particular expiration.

[INSERT HERE TABLE 1]

For example according to Table 1 - referring to hypothetically quoted implied volatili-
ties on the DAX according to the market practice adopted by traders - the implied volatility
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for an option with expiration in one year and current absolute strike level at 5% less than
the one year futures price (whatever it is) is quoted 32.00%.

In this way, it is easy to see that as time goes by the trader is not always quoting the
implied volatility of the same option, because every day the one year futures prices in the
previous example changes. Therefore, the strike price that was originally at 5% less than
the earlier futures price is expressed as a different percentage, not necessarily equal to
5%, of the new futures price. Moreover, as time is approaching to expiration the one year
implied volatilities become no longer applicable to the option which had one year time to
expiration when it was initially priced.

3 The model

In the previous section we have seen that each market implied volatility is quoted in such
a way that it remains invariant to changes of the futures price and to changes of the time
to maturity. In other words, an implied volatility is quoted for each time to maturity and
each relative futures price with the same time to maturity. Practitioners typically use
the formula by Black (1976) to turn the quoted implied volatilities in the corresponding
option prices.

In order to take into account this quoting mechanism, we will construct a model directly
for 3 (7,m), the implied volatility at time ¢ of a call option with time to maturity =
and moneyness m. X (7,m) as a function of 7 and m is commonly referred to as the
implied volatility surface. If we fix m = 7, the function ¥; (7‘, T_n) gives the volatility term
structure. If we fix 7 = 7, the function % (7,m) gives the volatility strike structure or
smile curve.

Since traders quote in percentage terms of futures prices?, we will consider futures-
options where both the option and the futures contracts share the same time to maturity.
Moreover, we take into account the futures-style daily marking-to-market mechanism, so
that the price of futures-options is simply the accrued value of standard options. This
feature allows us to bypass the difficult task of determining the appropriate dividend yield
for the index®.

Duffie and Stanton (1992) and Liu (1990) show that, when dealing with futures-style
options under the assumption of deterministic interest rates, options can be priced thanks
to an adjustment of the formula by Black (1976). Therefore, in order to emphasize the de-
pendence of the pricing formula on relative parameters, time to maturity 7 and moneyness
m, the futures-style option price C; (7, m,%; (7,m)) can be written as:

Ci(1,m,5¢(1,m)) = :F(7)N(d1) — mF; (1) N (dg)
= F (1) ¥¢[r,m,5¢ (7, m)], (1)
where
—Inm+ 3 (5 (r, m))2r
Xt (1,m) /T ’
dy = di— S (1,m)/7;

F; (7) is the futures price at time ¢ relative to a hypothetical futures contract with constant
time to maturity T, i.e. without time decay; m is the relative strike (moneyness) expressed

dy

*We assume that the interest rate r is constant, so that futures prices and forward prices are equal. In
the rest of the paper we use the forward and futures terms as synonymous.

®Note that in several markets index options are effectively futures-options where the futures-style mar-
gining system is employed. Examples are the options dealt on commodities at the CME or the Hang Seng
Index options mentioned by Duan and Zhang (2001).



in terms of F; (7); Us[r,m,%; (7,m)] = N (d1) — mN(d;) is the relative futures-option
price with constant time to maturity; ¥; (7, m) is the implied volatility as we have defined
above. Sometimes, we will use the short-hand notation F; for F; (1), 3¢ for ; (7,m) and
C; for Cy (1, m, Xt (T,m)).

Note that the price of a European call option without futures-style margining can be
obtained by discounting the above formula.

If we denote by F; = F; (T') the futures price at time ¢ relative to a futures contract
with constant time of maturity T, by 3 = (T, X) the market implied volatility at time
¢ for an option expiring at time T and absolute strike X and by C; = Cy(T, X,3;) the
price of the corresponding futures-option, we can relate them to F;, ¥; and C; as follows:

BT = FR(T-1) @)
5.(1,X) = % (T-t.X/F(T)) 3)

Ci(T, X,%) = C; (T— t, —X—z:t)
Fy (T)
- B3 [T—X—E(TX) @)
t i ’E(T)’ i ) )

where

T, %T) S (T,X)| =N (dl) - E)((T)N (622)

is the relative futures-option price with constant time of maturity and

D,

A 2
~mX 41 (Zt(T,X)) (T - t)
3u(T, X)VT — ¢ ’
dy = dy— (T, X)VT —t.

The reason that makes preferable to use expression (1) instead of (4) is that the
implied volatility actually quoted by option traders is expressed in terms of fixed time to
maturity and moneyness. By using equations (2) and (4) we can relate the absolute prices
and the relative prices, since they are equal at time ¢, but some differences will arise when
taking their dynamics, as it happens in interest rate modeling as we switch from the Heath-
Jarrow-Morton fixed time of maturity parametrization to the Brace-Gatarek-Musiela fixed
time to maturity parametrization and vice versa.

Let us now introduce the hypothesis relative to our state variables, represented by the
asset price and the complete set of implied volatilities for different fixed levels of moneyness
and time to maturity. In particular, for sake of simplicity, we assume to work in a non-
dividend framework and we assume that the price dynamics of the asset underlying both
to the futures contract and to the futures-option is described by the following SDE:

dS; = rS;dt + 04S;dB?, (5)

where o is the stochastic instantaneous spot volatility, BtS is the Brownian motion that
rules the uncertainty of the spot price process, 7 is the risk-free rate.

Also, we assume that the set of market implied volatilities for all different fixed times
to maturity 7 and fixed relative strike m are described by the following set of SDE’s:

d%; (1,m) = au(1, m, T¢)dt + B, (T, m, 4)dBY, (6)



where ay(7,m, %) and B,(r, m, ;) are respectively the drift and diffusion terms, possibly
stochastic, of the market implied volatility; Btz = BE (1™ is the Brownian motion that
rules the uncertainty of each market implied volatility. Again, sometimes we will use the
short notation a; for a;(7,m,%;) and B, for B,(7,m, ;). We assume that the drift and
the diffusion terms of the market implied volatility 3; at time ¢ for an option expiring at
time T" and absolute strike X are respectively & (T, X, i)t) and ﬁt(T, X, f)t).

Moreover, we allow for a correlation between the Brownian motion that rules the uncer-
tainty of the market implied volatility and the Brownian motion that rules the uncertainty
of the underlying security price, i.e.:

Bt (dBfdBY) = p” (1,m, Sp)dt =: p,dt.

Since when quoting an implied volatility, traders disregard completely the absolute
level of the underlying security price, we could assume zero correlation between the implied
volatilities and the stock price without any loss of generality. However, some empirical
evidence seems to suggest a negative correlation?.

We need to make some important remarks on the dynamics in (6). First of all, we
are assuming that the process defined above is ruled under the martingale measure. For
this reason, the drift term o; cannot be freely chosen. The idea we will pursue to obtain
the expression of this term under the risk-neutral measure is to find the price process for
a derivative contract characterized by fixed time to maturity and fixed moneyness and
then to derive the no-arbitrage condition that it has to satisfy. Similarly to the procedure
that allows to find the drift of forward rates in the Heath-Jarrow-Morton model, we will
obtain an expression for a;. Secondly, the stochastic component could be generalized to
a multifactor model, eventually with jumps, such as in Cont et al. (2002). Finally, in
specifying the process for different implied volatilities in a multifactor framework and not
in a single factor environment as we have done above, we should ensure that the entire
volatility surface moves consistently. In particular, we should guarantee that call and put
spreads have a positive value and that long term options are more valued than short time
options, see Merton (1973). Basically these conditions concern the steepness of the smile
curve and term structure of volatilities. Unfortunately, this requirement translates into a
rather complex set of conditions that should be imposed on all the risk neutral implied
volatilities considered altogether and require to be set via latent variables (not directly
quoted in option markets) that, borrowing from the interest rate terminology, are usually
called forward implied volatilities®. However, we leave the treatment of this important
aspect for further research.

As a consequence of the assumption on the stock price dynamics, we have the well
known result that, under the risk neutral measure, the futures price relative to a futures
contract with expiration at fixed time T is a martingale, see Duffie and Stanton (1992).
So its dynamics are given by the following SDE:

dFy (T) = o.F; (T) dBY. (7)

Since we are interested in quantities expressed in relative terms, we can use the rela-
tionship that holds at time ¢, F; (7)=F; (t + 7), in order to obtain the dynamics of F; (1),

In fact, we remind that rather often above all in equity option markets there seems to be a negative
correlation, since it usually happens that a decrease of the equity market is followed by an increase of
implied volatility levels and viceversa. See Dumas et al. (1998).

5 A term structure of volatility is well behaved if it is ensured that forward implied volatilities are always
positive. The forward implied volatility is defined by the expression (22) given in section 4.



by following the slight variation of It6’s lemma suggested by Bjork (1998) at page 272:

dF (T 5
dF; (1) = at:/(“) dt + dF; (T).

T=t+T

Given the assumption of constant interest rates, since the futures price is £} () =
Sie"T—) if we calculate the partial derivative with respect to 7', we obtain the risk
neutral dynamics of the futures price F; (7):

dF; (1) = rF; (1) dt + 04 F; (1) dBY. (8)

The result in (8) implies that in a risk neutral framework any futures price with fixed
time to maturity grows at the risk free rate.

In order to obtain the relative option price dynamics from the standard option price
dynamics we need a generalization of It6’s lemma, i.e. the Ito6-Venttsel formula that can
be found in Appendix A. By means of this tool, we are able to take into account the fact
that, switching from the absolute to the relative parametrization, the absolute parameters
T and X turn into random variables T; and X}, expressed in terms of the relative pair 7
(time to maturity) and m (forward moneyness), i.e.:

Ty=t+, dT; = dt;
Xy =mFy (1),  dX;=moF(T)dB?. (9)

Since at time ¢ the following relation holds:
Ce(rym, Te) = Ce (t+ 7, mF (T =), 1) = Gy (t+ mmFi (), %),

by applying the Ito6-Venttsel formula, we get the following relationship between standard
and relative option price dynamics:

dCy (1,m, ;) = {dét (Z},Xt,flt>+ié’t (E,Xt,)it> 4T,

oT
0 - . L & . -
+8_Xct (Tt,Xt, Zt) dX; + 55}-{307: (Tt,Xt, Et) (dXz)
o aét (Qﬂt: Xt, 215) " %
+5(- 6—ﬁatFt (Tt) moFi ('I:g) dt
& A 8C: (T3, Xe,54) » A
+pt(T't) Xt, Et)aix (%ﬁt (T,t)Xt, 2t)> * (10)
moFy (Ty) dt Ty=t+7
Xe=mFy(1)

Note that the last two terms in the previous expression arise from the application
of the It6-Venttsel formula, and would not appear in a standard It6’s derivation. After
replacing the partial derivatives appearing in expression (10) with their expressions given
in Appendix B, we obtain the expected value of the relative option price dynamics under
the risk neutral measure:



. 2
& [dC; (r,m, 5¢)] = {rC’t +n (dr) Pyl — 2Bt

+piBi0td1n (d) Fy + n (dy) Fr/T2Et

+mp,on (di) Fy T%

+ [mam (d1) Fir/T (%f;%—l— (11)
+ gp,Brdida)] G+

+TE L gy don (di) Fiy/7 (22)°

+ m_i;agn (d1) Ftﬁ%} dt,

where n (z) = exp (—z?/2) /v/2m. The first term appearing in the r.h.s. of the previous
expression shows that the growth rate of the “relative” option price equals the growth
rate of futures prices without time decay; to obtain the whole expected dynamics of
relative futures-option prices, according to expression (11), we shall correct this factor.
In particular, the behavior of relative option prices depends on the deformations of the
implied volatility surface via the partial derivatives 8%:/97, 8%;/0m and 9%%;/0m?. The
meaning of these partial derivatives will be exploited in the following section.

3.1 Risk neutral drift restriction on each single market implied volatility

In this section we are going to determine an expression for the risk neutral drift a;(7, m, ¢)
of each market implied volatility. In the previous section we have found the risk neutral
drift of each futures-option price invariant to time to maturity and relative strike. On the
other hand, we observe that by means of expression (1), we can express the futures-option
price in terms of the stochastic market implied volatility X; (7,m) with dynamics given
by (6), and of the invariant futures price F; () with dynamics given by (8).

Therefore, a straightforward application of the two dimensional It6’s Lemma leads to
obtain the drift component of the stochastic process C; (7, m, Zt):

U
rE, [r,m, S (r,m)] + Fag 2t L B (mm)]

0%
1 980 [1,m, 5 (1, m)]

oV [r,m, ¢ (T, m
§F¥5t 52 + ot Fifipy | ¢ (7, m)

()Y ’

(12)

where the partial derivatives of ¥y := U, [7,m, 3 (7, m)] with respect to ¥; are given by:

o, :
5 n (d) V/T;
5%, dids

‘We have now all that we need in order to find the risk neutral drift restriction of each
stochastic market implied volatility. Indeed, if we equate expression (12) to the drift in
expression (11), and we solve with respect to the unknown drift a;(7,m, ;) we obtain
Theorem 1, indeed the main contribution of the present paper.

Theorem 1 Let C;(7,m,%;) be a futures-option price with fized relative strike m and
fized time to maturity T, written on F; (7). The risk neutral drift of(r,m,3:) of the



corresponding stochastic market implied volatility 3¢ (T, m) is given by:

o (T,m, %) = ﬁ;%-—,ﬁ) [(Et (r,m))? — 0'%]

dy dido
+pt(T7m7 Et)ﬁt(Ta m, Zt)O't (F - 1) - m
88, (r,m, %) | 8% (r,m)

om or
Ot dl
+mot | =—7———= + pe(7,m, 5t) By (T, m, %) dido

(:Bt (T’ m, z)t))Q

+mp, (T,m, %t) 0%

9% (1,m)
X (1,m) /T om
m20? 8% (1,m)\?  m202 825, (1, m)

) 102 +

+ 2% (1,m om 2 om? ’

(13)

The risk neutral dynamics of quoted market implied volatilities are given by the following
SDE:

d%: (1,m) = o (1, m, Ty)dt + By(7, m, Et)dBtE. (14)

Remark that in the drift there appears the instantaneous (stochastic) volatility o; as
well. So, in order to make expression (13) usable we should find the risk-neutral process
for o¢. We will discuss this important aspect in the next subsection.

We can notice that, the r.h.s. of (13) resembles the no-arbitrage restriction (3.7)
obtained in Schonbucher (1999). The two expressions for the risk neutral drift of the
stochastic market implied volatility differ one from another because of the different ap-
proaches followed to derive risk neutral implied volatilities. In fact, Schénbucher (1999)
models the implied volatilities related to the absolute strike level and the time of maturity.

Instead, we impose directly the no-arbitrage condition by employing the process of
the implied volatilities that are invariant to time to maturity and relative strike. The
corrections to the derivation by Schonbucher (1999) arise from the relative parametrization
introduced via the It6-Venttsel formula. Our approach bears the dependence of the implied
volatility dynamics on the current shape of the implied volatility surface and its evolution
via the partial derivatives 8%;/07, 0%;/0m and §2%;/0m?. In fact, as time goes by, the
shocks on the implied volatility surface are reflected in changes of its term structure slope
9%;/07 and in the smile slope 8%;/0m and convexity §2%;/0m?. The good news is that,
owing to this result, the model is able to take into account the volatility information
contained in option prices, information which is not available from the underlying security
price. Unfortunately, the previous derivatives cannot be computed directly from a known
formula, since there are no financial conditions to be imposed on the functional form of
the implied volatility surface. The computational problem introduced by those derivatives
will be faced in section (4.1).

Although our approach is fully consistent with Ledoit and Santa-Clara (1999), by mod-
eling relative option prices C (7,m,¥;) we emphasize directly the role played by relative
implied volatilities on financial markets. Indeed, even Ledoit and Santa-Clara (1999) start
with the actually quoted implied volatilities that are invariant to time to maturity and
relative strike. However, in a second moment they change the dynamics of the relative
implied volatilities invariant to time to maturity to the ones of the equivalent absolute
implied volatilities invariant to time of maturity, reproducing the methodology already
developed by Schénbucher (1999). In other words, they consider again the process of
absolute implied volatilities because the arbitrage restriction they use is imposed on the
price process for contracts with fixed absolute strike and fixed time of maturity, i.e. on
C(T, X, 3.
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One of the greatest advantages of modeling the real market implied volatilities, quoted
according to the mechanism described in the second section, is that we can capture the
floating nature of volatility smiles. In fact, since option traders quote implied volatili-
ties with respect to relative futures levels, if the futures price changes from one day to
another, the following day option traders will be quoting a new implied volatility rela-
tively to a new futures price, determining a kind of migration of the previously quoted
implied volatility with respect to absolute strike levels®. This migration of market im-
plied volatilities is allowed in our model, because by replicating option traders’ behavior
we disregard the absolute level at which the futures price is trading. The migration of
each market implied volatility along with the futures price is modeled through the cor-
relation between the Brownian motions that drive the market implied volatility and the
spot process respectively.

Also, we would like to notice that our model is consistent with the local volatility frame-
work developed by Derman and Kani (1998). In fact, they start from the market implied
volatilities and then from the correspondent option prices they find the local volatilities
via the forward Black-Scholes equation. In this way, given any future local volatility, the
risk neutral dynamics of which are given by Derman and Kani (1998), it is always possible
to determine again via the forward Black-Scholes equation the futures-option prices and
consequently the future implied volatilities. In our approach we model directly market
implied volatilities with the special feature of considering implied volatilities invariant to
time to maturity and relative strike.

3.2 At the money market implied volatility and instantaneous spot
volatility

Given the risk neutral dynamics of each market implied volatility, we now focus on at the
money market implied volatilities. In particular, by imposing m = 1 in equation (13),
the risk neutral drifts for the set of at the money market implied volatilities spanned for
different maturities are:

1
op (1,1, 5 (r,1)) = 5 (D) ((Et (r,1))% - U?)
¥ (7,1
+pt(T7 17 Et)ﬁt(T) 17 Et)c’-t <$ - 1)
_ 2t (Tv 1) i (:Bt (T) 1, E15))2
8

0By (1,m, ;) 0% (1,1)
+pt(7_, la Et)O’t _—am - + _(97'_
1oy _Oj_ + pt(Ty 17 Et)ﬂt (Ta 1’ Et) (Et (T’ 1))2 T 6215 (T7 m)

2 4 am m=1
2 2 2 92
o3 9% (1,m) o; 0°%¢ (1, m)

+ 3 Te(r, )T <__8m . +5 oz L (15)

We would like to stress the fact that if we set 3, (7,1,%:) = 0, we recover the dy-
namics for the square of the implied volatility consistently with a time dependent (but
not stochastic) spot volatility framework, where the square of the at the money implied
volatility is equal to the total future variance of the underlying spot price’. Indeed, in the

SFor further details on the floating nature of volatility smiles see Rebonato (1999) in chapter 4.
"On this point see section 3.4.2 in Schonbucher (1999).
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Black model, if o; is deterministic but time dependent, we have that 3? is not stochastic,
independent on m and equal to % tt+T o2du. In such a case, if we write the differential
equation for £, we find exactly expression (15), where 8, (7,1, ;) = 0.

It is interesting to see what happens to the stochastic at the money implied volatility
if we let the time to maturity 7 converge to zero.

As proven in Appendix C, the absence of maturity arbitrage requires the instantaneous
market at the money implied volatility to be equal to the instantaneous spot volatility,
i.e. we must have®:

Ot = hmEt(T,l)
7—0

The previous result, joint with expression (15), allows us to obtain the risk neutral dy-
namics of the instantaneous spot volatility. Owing to the fact that we are working on a
subset of implied volatilities, i.e. the volatilities that refer to at the money options, we can
just move along the time dimension to get the dynamics of the instantaneous volatility.
Therefore, we can proceed analogously to Brace et al. (1997) when they find the dynamics
for the short interest rate. Thus, the instantaneous spot volatility has dynamics given by:

dO't = dZt (T, 1)[1':0 .

By means of expression (15), the drift of the istantaneous spot volatility can be easily
specified, i.e.:

0% (T, m)
or

+p4(T,m, 01)Be(T, M, 0¢) (% - 1)
0By(1,m, 01) i 0% (1, m)

o _ [ 1
Tl_l)%l+at (7-7 1,3 (Tv 1)) - {Q_Utzzt (T’ m)

+pi(T, M, 0¢)0%

om or
+0'_% azt (Tv m) + _0;;*,2_ a2zt (Tu m) (16)
2  Om 2 om? r=0m=1
Reordering terms, we obtain:
1 0B:(0, m,
doy = __pt(o’ 1, Ut)IBt((); 1, Ut)O'% 3 pt(Oa 1, Ut)at M
2 om —
2 2
49 0% (1,1) I 0% (0, m) + 0% (02, m) &
or r=0 2 om |, om —_—
+64(0,1,0¢)dBy". (17)

As pointed out by Britten-Jones and Neuberger (2000), when 3,(0,1,0:) = 0, the
implied volatility has to be equal to the total realized volatility and we should find a flat
smile, so 8% (0,1) /0m = 8254 (0,1) /Om? = 0. Therefore, in a non-stochastic scenario
the drift of the instantaneous spot volatility depends on the shape of the implied volatility
surface only via the slope of the term structure of at the money implied volatilities.

The dynamics obtained for the instantaneous volatility play a key role in our model,
giving a circular interpretation of financial market mechanisms which is not allowed by
models conceived in a Black-Scholes environment. In fact, in classical financial models, the
uncertainty propagates unilaterally from underlying security markets towards derivative

8By means of a different procedure based on asymptotic arguments, Ledoit and Santa-Clara (1999)
have proven the same result.
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markets. On the contrary, in our framework the stochastic dynamics of the instantaneous
volatility affect the underlying asset dynamics following a behavior consistent with the
evolution of the implied volatility surface it belongs to. In other words, we capture a
feedback effect of option markets on underlying prices that cannot be measured even by
well-known stochastic volatility models (e.g., Heston (1993)), where the instantaneous
volatility is treated as a fundamental variable devoid of the linking feature we have just
pointed out.

As Ledoit and Santa-Clara (1999) have suggested, the joint risk neutral diffusion of
the underlying security price, described by the SDE (5), and of the instantaneous spot
volatility, described by the SDE (17), can be used to price any exotic derivative on the
spot price only, via Monte Carlo simulations.

4 Valuation of implied volatility derivatives

In this final section we are interested in pricing two kinds of derivative securities depending
on the at the money market implied volatility: a futures contract on an at the money
implied volatility and a forward starting at the money compound option. We would like
to point out that we always refer to the forward price when we say at the money.

The first contract belongs directly to the implied volatility derivative family, i.e. a new
class of exotic derivatives that reveals the option traders’ interest on implied volatilities as
market indices. With regard to this topic, Whaley (2000) states that the VIX, a synthetic
index composed of implied volatilities relative to the S&P100, measures the “investor fear
gauge. The index is set by investors and expresses their consensus view about expected
future stock market volatility. The higher the fear, the higher the VIX.” Therefore, one
can write contracts on these indices to change the exposure to the future implied volatility
risk.

Another important derivative instrument like the VIX is the VOLAX, we will show
how to price. The VOLAX is a futures contract on the VDAX that has started being listed
in Germany at the DTB. The VDAX is a weighted average of the implied volatilities of a
basket of eight near the money options; it is a synthetic implied volatility corresponding
to a hypothetical 45-calendar day at the money DAX option. The VDAX construction
can be briefly explained. First of all, we need to select the eight options (four puts and
four calls) whose implied volatilities constitute the VDAX. We denote the exercise price
just below the current forward price as th and the exercise price just above the current
forward price as X}. Also, we define as T} = t+7; and Th = t+ 72 the two expiring dates
of standard DAX options nearest to the remaining lifetime equal to 45 calendar days, i.e.
such that:

T1< T < Ta.

The parameter 7* terms the 45 calendar days characterizing the VOLAX contract. The
VDAX is computed in two steps. First, two sub-indices, V; (7;), i = 1,2 are constructed
by means of the implied volatilities of the four nearest the money options (two calls and
two puts), i.e.:

Vi (i) = [m{‘ — 1] [me (Ti’m?) + xgel (Tivmt’tl)]
o 2 (mf — m})
1 [y Put (. ol Call (. 1
Lo [ 2((;“:?)5)& Gilkic ) PP
i t
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where m? = X}!/F; (;) and ml{ = X!/F; (;). The next step is to calculate a time-
weighted average of the two sub-indices as:

VDAX; =V (11) (1 —€) + Vi (12) &, (19)
where
45 — T1
€= .
T2 —T1

It should be stressed that the VDAX is lifetime-independent, because it is related to
a hypothetical option that does not expire: this feature eliminates the effect of strong
fluctuations of volatilities that typically occurs close to option delivery dates. Moreover,
the VDAX takes into account only at the money DAX options, and therefore it records
only the price changes of the most liquid options. From expression (19), it is clear that
the VDAX can be heuristically proxied as one of the at the money implied volatilities
whose risk neutral drifts have been specified by expression (15) . Therefore, we assume
the VOLAX contract expiring at time T has futures price at time ¢ given by:

VOLAX4(T) = B [VDAX7] = B, [£R4% (%, 1)]. (20)

On this point we would like to remark that the market model proposed by Schénbucher
(1999) cannot be used immediately to price the VOLAX, because Schénbucher (1999)
models the absolute at the money implied volatility. On the contrary, at the pricing date
it is not known what forward level will be traded at the money at the VOLAX expiration.
In other words, in the absolute framework it is not possible to forecast which options will
be near the money in the future and will supply the implied volatilities weighted in the
VDAX. In fact, one should keep track of all the possible implied volatilities that are likely
to be at the money on the expiry date.

The other exotic derivative we want to price is a new popular instrument dealt in the
OTC derivative markets, the forward starting at the money compound option. This is
an option to deliver at time 77 > ¢ an underlying at the money option with maturity
at time T > T; (again with time to maturity 7 = Tp — T1) at a given exercise price
h := H/Fr, (), expressed as a percentage, known at time ¢, of the forward price at time
Ty > t. The forward starting at the money compound option has price at time t given by:

COt(Tla T, h') = ]Et [e—T(Tl_t) (CTI (Ta 1, le (T7 1)) - H)+]
— E, [e—T(Tl‘t)FTl (r) (T, (,1, 51, (7, 1)) — h)+] . (21)

Albeit this is not properly a volatility contract, it can be seen in the expression (21)
that as an actual underlying of a forward starting at the money compound option we
have the implied volatility that will be traded at the money at time 73. The analogy
with the VOLAX argument is straightforward: in an absolute context, we are not able
to forecast which option will be at the money at time T} and, therefore, will be delivered
to the compound option writer. Differently, our model overcomes this drawback focusing
directly on relative implied volatilities.

In section (4.2), in order to price the contracts described above, we will run Monte Carlo
simulations. Then, we will compare the prices of each of these two exotic instruments with
the prices of the same derivatives obtained by assuming that the square of the at the money
implied volatility multiplied by the time to maturity is equal to the total future variance
of the underlying security price. This assumption, commonly held by practitioners, would
be mathematically correct only if the instantaneous spot volatility were a deterministic
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(not necessarily constant) function of time. According to this view, if $;(T; —t,1) and
%¢(T3 — t,1) are respectively the at the money implied volatilities for an option expiring
at time T7 > ¢ and T5 > T7 > t, then the future total variance that will be experienced
by the underlying security price between T; and T% is given by the square of the following
expression:

Sy(T1, Toym = 1) 1= \/(Tz —t) (5¢(T2 — ¢, 1)1); : f(z‘f? —t) (%¢(T1 — ¢, 1))2‘

The Lh.s. of the previous expression is also known as forward implied volatility and
must always be quoted as a positive quantity in order to prevent arbitrage opportunities
consisting in at the money options maturing at time 77 > ¢ more expensive than at the
money options expiring at Ty > T4°.

(22)

4.1 The interpolation technique

The practical implementation of the Monte Carlo simulation requires at each step the
computation of the partial derivatives appearing in the risk neutral drift of the implied
volatilities. In the following, a simple parametric approach is proposed. The aim is
to reproduce the typical implied volatility surfaces observed in option markets with an
interpolating function that extends the “smoothing” technique proposed by Shimko (1993)
and captures the information embedded in the volatility term structure.

The implied volatility surface can be represented as:

Et (T, m) =g (ma ai, az, (13) f (7-) ’\) ) (23)
where
g(m,a1,a9,a3) = aym®+asm + a, (24)
1— e—/\T

The parabola g is the interpolating function proposed by Shimko (1993); the parame-
ters a1, ag and a3 are such to ensure the best least-squares fit of the smile curve drawn by
implied volatilities with identical time to maturity. However, in a more realistic fashion
the relationships between different smiles referred to the same volatility surface should be
considered. Also, the floating nature of the volatility surface should be taken into account.
The function f introduces the time dimension in the volatility surface, and the parameter
A can be used to fit the slope of the term structure. In particular, when choosing A > 0 we
obtain a decreasing implied volatility term structure, which is typically observed in equity
option markets!0.

The implied volatility surface can be reproduced thanks to the interpolating function
in expression (23) by solving a least-squares minimization problem with respect to the
four parameters aj, ag, ag and A:

N
_Z [Et (Ti’ m]) -3 (mja ai,az, (13) f (Ti7 )‘)]2
P (a1,02,03,A) = min =l . (26)

2 | : ’A M
a1,a2,a3 +Z [Et (7-1.’ mj) —g (mj, aj,ag, a3) f (Ti; )‘)]2
=l

90On this point see Rebonato (1999) in chapter 1.

'"However, different patterns are not totally unusual. The interpolating function can also reproduce
increasing (with A < 0) or flat term structures (with A = 0), the latter being the Black-Scholes classical
case. More realistic shapes of the term structure could be taken into account by means of other interpolating
functions as the one proposed by Nelson and Siegel (1987).
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We choose N = 3 in order to fit the volatility surface across the moneyness dimension,
and M = 2 to fit the volatility term structure. Then, we take a point of the implied
volatility surface as a fulcrum, for instance ¥; (71, msg), which is the implied volatility we
wish to model as an underlying. Since 3; (71, m2) appears in both sections of the implied
volatility surface considered in P, along with ¥ (71, m2) we need to consider three other
implied volatilities only. We choose the observed volatilities 3¢ (71, m;1) and %t (71, m3)
that share the same time to maturity 71 as 3 (71, mg) and exhibit moneyness just below
(i.e. m1) and just above (i.e. mg) the “central” level my. Also, we choose the observed
implied volatility ; (72, ms) that shares the same moneyness as the central volatility and
exhibits the first time to maturity 7o longer than 71 (i.e.: 72 > 71). At each step of the
Monte Carlo simulation the minimization problem (26) is solved by means of the following
two-step routine.

First, we fit the smile the implied volatilities ¥; (71, m1), Z¢ (71, m2) and ¢ (71, m3)
lie on, i.e. we solve the following least-squares problem w.r.t. ai, as, and a3 :

a1,a2,a3

3
P1 (a1, az,a3; Ao) = min {Z [t (11, m5) — g (my, a1, az, a3) f(Tla/\o)]z} .
=1

If we fix an arbitrary A\, P; turns out to be a simple linear system:

1— e 2om 2
T [a1m1 +agmg + (13] = % (11,m1),
1—e %o 2
e [a1m2 + agmg + a3] = X (Tl, mz) s
1—e Mo 2
o [a1m3 + agms + az] = %i(r1,ma3).
The previous linear system returns the vector A*(Ag) = [a} (Ao), a3 (Xo), a (No)]

containing the smile interpolating parameters as functions of a pre-defined \.
The second step is required in order to fit also the volatility term structure. In fact,

given the vector A* (A\g), we solve another least-squares problem w.r.t. the time-parameter
A '

2
P2 (5" () = { 2 [52 (r ) = g m, 4° ) £ 1 V.

=1

The numerical solution of P, is a certain value A = \; replacing the initial guess of
the time-parameter in P;.

By repeating the first step, we obtain a new vector A* (\;) that, plugged in Ps, returns
another choice for A. The procedure can be carried over until a pre-fixed tolerance bound
is achieved!!. Once the desired precision is reached, we obtain an analytic expression
for the interpolating volatility surface, which is represented by expression (23), where the
calibrated parameters a7, a3, a3 and \*, calculated by the described routine, are plugged.

At each simulated step, the interpolation routine is repeated in order to correct for
changes in the shape of the volatility surface over time. The partial derivatives of the
volatility surface that affect each drift can be easily calculated by differentiating the inter-
polating surface. In this way, the Monte Carlo simulation for the four relevant volatilities,
according to their risk neutral drifts as defined in Theorem 1, is run.

"' The tollerance level we have decided to fix is equal to 1078.
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4.2 Numerical results

Following expression (20), the VOLAX has underlying SP4X (7%, 1) := V DAX;, related to
a theoretical DAX option which is always at the money and has constant time to maturity
equal to 7% = 45 calendar days. In our model, this volatility has dynamics given by:

dzP A (7%,1) = of (7,1, 3P4 (7, 1)) dt + B, (%, 1, =PAX (r*,1)) dB}. (28)

We will simulate the evolution of the previous at the money volatility. Also, the imple-
mentation requires the simulation of three other volatilities: we choose P4X (7*,0.95) and
£PAX (7*,1.05), i.e. the volatilities narrowest to £P4X (7*1) lying on its smile in Ta-
ble 1, and TPAX (7* 4 45/360,1), i.e. the volatility sharing the same term structure
as BPAX (7%,1) with the closest time to maturity ahead of 7*, again according to Ta-
ble 1. In particular, following Table 1 the initial values for all the relevant volatilities
are SPAX(7*,1) = 31.75%, PAX (7*,0.95) = 34.00%, =PAX (7*,1.05) = 30.05%, and
SPAX (1% 4-45/360, 1) = 30.50%. We do not need to simulate the instantaneous volatil-
ity 2PAX (7, 1)|T=0, because it can be obtained by setting m = 1 and 7 = 0 in (23) at
each step of the simulation, once we have interpolated the surface. Moreover, we assume
that B;(7,m, %) = b%: and p,(7,m,%;) = p, where b and p are constant and equal for
all the volatilities'?. In order to price the VOLAX contract we run 10,000 Monte Carlo
simulations with antithetic variates each with 250 steps.

Table 2 shows the prices (expressed in percentage terms) of the VOLAX contract
expiring in 3 months (7" — ¢t = 0.25 years) calculated for different choices of the volatility
of volatility b and of the correlation p.

[INSERT HERE TABLE 2]

From the data in Table 2 we can explore how the parameters of the model affect the
VOLAX price in the implied volatility scenario described by Table 1. It can be seen that,
with highly negative or positive correlation levels, the lower b, the higher the VOLAX
price. The effect of the volatility of the volatility on the VOLAX price is inverted when
the correlation with the underlying movements takes values close to zero. In particular, in
the range of low negative levels for the correlation parameter p the VOLAX price reaches
its highest values by keeping b fixed.

Note that if we assume the implied volatility equal to the average total variance of
the underlying security price, we get VOLAX(T) = 29.19653, which is just given by
expression (22), employed to calculate the forward implied volatility.

The other instrument we are interested in pricing is the forward starting at the money
compound option. As we have pointed out above, the value of such contract depends on
the implied volatility ¥, (7,1) of the option that will be delivered at the money at time
T:. Expression (21) states that the compound option price can be computed by simulating
both the dynamics of the underlying at the money implied volatility and the dynamics of
the futures price F; (7), which is affected by the stochastic instantaneous volatility obtained
by setting m = 1 and 7 = 0 in (23) at each step of the simulation. We consider the option
on option with 6 months to expiry (i.e.: T3 — ¢ = 0.5 years), and the underlying option
with 1 year of residual life at the pricing date (i.e.: 7 =T, —T; = 0.5 years). If we assume
that the DAX is again the reference market, following Table 1 =P4X(0.5,1) = 30.00%
can be taken as the initial value of the underlying at the money implied volatility for
the compound option. Moreover, in order to simulate the previuos implied volatility,

20f course this hypothesis can be easily weakened, if we assume diffusion and correlation terms varying
for different moneyness levels and maturities.
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according to Table 1 we need =P4X(0.5,0.95) = 33.00%, =P4X(0.5,1.05) = 28.75% and
$PAX(1,1) = 29.75% as the initial conditions of the other simulated implied volatilities,
required to apply the interpolation technique described in section (4.1). Also, we assume
that F; (0.5) = 1 and the risk-free interest rate is 7 = 0.1. As we have done with the
VOLAX, in order to price the forward starting at the money compound option we run
10,000 Monte Carlo simulations with antithetic variates each with 250 steps.

Table 3 contains the compound option prices obtained for different choices of the
volatility of volatility b, of the correlation p, and of the relative strike h.

[INSERT HERE TABLE 3]

Firstly, from Table 3 we can appreciate the impact of the volatility of the implied
volatility on the price of the forward starting compound option, an effect that is not
possible to capture by means of the total variance approach. It can be seen that, for every
correlation value, the compound option price increases as the volatility of the volatility
increases. This is what we should expect, because if the underlying option price becomes
more volatile via its implied volatility, there is a greater probability that the compound
option expires in the money. Secondly, for a given volatility of the volatility level, the
compound option price reaches its highest values when the correlation level is close to
zero. This result is consistent with the results we could observe in Table 2. In fact,
when correlation is low, negative and close to zero the underlying at the money implied
volatilty records its maxima and therefore the underlying option becomes more likely to
be exercised!®.

We should notice that the compound option pricing formula given by Geske (1979) can-
not be applied to our compound option because of the forward starting feature previously
described.

Finally, if we assume that the implied volatility is equal to the average total vari-
ance of the underlying security price, we have C0;(0.5,0.5,0.1) = 0, i.e. the compound
option with strike A = 0.10 is worthless. This is the case since a six month call futures-
option with forward price and strike equal to 1 and a forward implied volatility given by
Y(0.5,1;1) = 29.49788%, calculated according to expression (22), is worth only 0.0830615,
i.e. ¥g5(0.5,1,0.2949788) = 0.0830615, below the compound option strike A = 0.10. In
other words, if we assume, as many practitioners do, that the forward implied volatility
is equal to the average future variance experienced by the underlying security price be-
tween 77 and T3, the compound option with strike A = 0.10 is out of the money and
therefore worthless. Of course, this result is meaningless. In fact, if at time 77 = 0.5 the
six month implied volatility is such to make the underlying option be in the money, the
compound option with strike A = 0.10 is worth a positive value. Therefore, in the case
of the compound option, we could not even compare the prices obtained by following the
methodology we propose with the ones obtained by the total variance approach, because
the latter could produce meaningless results. Moreover, we would like to remark that
even more paradoxical situations with more evident arbitrage scenarios could raise with
strongly decreasing implied volatility term structures.

5 Conclusions

In this paper we have derived the risk neutral dynamics of the really quoted market
implied volatilities. In particular, we have found the drift components of each single

!3In particular, we have considered only negative levels of the correlation since this is what can be more
commonly observed in practice.
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implied volatility that are consistent with time to maturity and relative strike invariant
futures-option prices. In fact, these prices are given by the formulas where the actually
quoted market implied volatilities are plugged. This way of modeling is based on the
assumption, fully confirmed by option traders’ quoting practice, that the implied volatility
is an input rather than an output of the Black-Scholes and Black option pricing formulas.
In other words, the market implied volatility has the dignity of independent or exogenous
variable. So, it results that option markets are incomplete not because the instantaneous
spot volatility is unknown, but because the implied volatility has to be quoted by option
traders in the same way as the underlying security price has to be quoted by spot or
forward traders in order to price options.

By making the time to maturity approach to zero we have found the risk neutral
dynamics of the instantaneous spot volatility which result automatically fitted to quoted
option prices.

Finally, we have used the risk neutral dynamics of the market implied volatility to
price futures contracts on the implied volatility like the VOLAX, listed at the DTB in
Germany, and forward starting at the money compound options, dealt in the OTC exotic
derivative markets. We have found noticeable differences with the prices of the same
derivatives, when assuming not coherently with the absence of arbitrage that the at the
money implied volatility, multiplied by the time to maturity, is equal to the future total
variance of the underlying security price. We have noticed that, allowing for this view,
forward starting compound options can be easily mispriced.

The paradoxical evidences found in this paper should cast serious doubts on the com-
mon market practice of using the at the money implied volatility as an average of the
underlying security price variance.

As a future development of the methodology proposed in this paper, the risk neutral
dynamics of the implied volatility surface with all the market implied volatilities, altogether
and not individually considered, could be derived. In this way, the methodology introduced

here could be successfully applied to price the family of all the forward starting derivative
securities.

6 Appendix
A The It6-Venttsel Formula

The following theorem, known as the It6-Venttsel formula, can be found in Brace et al.
(2001). This result allows us to find the SDE for C;(z;) with z; stochastic, given the SDE
for Ci(z) where z is a (fixed) parameter.

Theorem 2 (It6- Venttsel Formula) Let By be a Brownian motion. Suppose C(z) is twice
differentiable with respect to the parameter = and satisfies the following SDE:

dCi(z) = a(t, z)dt + b(t, z)dBs.

If x; satisfies the SDE:
dz; = f(t7 xt)dt + g(tv mt)dBta
then the SDE for Cy(z:) is:

dCt(:L‘t) = a(t, .’L‘t)dt + b(t, .’L‘t)dBt

BC’,,(:I:t) 1 2 Bth(xt)
Ty dmt e (he) g dt
ob(t
+g(t,xt)%dt. (29)
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Differently from the usual application of It6’s lemma, we have the appearance of the
last term in (29) that comes from the covariation between the increment of order dB; in
the process for C;(x) and the increment of order dB; in the process for z;. An analogous
result can be found in Ledoit and Santa-Clara (1999).

B Derivation of the drift risk-neutral restriction

The partial derivatives appearing in expression (10) have been computed by taking into
account the fact that the absolute implied volatilities 3; are themselves functions of the
strike X; and the maturity 7;. The extensive notations for those partial derivatives are:

If the futures-option prices are compute
tives can be easily obtained as:

aC, (Tt, X, 21:)

0X

82C, (Tt, Xt, i"t)

0Xx?
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952 (m‘) T %58 oxt
d by the common Black formula, their deriva-

—N (d2);

1

n (dg)
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Sy VTR )
" S

0%
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.Xt=mF;

=7'Ct+17t(7')
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In order to obtain an homogeneous expression, also the derivatives of the implied
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volatility surface can be turned in terms of 7 and m by using the following set of relations:

) ) X \_ 8 .
—Et(Tt,Xt) = 8th (T t M) = 87"Et (T, 'ITL),

0 g X 1 o
—=MFE G = —RlT—1= ;
ox T X) = 5¥ "( Ft(Tf,)) By om ™)

2
02 0 1 0 1 0
axroiThXi) = a—X(ma—mEt“m)>=<m) B ()

9 N X, - 1 8
E'X‘ﬂt (T;E,Xtazt> = aX:Bt (Ti - ta ﬁt(ﬂyzt(’]}’Xt)) - Ft(Tt) amﬁt (T,m9 Et) .

Plugging the previuos results in expression (10), we get the dynamics for the futures-
style option price whose expected value appears in expression (11), where the relation

0C, Ty, X1, 5) .
o ( ) o F; (Tt) on (dl)

68X oF, fe | MM VT
Xi=mFy(T)

has been exploited in order to take into account the term arising from the application
of the It6-Venttsel formula.

C The instantaneous volatility as a point of the implied
volatility surface

Theorem 3 Let {¥¢(7,m): 7€ ©,m € M} be an implied volatility surface. If (a) for
each t < T the function %(.,.) € CH2(© x M); (b) (0,1) € © x M; (c) the functions
Bi(T,m,%t) and p,(T,m, %) are continuous and bounded in (t,m) = (0,1), then the
following relationship holds:

— Ii b = limY’ 1). 30
B o +(T,m) lim ¢(7,1) (30)

Proof. Let us consider the drift of a relative implied volatility ¥¢(7,m) extracted from a
futures-option with time to maturity T and moneyness m. To ensure a unique bounded

solution for the SDE that describes the evolution of the previous variable, we shall require
that:

li%l+a2‘(7', m, %) < 00, V(r,m) € © x M.
T—>

The previous condition must hold for every implied volatility that belongs to the same
surface, in order to ensure that all futures-option prices are arbitrage-free. We can rewrite
this condition by using the ezpression (15) for of:

(Et (T’ m))2 - U?) + ZEt (T’ m) pt(Ts m, Zt)ﬂt(T, m, Et)at [dl\/F - T]
—dydyr (By(7,m, ))? + 25 (7, m) Tmp, (7, m, 5) 0, 2LlrmE
+2%; (1, m) %t;—)-

+2moy [o1d1/T + Tt (7, m) py (T, m, Zt) B (T, M, 3t )d1da7] —(—Et M
2
+m202dydaT (J—H‘a;m ) + m20?%; (1,m) AT_ZB Ea‘me =o(r).
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Noting that:

Inm
limd _ — % _Imm
50 T 71-13%)(11\/; -ll—r»% (Et (7, m)) ’
we can take the limit for the drift. By hypotheses (a) and (c), from ezpression (31) we
get the relation between the instantaneous volatility and every component of the implied
volatility smile containing the instantaneous volatility itself that ensures the no-explosion
condition:

5
(Ze(0,m))? =07 = 2p,(0,m, %) By(0,m, Ty)o; Inm — (ﬁt(o’ m, ) 1nm>

% (0,m)
L L 0%4(0,m)
T3, ) e (O ) B 0,m, B Inm — o] =5
Ot 3Et (O, m) 2

In particular, for m = 1, equation (32) is verified if and only if the thesis is true. m
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Table 1: Market implied volatility matrix (in % terms).

Moneyness= | o0%%  -10% 5% 0% 5%  10%  20%
Maturity |
1 Month 5475 46.75 39.75 32.75 3225 20.25 27.75
1.5 Months | 47.75 4225 3400 3175 30.05 27.60 27.20
3 Months | 44.00 39.50 33.50 30.50 20.00 27.25 26.25
6 Months | 40.00 36.50 33.00 30.00 28.75 27.25 26.00
1 Year 37.25 3425 3200 29.75 28.25 27.00 26.00
2 Years 3475 3250 30.75 29.25 27.90 26.80 25.90
3 Years 33.55 31.65 30.15 28.75 27.60 26.80 26.10
4 Yeas 32.60 3110 20.75 2850 27.45 26.65 25.85
5 Yeazs 3210 30.80 29.60 2850 27.60 26.70 25.90
6 Years 3170 30.50 29.50 28.50 27.50 26.70 25.90
7 Years 3150 3050 29.50 28.50 27.50 26.70 25.90
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Table 2: VOLAX prices for different levels of b and p. The standard errors are in

brackets.
P b
0.2 0.3 0.5

0.5 28.23781 27.54664 27.32072
’ (0.021661) (0.029650) (0.057386)
0 28.69184 28.68171 29.60727
(0.023028) (0.044566) (0.078548)
01 28.91208 28.98764 29.15614
’ (0.031963) (0.048963) (0.07442)
03 28.94043 28.69037 28.51257
) (0.031412) (0.049570) (0.083749)
05 28.29713 28.20270 27.68667
) (0.028090) (0.039009) (0.058578)
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Table 3: Forward starting compound option prices for different levels of b and p. The
standard errors are in brackets.

h=006 | h=008 | h=0.10
b p=0
09| 0125403 0.104529 0.084391
| (0.000685) | (0.000636) | (0.000580)
03| 0-160019 0.141450 0.123306
' (0.00114) (0.001108) | (0.001073)
05 | 0246351 0.228990 0.211252
| (0.003429) | (0.003332) (0.00323)
b p=—0.3
09| 0074747 0.055826 0.037152
| (0.000288) | (0.000269) | (0.000252)
03| 0.087027 0.067902 0.049680
“ | (0.000476) | (0.000456) | (0.000431)
05 | 0188163 0.171894 0.156723
| (0.002704) | (0.002634) | (0.002560)
b p=-—0.5
0o | 0:095992 0.076769 0.058228
| (0.000392) | (0.000376) | (0.000351)
03| 01517565 0.134117 0.116674
| (0.000879) | (0.000866) | (0.000852)
05| 0171454 0.155152 0.139774
“ | (0.001964) | (0.001921) | (0.001873)
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