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Abstract

We develop a simple, fast, non-parametric method for calibrating Libor market
models to historical or implied correlation matrices. For a given symmetric matrix,
the method utilises alternating projections to find the nearest correlation matrix of
a lower rank.
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1 Introduction

This short paper addresses the problem of calibrating the market models devel-
oped by Miltersen et al (1997) and Brace et al (1997) to correlation matrices.
Correlation matrices can be either historical or implied by the option markets.
These correlation matrices usually exhibit high-factor structure which hinders
efficient use of market models. We describe a simple algorithm that finds the
closest correlation matrix for any number of factors, i.e. our algorithm provides
an efficient calibration of low-factor market models to the observed correlation
matrices. '

* Thanks are due to Prof. Stewart Hodges for supervising my thesis, of which this
paper is an offspring, and to Riccardo Rebonato for his comments on the earlier
version of this paper.
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We will not describe here the details of the Libor market models?® . Instead we
proceed directly to specification of the problem. The correlation matrices in
Libor market models appear in two ways: first, as the historical correlation of
instantaneous changes in the Libor rates; second, as the correlation of instan-
taneous changes of the Libor rates implied by the derivative data, usually the
swaption prices. We concentrate here on the historical correlations; we will
comment on implied correlations later in the paper. For given n Libor rates
the associated instantaneous sample correlation matrix usually has rank n.
To reproduce this correlation matrix the implementation of the Libor market
model will require n Brownian motions. To reduce the dimensionality of the
problem one could implement the model using only & Brownian motions, with
k < n. In this case, however, one need to choose rank k, n x n correlation
matrix, which is closest in some sense to the original rank n, n X n correlation
matrix.

We define the sets

S={Y=YT e R™™ .Y >0},
U={Y =YTeR™™ :yy=1,i=1:n},
Sk ={Y =YT e R™" : Rank(Y) < k,k € N,k < n}.

Here, for a symmetric Y, the notation Y > 0 means Y is positive definite.

Then, the problem we consider here can be stated as follows. For arbitrary
symmetric A € R™", find a matrix X € SN U N S;. Le. find a correlation
matrix X of rank less or equal £ minimizing the distance

7(A) = min{[|A — X{|r}. (1)

The norm is the Frobenius® norm, [|A|% := 3, ; a2;.
This problem has been addressed by Rebonato (1999). He suggested a proce-
dure for constructing a correlation matrix for the calibration of Libor market
models. In particular, he approximated the implied correlation matrix C by a
matrix of the form BBT, where the matrix B is constructed via the following

1 We refer the interested reader to several recent manuscripts which describe this
modelling framework in detail, including Rebonato (2002) and Brigo and Mercu-
rio (2001a).

2 Other norms can be considered as well. For example the 2-norm, ||A|| = pV'AT A4,
where the spectral radius p(B) = max{|A| : det(B — AI) = 0}. However, Hal-
mos (1972) showed that positive approximants of the Frobenius and 2- norms are
the same when A is symmetric.



algorithm,
bijZCOSGini;;Singik : j=1,...,k—-1,
bij = ITj} sin i L =k,

for an arbitrary set of angles 6;;. The matrix BBT is a correlation matrix of
rank k£ by construction. To find the closest correlation matrix of this form
one needs to minimize the distance function y(A) in (1) over the set of n x k
angles 6;;. The computational time needed for calibration for a low number n
of Libor rates may be acceptable. However, for a large number of Libor rates
this nonlinear minimization becomes easily unmanageable.

Recently, Zhang and Wu (2003) have approached our problem using Lagrange
multiplier*. Furthermore, they have rigorously justified the convergence of
the Lagrange multiplier method for the low-rank approximation of correlation
matrices.

Contrary to Zhang and Wu (2003), our approach is very simple to understand
and implement. The iterative algorithm only involves projections on the sets
S, K, and Ry, with the optimal correlation matrix of rank & as its limit. The
implementation of the algorithm can be done in only a few lines of code. In
the next section we describe in detail the method of alternating projections
and derive the projections on the sets S, K, and R;. We present numerical
results in Section 3 and conclude in Section 4.

2 Alternating Projections

Our method is based on a procedure which is generally known as the Method
of Alternating Projections. This is an iterative scheme for finding the best
approximation to any given point in a Hilbert space from the intersection of
a finite collection of closed subspaces. This result was originally proved by
von Neumann (1950), and independently by Wiener (1955) for the case of
two subspaces. It was further generalized to the case of several subspaces by
Halperin (1962). In our case, the sets under considerations are not subspaces,
so there is no guarantee that the alternating projection method will converge.

To illustrate this point we borrow the following example from Shih-Ping
Han (1988). Consider the space R? equipped with the Euclidean inner prod-
uct. Let My := {(¢1,¢)|¢e < 0} and My := {(G, (2)|G+¢ < 0}. The standard
projection method does not work for any vector = outside M; and Mj,. This
is demonstrated in Figure 1. The figure represents application of the standard

3 Wu (2003) applied this method to the calibration of the Libor market model.



projection method to the vector z. The vector z1o = Py, Py, is clearly sub-
optimal. The iterative projection terminates at ;o since the vector is in the
intersection of M; and M,.

A generalization of the method to convex closed sets? has been given by
Dykstra (1983) and Boyle and Dykstra (1985). In particular, their algorithm
converges strongly to the nearest point in the intersection. Dykstra’s idea was
to introduce a correction procedure for pathological cases such as the above
example. It consists of subtracting a correction term before the projection. One
obtains this term from the previous run as a difference between the starting
value and the projection on the first set. The second diagram in Figure 2
represents the effect of correction by I;;. The vector x5 is effectively taken
out of the intersection M; N M, and the iterative procedure will proceed with
the limit the projection of z onto M; N Ma.

Next, we identify the projections of a symmetric matrix A, Ps(A), Ps,(A) and
Py(A), on the sets S, Sy and U respectively. The projection of a symmetric
matrix A, on the set S of symmetric positive semidefinite matrices is

Ps(A) = Idiag(max();, 0))II7, (2)

where A = IIAIIT is a spectral decomposition, with IT an orthogonal matrix
of eigenvectors and A = diag();) a diagonal matrix with eigenvalues on the
diagonal. This result was derived by Higham’s (1988).

The projection of a general matrix A on the set of matrices with a lower
rank can be found using singular value decomposition®. When the matrix A
is symmetric, the projection Ps, is achieved by setting the eigenvalues in the
spectral decomposition of A to zero, with the exception of the first k. Le.

PRk (A) = Hdiag(max(lkd)\i, 0))HT (3)

where A = ITAII” is again a spectral decomposition, and 1j; is the standard
indicator function.

The projection Py(A) of a symmetric matrix A on the set of symmetric ma-
trices with unit diagonal U, is simply

PU(A)={aij 7’75.7,
1, 2=13s
Le., we set the diagonal entries of A to 1.

4 Bregman (1965) also considered such a generalization. His algorithm, however,
converges only weakly to a point in the intersection, but not necessarily to the best
approximation.

5 See, for example, Horn and Johnson (1985), Chapter 7.4.



We summarize the proceeding discussions in the algorithm:

AIQ = 07 ZO =A
forn=1,2,...
R, = 2,1 — AIL,_1, where AI,_; is Dykstra’s correction.
Xn = PS(R’IL)
Al =X,— R,
Yy = Ps, (Xn)
Zn = PU(Yn)
end

One could use the relative changes in one of the projections as a stopping
criterion.

3 Numerical Results

For the numerical analysis of the method we use the same examples as Zhang
and Wu (2003). The first example is based on the correlation matrix C, gener-
ated by the correlation function as suggested by Rebonato (1999). The entries
of the matrix C are defined as,

cij = a+ (1 —a)exp(Blt: — 1),
ﬁ = d1 - d2 ma,x(ti,tj),

with parameters® o = 0.3, d; = —0.12, and dy = 0.005. We present the values
of the correlation matrix C resulting from this choice of parameters in Table 1.
We plot the corresponding distance function y(C) in Figure 3. We also plot
the approximating correlation matrices for several ranks together with the
model correlation matrix C in Figures 7 to 12. We see that approximations
take on the shape of the model correlation quite quickly. The approximation at
the diagonal, however, becomes reasonable only for a high number of factors,
which is unavoidable due to smoothness of the first principal components. We
plot the eigenvectors of the rank three approximation together with the first
three eigenvectors of the model correlation in Figure 5.

We take the correlation matrix for the second example in Table 2 from Brace
et al (1997)), who give the market forward rate correlations for GBP in 1995.
As in the previous example, we plot the distance function <y for an increasing
number of factors in the approximating correlation matrix in Figure 4. We
plot the approximating correlation matrices for several ranks together with

6 For some choices of the parameters this function fails to be positive definite.
This, however, is irrelevant, as the correlation approximant will always be positive
semi-definite.



the market correlation matrix in Figures 13 to 18. The shape of the market
correlation matrix is not as well-behaved as in the previous example. To cap-
ture its basic shape one needs an approximation of at least rank six. We also
plot the eigenvectors of the rank three approximation matrix together with
the first three eigenvectors of the market correlation matrix in Figure 6. Even
for a non-optimal implementation the computation time for the correlation
approximations is fraction of a second.

4 Conclusions

In this paper we have developed a simple, fast, non-parametric method for
calibrating Libor market models to historical or implied correlation matrices.
The method is based on alternating projections of the solution on the set of
all positive semi-definite matrices, the set of matrices of rank %, and the set of
matrices with diagonal one. This iterative algorithm converges to a correlation
matrix of rank £ in the intersection of these three sets. The implementation of
the algorithm is trivial and requires only a few lines of code. We have presented
the tests of the method on a model correlation matrix and a historical market
correlation matrix. In both cases convergence is achieved in a fraction of a
second.
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1 2 3 4 5 6 7 8 9 10 1
0.958
0.916 0.957
0.876 0.915 0.956
0.837 0.874 0.913 0.955
0.799 0.83¢ 0.872 0.912 0.954
0.763 0.796 0.832 0.870 0.910 0.953
0.729 0.760 0.793 0.829 0.867 0.909 0.953
0.696 0.725 0.756 0.790 0.826 0.865 0.907 0.952
0.665 0.692 0.721 0.753 0.787 0.824 0.863 0.906 0.951
0.635 0.660 0.688 0.718 0.750 0.784 0.821 0.861 0.904 0.950
12| 0.607 0.631 0.656 0.684 0.714 0.746 0.781 0.819 0.859 0.902 0.949
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Table 1
Model correlation matrix resulting from the function o + (1 — «) exp(B|t; — t;]).

025 05 1 1.5 2 25 3 4 5 7
0.5 | 0.842

1]0.625 0.790

1.5 0.623 0.784 0.997

210533 0.732 0.811 0.815

250428 0.635 0.724 0.729 0.976

310327 0452 0.543 0.538 0.568 0.546

0.446 0.581 0.612 0.617 0.686 0.658 0.594

0.244 0.344 0.443 0.446 0.497 0.492 0.608 0.485

0.333 0.453 0.519 0.523 0.573 0.551 0.675 0.645 0.602
0.263 0.366 0.425 0.430 0.477 0.458 0.602 0.567 0.520 0.989

© o~ on

Table 2
Market forward rate correlations for GBP.
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Fig. 1. Alternating Projection on
closed subsets of R?.

Fig. 2. The effect of Dykstra’s cor-
rection.
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Fig. 3. Convergence to the model
correlation matrix measured in
Frobenius norm.
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Fig. 4. Convergence to the mar-
ket correlation matrix measured in
Frobenius norm.
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Fig. 5. The first three principal com-
ponents of the rank three approxi-
mation and the model correlation.
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Fig. 6. The first three principal com-
ponents of the rank three approxi-

mation and the market correlation.



Fig. 8. Rank three approximation.

Fig. 7. Rank one approximation.

Fig. 10. Rank seven approximation.

Fig. 9. Rank five approximation.

Fig. 12. Model correlation surface.

Fig. 11. Rank nine approximation.
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Fig. 17. Rank nine approximation.
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Fig. 18. Market correlation surface.
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