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Abstract

The normal inverse Gaussian process has been used to model both
stock returns and interest rate processes. Although several numerical
methods are available to compute, for instance, VaR and derivatives val-
ues, these are in a relatively undeveloped state compared to the techniques
available in the Gaussian case.

This paper shows how a Monte Carlo valuation method may be used
with the NIG process, incorporating stratified sampling together with an
inverse Gaussian bridge.

The method is illustrated by pricing average rate options. We find the
method is up to around 200 times faster than plain Monte Carlo. These
efficiency gains are similar to those found in a related paper, Ribeiro and
Webber (02) [20], which develops an analogous method for the variance-
gamma process.

∗Corresponding author. Claudia Ribeiro gratefully acknowledges the support of Fundação
para a Ciência e a Tecnologia and Faculdade de Economia, Universidade do Porto. We
are grateful for helpful discussions with participants at QMF Sydney 2002, and to Lynda
McCarthy for detailed comments on the manuscript.
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1 Introduction

The normal inverse Gaussian model has been investigated by a number of au-
thors and applied to to option valuation (for instance Eberlein and Keller (95)
[13], Barndorff-Nielsen (95) [4], (98) [5], Rydberg (97) [21] and Carr, Geman,
Madan and Yor (01) [10] amongst others). Analytical solutions are not usu-
ally available for European-style options, so valuation requires the use of nu-
merical methods. These include Monte Carlo methods, (Rydberg (97) [21])
Fourier transform (FFT) methods (Carr and Madan (99) [11], Carr and Wu
(02) [12]), and PDE approaches (the ‘method of lines’; Albanese, Jaimungal
and Rubisov (01a) [1], (01b) [2]).
This paper investigates the use of Monte Carlo methods with the normal

inverse Gaussian (NIG) model. In particular we show how an inverse Gaussian
bridge may be constructed and used in conjunction with stratified sampling. We
apply the method to price average rate options, demonstrating that considerable
efficiency gains are possible. The inverse Gaussian bridge can be used with other
variance reduction techniques to achieve even greater speed-ups.
Other authors have exploited the standard Brownian bridge. Beaglehole,

Dybvig and Zhou (97) [6] use a knowledge of the distribution of extremes of
a Brownian bridge to significantly speed up a Monte Carlo method for pricing
barrier options. In a related paper Ribeiro and Webber (02) [20] showed how
to apply a bridge method to the variance-gamma process. They found large
efficiency gains, particularly for average rate options. In the NIG case we find
gains of around 200 for average rate options.
The second section of this paper recaps the normal inverse Gaussian process

and its application to option pricing. We review how Monte Carlo methods
may be applied by exploiting the subordinated Brownian motion representation
of the normal inverse Gaussian process. In the third section we show how an
inverse Gaussian bridge can be constructed and applied. The fourth section
presents numerical results and the fifth section concludes.

2 The Normal Inverse Gaussian Framework

We review the normal inverse Gaussian process and its application to option
pricing. We describe a ‘plain’ Monte Carlo method related to the subordinated
Brownian motion representation of the NIG process.

2.1 The Normal Inverse Gaussian Process

The NIG distribution is a subclass of the generalized hyperbolic distributions in-
troduced by Eberlein and Keller (95) [13] and Barndorff-Nielsen (95) [4], (97) [5],
subsequently investigated by, for example, Bibby and Sørensen (01) [7]. Its use
for financial modelling is discussed by Rydberg (97) [21], (99) [22], who also
describes and applies a Monte Carlo method. She fits to time series of daily
stock returns using a maxiumum likelihood method. Prause (97) [18] also esti-
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mates parameter values from stock returns. Bølviken and Beth (00) [8] fit the
NIG model to historical returns data by matching the first four moments of the
returns process.
The normal inverse Gaussian process Lt is a Lévy process where increments

in Lt are distributed according to the NIG distribution. It has parameters
µ, δ,α,β ∈ R, with δ > 0 and 0 ≤ |β| ≤ α. Set δt = δt, µt = µt and γ =p
α2 − β2. The density of Lt conditional on L0 = 0 is

fNIGt (l;α,β, δt, µt) =
α

π

K1

Ã
αδt

r
1 +

³
l−µt
δt

´2!
r
1 +

³
l−µt
δt

´2 exp

µ
δt

µ
γ + β

µ
l − µt
δt

¶¶¶
(1)

where Kλ (z) is the modified Bessel function of the second kind,

Kλ (z) =
1

2

Z ∞

0

yλ−1 exp
µ
−1
2
z
¡
y + y−1

¢¶
dy. (2)

The central moments of the distribution are

µ1 = µt + δtβγ
−1, (3)

µ2 = δtα
2γ−3, (4)

µ3 = 3δtβα
2γ−5, (5)

µ4 = 3δtα
2
¡
α2 + 4β2

¢
γ−7, (6)

and skewness and kurtosis are

skew:
µ3

µ
3/2
2

= 3
β

α
√
δtγ

, (7)

kurtosis:
µ4
µ22
= 3

α2 + 4β2

δtα2γ
. (8)

The class of normal inverse Gaussian distributions is closed under convolution.
The characteristic triplet of the NIG distribution in the Lévy-Khintchine

representation is (a, 0, `NIG) where

a = µ+ 2
δα

π

Z 1

0

sinh (βx)K1 (αx) dx (9)

and the Lévy measure `NIG (dl) = kNIG (l) dl has Lévy density

kNIG (l) = π−1δα |l|−1K1 (α |l|) eβl. (10)

The NIG process Lt can be represented as a subordinated Brownian motion,
Lt = µt +wh(t), where wt is Brownian motion with drift β and variance 1 and
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h (t) is an inverse Gaussian process ht ∼ IG (δt, γ). The density f IGt (x) of ht
conditional on h (0) = 0 is

f IGt (x) =
δt√
2π
x−

3
2 exp

Ã
−1
2

γ2

x

µ
x− δt

γ

¶2!
. (11)

An alternative parameterisation is

f IGt (x) =

r
λt
2π
x−

3
2 exp

Ã
−λt
2

(x− µt)2
xµ2t

!
(12)

where µt =
δt
γ and λt = δ

2
t .

The NIG process is a special case of a set of generalised hyperbolic distribu-
tions. This set can be represented as a time changed Brownian motion where the
time change ht is a member of a set of generalised inverse Gaussian distibutions
indexed by t, ht ∼ GIG(δt,λ, γ), with density fGIGt ,

fGIGt (h; δt,λ, γ) =

µ
γ

δt

¶λ
1

2Kλ (δtγ)
hλ−1 exp

µ
−1
2

µ
δ2t
h
+ γ2h

¶¶
. (13)

The set of distributions GIG(δt,λ, γ) is not closed under convolution. The NIG
process is a special case with an inverse Gaussian time change, a GIG process
with λ = −1

2 .
1 This subset is closed under convolution. The gamma process

can be expressed as a limiting case of equation (13) with δ = 0 and λ = λt = t
v ,

also closed under convolution.

2.2 Option Pricing and Subordinator Monte Carlo Meth-
ods

Let St be the price at time t of a non-dividend paying stock. We use the normal
inverse Gaussian process Lt to model returns to St. We take the state space
Ω to be the path space of Lt equipped with the filtration induced Lt. We
model log-returns to the stock price process St under the pricing measure F as
a Lévy process. Following Madan, Carr and Chang (98) [16] and Eberlein and
Raible (99) [14] we set

St = S0 exp (rt+ Lt −$t) (14)

where Lt is a normal inverse Gaussian process, r is the constant short rate, and

$ = µ+ δγ − δ
q
α2 − (1 + β)2 (15)

is a compensator term, defined by e$ = E [exp (L1)], to ensure that Ste−rt is a
martingale under F .2

1When λ = − 1
2
, K− 1

2
(z) = K 1

2
(z) reduces to K 1

2
(z) =

q
π
2z
e−z.

2The focus of this paper is upon numerical solutions to options writen on St, and we are
not concerned with the specification of F .
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In the martingale framework the value ct at time t < T of an option with
payoff HT ≡ HT (ω) at time T is

ct = Et
h
HT e

−r(T−t)
i

(16)

where we assume the use of the accumulator account numeraire and its associ-
ated measure. HT may depend on the state ω ∈ Ω. In this section we recall
how (16) can be solved by Monte Carlo integration.
Construct a set {bωm}m=1,...,M of discrete sample paths randomly selected

under a measure bF , a discrete time approximation to the measure F . Then the
approximation bct to ct is

bct = e−r(T−t) 1
M

MX
m=1

HT (bωm) . (17)

Discrete sample paths for a subordinated Brownian motion, Lt = wh(t), can
be constructed by first constructing discrete sample paths for the subordinator
h (t) and then sampling the process wt at times determined by the paths found
for h (t).3

Discretise time as 0 = t0 < t1 < . . . < tN = T , and set ∆tn = tn+1 − tn.4
First construct a discrete sample path

nbhno
n=0,...,N

for h (t) . Set bh0 = 0 and
iteratively generate increments ∆bhn = bhn+1−bhn ∼ IG (δ∆tn ,γ). Now set bw0 =
0, and iteratively generate increments ∆ bwn = bwn+1 − bwn ∼ N

³
β∆bhn ,∆bhn´.

The path bω = ©bwn + µtnªn=0,...,N is a discrete approximation to a sample path
ω of Lt.
For the plain Monte Carlo method constructM discrete sample paths {bωm}m=1,...,M ,

as above, then compute HT (bωm). The plain Monte Carlo estimate is given by
(17).
Although the plain Monte Carlo method will give estimates bct that converge

to the true option value ct, convergence may be slow. The next section describes
an improved Monte Carlo method exploiting stratified sampling and an inverse
Gaussian bridge.

3 A Inverse Gaussian Bridge for the Normal In-
verse Gaussian Process

Stratified sampling in conjunction with a Brownian bridge is often used to sim-
ulate processes driven by Wiener processes. This method is well known5 to
give effective speed-ups when valuing path dependent options. Ribeiro and

3This is the procedure adopted by Rydberg (97) [21]
4Later we may assume that ∆t = T

N
is a constant. This assumption can easily be relaxed.

5For one application see Beaglehole, Dybvig and Zhou (97) [6]. See also Jackel (02) [15].
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Webber (02) [20] outline the use of stratified sampling and review the the-
ory of the Brownian bridge method. They go on to construct a bridge for
the variance-gamma process. In this section we describe the construction of
an inverse Gaussian bridge and its application to the normal inverse Gaussian
process.

3.1 Stratified Sampling

A stratified sample permits superior sampling of an underlying distribution.
Given a sample {bvm}m=1,...,M drawn from the uniform distribution U [0, 1], the
set {bum}m=1,...,M , where bum = m−1+bvm

M , is a stratified sample of U [0, 1]. It has
a single draw from each quantile band

£
m−1
M , mM

¤
, 1 ≤ m ≤ M . Given a state

variable Xt with distribution function FXt a stratified sample
n bXm

t

o
m=1,...,M

of Xt can be formed by the inverse transform method if the function
¡
FXt

¢−1
:

[0, 1] → R is known or can be constructed. Simply set bXm
t =

¡
FXt

¢−1
(bum)

where {bum}m=1,...,M is a stratified sample of U [0, 1]. If the payoff function
HT depends solely on the value XT at time T , estimating bct using a stratified
sample

n bXm
T

o
m=1,...,M

will often result in an estimate with significantly reduced

standard deviation.6

For many exotic options the payoff HT depends on a sample path for Xt
and not just upon its terminal value XT . To exploit stratified sampling a bridge
technique is required. Given a stratified sample

n bXm
T

o
m=1,...,M

of XT a bridge

method constructs a set of paths 0 = bXm
0 < bXm

1 < . . . < bXm
N = bXm

T so that
each bXm

n has its correct conditional distribution. Intermediate points bXm
n are

constructed by sampling from a bridge distribution, defined and described in
the next section. This sampling may also be stratified, leading to improved
sampling at the intermediate times and of the path as a whole.
A bridge Monte Carlo algorithm for the NIG process Lt proceeds as follows.

First, construct a stratified sample
nbhmNo

m=1,...,M
from IG (δtN , γ). Second,

construct an inverse Gaussian bridge, bhm = ³bhm0 , . . . ,bhmN´,m = 1, . . . ,M , start-

ing from bhm0 = 0. The bridge may be further stratified at intermediate times.

Third, for each m = 1, . . . ,M generate a sample point bwmN ∼ N³βbhmN ,bhmN´ with
mean rate β and variance 1. Fourth, construct a bridge bwm = ( bwm0 , . . . , bwmN ),
at times bhm0 , . . . ,bhmN , m = 1, . . . ,M , with bwm0 = 0. This is a standard Brownian
bridge, as described in Ribeiro and Webber (02) [20], for instance. This bridge

may also be stratified at intermediate times. Finally set bLm =
³bLm0 , . . . , bLmN´

where bLmj = bwmj + µtj for the NIG drift µ. This is a stratified sample path for
Lt.

6The true standard deviation of the stratified Monte Carlo estimate will often be signifi-
cantly less than the reported standard error.
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We now describe how the inverse Gaussian bridge is constructed and sam-
pled.

3.2 A Bridge for an Inverse Gaussian Process

Suppose that X ∼ FX , Y ∼ FY and Z ∼ FZ are random variables with densities
fX , fY and fZ , with Z = X + Y . We shall be interested in the case where X,
Y and Z are increments in an inverse Gaussian process over intervals [ti, tj ],
[tj , tk] and [ti, tk] respectively. Write fX,Y for the joint density function of X
and Y . Given a sample z of Z we are interested in sampling X with the correct
conditional distribution. The conditional density fX|Z of X | Z is

fX|Z (x) =
fX,Y (x, z − x)

fZ (z)
(18)

=
fX (x) fY (z − x)

fZ (z)
(19)

where the second equality follows if X and Y are independent, as they are in
our case.
We first suppose that X, Y and Z are GIG variables. Let ht ∼ GIG(δt,λ, γ)

have a generalised inverse Gaussian distribution. Let τx = [ti, tj ], τy = [tj , tk]
and τz = [ti, tk] and supposeX = hτx ∼ GIG(δτx ,λ, γ), Y = hτy ∼ GIG

¡
δτy ,λ, γ

¢
and Z = hτx ∼ GIG(δτz ,λ,γ). The ratio of distributions denoted above by
fX|Z (x) is

fX|Z (x) =
µ
γ

δτx

¶λ
1

2Kλ (δτxγ)
xλ−1 exp

Ã
−1
2

Ã
(δτx)

2

x
+ γ2x

!!

×
µ
γ

δτy

¶λ
1

2Kλ (δτyγ)
yλ−1 exp

Ã
−1
2

Ã
(δτy)

2

y
+ γ2y

!!

×
Ãµ

γ

δτz

¶λ
1

2Kλ (δτzγ)
zλ−1 exp

Ã
−1
2

Ã
(δτz)

2

z
+ γ2z

!!!−1

=
³γ
δ

´λµτxτy
τz

¶−λ
Kλ (δτzγ)

2Kλ (δτxγ)Kλ (δτyγ)

³xy
z

´λ−1
exp

Ã
−1
2
δ2

Ã
τ2x
x
+
τ2y
y
− τ

2
z

z

!!
,

(20)

where y = z−x. Since the set of GIG distributions is not closed under convolu-
tion, so that hτz is not distributed as hτx+hτy , (20) does not represent a bridge
distribution. However, in two special cases we do find that hτz ∼ hτx + hτy .
The first is the limiting case of δ = 0 with λ = t

v when we obtain gamma bridge
density fΓX|Z (x),

fΓX|Z (x) =
1

z

Γ
¡
τx
ν +

τy
ν

¢
Γ
¡
τx
ν

¢
Γ
¡ τy
ν

¢ ³x
z

´ τx
ν −1 ³

1− x
z

´ τy
ν −1

(21)
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(see Ribeiro and Webber (02) [20]). The second is when λ = −1
2 for the inverse

Gaussian process; we obtain the inverse Gaussian bridge density f IGX|Z (x),

f IGX|Z (x) =
δ√
2π

τxτy
τz

³xy
z

´− 3
2

exp

Ã
−1
2
δ2

Ã
τ2x
x
+
τ2y
y
− τ

2
z

z

!!
, (22)

where y = z − x. Note that this does not depend upon γ.

3.3 Sampling from the IG Bridge Distribution

To sample X from the distribution in equation (22) we use Tweedie’s theorem
and a result of Michael, Schucany and Haas (76) [17] (MSH).
A version of Tweedie’s theorem in given in Seshadri (93) [23]: Suppose X ∼

IG
¡
δτx , δ

−1¢, Y ∼ IG
¡
δτy , δ

−1¢ and Z ∼ IG
¡
δτy , δ

−1¢ are inverse Gaussian
with Z = X + Y , then

Q = δ2
Ã
τ2x
X
+
τ2y
Y
− τ

2
z

Z

!
(23)

is chi-squared with one degree of freedom, Q ∼ χ21.
In our case X, Y and Z do not have these distributions posited in the

theorem, but since γ does not enter into (22) we are still able to apply a proof
given in Seshadri (93) [23] to cover this case.7 Hence, when X, Y and Z are
increments to an inverse Gaussian process, as in our case, the variable Q in
equation (23) is χ21. In fact, it appears that this is precisely the most general
case to which Seshadri’s proof applies.

Let q = δ2
³
τ2
x

x +
τ2
y

y − τ2
z

z

´
be the exponent in equation (22). Set s = y

x ,

λ =
δ2τ2

y

z and µ = τy
τx
. Then

q = λ
(s− µ)2
sµ2

≡ g (s) . (24)

For any q there are exactly two solutions, s1 and s2, to equation (24). These
are:

s1 = µ+
µ2q

2λ
− µ

2λ

p
4µλq + µ2q2, (25)

s2 =
µ2

s1
. (26)

Changing variable in equation (22) to S = Y
X | Z, the density of S is

fS (s) =

r
λ

2π

1

1 + µ
s−

3
2 (1 + s) exp

Ã
−1
2
λ
(s− µ)2
sµ2

!
. (27)

7The proof of Theorm 2.1 in Seshadri relies upon finding the conditional Laplace transform
of Q via equation (22). Our case follows with essentially the same proof since fX|Z (x) does
not depend on γ.
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This is a well defined distribution since µ is the mean of the inverse Gaussian

density bf (s) =q λ
2πs

−3
2 exp

³
−1
2λ

(s−µ)2

sµ2

´
.

We can now apply the MSH result. Suppose Q = g (S) where the first
derivative g0 of g exists, is continuous and is non-zero except on a closed set
with probability zero. Suppose S has density f (s) and for a fixed q suppose
q = g (si) for i = 1, . . . , N . MSH show that a sample for S can be drawn by
first making a draw q for Q and then selecting the ith root si with probability
pi (q) where

pi (q) =

1 + NX
j=1,j 6=i

¯̄̄̄
g0 (si)
g0 (sj)

¯̄̄̄
.
f (sj)

f (si)

−1

. (28)

In our case g (s) is given by equation (24) and f (s) is given by equation (27),
and the MSH method applies.8 We have, using equation (26)

g0 (s1)
g0 (s2)

= −
µ
µ

s1

¶2
, (29)

f (s2)

f (s1)
=
s21
µ3
µ2 + s1
1 + s1

. (30)

Hence, from (28), the smaller root, s1, should be chosen with probability

p1 (q) =
µ (1 + s1)

(1 + µ) (µ+ s1)
. (31)

3.4 Stratifying the Inverse Gaussian Bridge

For ti < tk, given hti and htk , the value htj of an inverse Gaussian process at
an intermediate time tj is generated by

1. Generating q ∼ χ21 and computing the roots s1 and s2.
2. Set stj = s1 with probability

µ(1+s1)
(1+µ)(µ+s1)

, else set stj = s2.

3. Set htj = hti +
htk−hti
1+stj

.

A stratified sample for stj yields a stratified sample for htj . It is straight-
forward to stratify both the distribution of htN at the terminal time and the
distribution of htj at an intermediate time, by stratifying sampling from the χ21
and the Bernoulli distributions. We use the MHS algorithm to sample htN and
our application of their result, as described above, to sample htj .
It requires two draws to sample using either the MSH algorithm or using

our algorithm for the bridge distribution, the first from the χ21 distribution and
the second a Bernoulli draw. Let bwm = (bum,bvm), m = 1, . . . ,M , be a stratified

8This form of g is one of the cases considered by MSH, but they consider a different density
for f .
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sample of the unit square. For each m, bum is used to construct the χ21 variate
v as the square of a normal variate by inverse transform. bvm is then used to
determine which root is chosen. If bvm ≤ µ(1+s1)

(1+µ)(µ+s1)
choose s1, else choose s2.

In fact, at each stratification time three uniform variates are required; the
Brownian motion wt is also stratified. If there are K stratification times a
stratified sample from the unit hypercube of dimension 3K is required. Even for
moderate K this is only feasible using low discrepancy sampling. The algorithm
we use restricts us to sampling from a unit hypercube of dimension less than
39. In the illustrations below we take K = 2P for some integer L, so we are
restricted to K ≤ 8.
We present in the next section comparisons of bridge Monte Carlo when

stratified at different numbers of times. To stratify at K times, where K = 2P

and N = QK for integer P and Q, we first compute a stratified sample of
points hmN and wmN , m = 1, . . . ,M , at time tN . We then stratify successively at
times 12 tN ,

3
4 tN ,

1
4 tN ,

7
8 tN ,

5
8 tN ,

3
8 tN ,

1
8 tN , and so on, until all times

k
K tN , k =

1, . . . ,K have been stratified. The remaining intermediate points (when Q > 1)
are constructed using ordinary random draws from chi-squared, Bernoulli and
normal distributions.

4 Numerical Results

We use the bridge method to value average rate options in the NIG model and
compare the results to those found with plain Monte Carlo. The performance of
the bridge under various degrees of stratification is investigated. We investigate
reset frequencies from quarterly to approximately daily.
We compare the efficiency of different Monte Carlo schemes using an effi-

ciency gain measure. Suppose for some option plain Monte Carlo gives a stan-
dard deviation of σP in time tP and an alternative Monte Carlo method gives
σA and tA. The efficiency gain EAP of the alternative method to plain Monte
Carlo is

EAP =
σ2P tP
σ2AtA

. (32)

Under the assumption that standard deviation scales inversely with the square
root of the number of sample paths M , and that time taken is proportional to
M , then EAP is the multiple of the time the plain method takes to achieve a
particular standard deviation compared to the alternative method.
We find that the bridge method gives considerable efficiency gains. For

average rate options with one year to maturity, daily resets and 8 stratification
times we achieve gains of a factor of around 160.
A number of authors9 fit the NIG process to daily stock returns data. For

our illustrative purposes we use parameter values based on Rydberg (97) [21].10

9For example, Bølviken and Benth (00) [8], Prause (97) [18], Rydberg (97) [21], et cetera.
10The annualised parameter values we use are α = 75.49, β = −4.089, δ = 3, and µ = 0.

These are based on Rydberg’s estimation from daily returns for Deutsche Bank. Rydberg’s
estimation procedure imposes µ = 0. In fact in the stock process (14) the value of µ is
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These values are not atypical of annualised values found by other authors. Pa-
rameter values implied from option prices would differ from these but since the
emphasis in this paper is on a numerical algorithm we are content to proceed
with these. These values give pronounced skews and kurtosis at short time hori-
zons. At horizons of a year, because they vary inversely with time (equations
(7) and (8)), skewness and kurtosis are very small.

4.1 Algorithm Issues

We require algorithms for generating uniform, normal, inverse Gaussian and
chi-squared variates. Generating variates from the bridge density was discussed
earlier.
Uniform variates are generated using a VBA version of ran2 from Numeri-

cal Recipes (92) [19]. All normal variates are generated by inverse transform.
N−1, the inverse of the normal distribution function, is computed using Applied
Statistics Algorithm 111 [3] downloadable from lib.stat.cmu.edu/apstat/111.
To generate inverse Gaussian variates directly we use the MHS algorithm.

This requires two uniform variates for each inverse Gaussian it generates, and
is easily stratified by stratifying the uniform draws.
For low discrepancy sampling we use a Sobol’ sequence based on Bratley and

Bennett (88) [9]. Code is downloadable from www.netlib.org/toms/659. The
code generates low discrepancy samples from a unit hypercube of dimension at
most 39. Since bridge Monte Carlo uses three low discrepency coordinates at
each stratified time, we are constrained to have at most 13 stratification times.

4.2 Valuing Average Rate Options

We value average rate options, maturing in one year, with various numbers of
reset times up to final maturity, comparing the results to plain Monte Carlo.
We use bridge Monte Carlo with various numbers of stratification times.
The number of reset times per year varies from 4 to 256, corresponding

to quarterly up to approximately daily reset frequencies. The number of time
steps is equal to the number of reset times. With N reset times, resets are
at times 1

N ,
2
N , . . . , 1. Bridge Monte Carlo is implemented with from 1 to 16

stratification times. With K stratification times, stratifications are at times
1
K ,

2
K , . . . , 1. Stratification is by low discrepancy sampling. When the number

of stratification times equals the number of reset times, the method is com-
pletely low discrepancy and non-stochastic. Results in this case are based on
a single replication and no standard deviation is reported. For options with 4
and 8 resets we ‘benchmark’ by pricing using completely low discrepancy sam-
pling with M = 1, 000, 000 sample paths. We note that convergence in M for
completely low discrepancy methods is not uniform.
Table 1 shows our results.11 The payoff at time one is HT = max (A−X, 0)

compensated away.
11The initial asset value is S0 = 100, exercise price X = 100 and riskless rate r = 0.1.

Maturity time is 1 year.
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Average rate call options: Times and standard deviations.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets

0,
M = 106

8.5856
(0.0103)
[71.6]

7.7892
(0.0094)
[141.4]

7.4059
(0.0089)
[278.6]

7.2312
(0.0087)
[551.8]

7.1286
(0.0086)
[1101.4]

7.0698
(0.0086)
[4390.1]

1
8.6326
(0.044)
[1.9]

7.8205
(0.042)
[2.4]

7.3874
(0.048)
[4.9]

7.2347
(0.041)
[7.7]

7.0763
(0.047)
[15.1]

7.0656
(0.044)
[58.8]

2
8.5530
(0.021)
[1.8]

7.7695
(0.022)
[2.1]

7.4282
(0.022)
[4.8]

7.2457
(0.026)
[7.7]

7.0721
(0.026)
[15.0]

7.0497
(0.021)
[58.8]

4
8.5695
(−)
[1.8]

7.7963
(0.010)
[2.0]

7.4181
(0.011)
[4.7]

7.2105
(0.011)
[7.6]

7.1249
(0.011)
[14.9]

7.0430
(0.012)
[58.6]

8 −
7.7959
(−)
[1.7]

7.4045
(0.0048)
[4.3]

7.2121
(0.0059)
[7.3]

7.1296
(0.0051)
[14.6]

7.0519
(0.0059)
[58.4]

Bench-
mark

8.5807
(−)
[169]

7.8072
(−)
[169]

− − − −

Table 1: Average Rate Call Options: Comparison of Plain and Bridge Monte
Carlo

where A is the arithmetic average of the asset value at each reset time and
X = 100 is the exercise price. In the table, the K = 0 row reports the plain
Monte Carlo results. Plain Monte Carlo usesM = 1, 000, 000 sample paths. The
results for bridge Monte Carlo are for M = 10, 000. Actual standard deviations
are shown in round brackets.12 Times in seconds for a single replication are
shown in square brackets.13

We see that the standard deviation decreases significantly with each addi-
tional level of stratification. Doubling the number of stratification times roughly
halves the standard deviation but computation times remain similar. This
means that each additional level of stratification is approximately quadrupling
the efficiency gain. These are shown in Table 2.14

Efficiency gains are most pronounced for options with the least number of
reset times, but even the daily reset option with two stratification times is 12
times faster than plain Monte Carlo. For the daily reset case (N = 256) using
8 stratification times we achieve an efficiency gain of a factor of 157 over plain
Monte Carlo. We have no reason to suppose that efficiency gains would not
12For plain Monte Carlo the standard deviation is approximately equal to the standard

error, so only the standard error is reported. For bridge Monte Carlo the true standard
deviation is found from a hundred replications of the Monte Carlo procedure.
13All programmes were written in Visual Basic 6.0 and were run on a 900 Mhz PC.
14 In fact efficiency gains decrease as M decreases because of fixed set-up times in the

implementation of the Monte Carlo algorithm.
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Average rate call options: Efficiency gains.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets
1 2.1 3.0 2.0 3.2 2.4 2.9
2 9.8 12.4 9.9 8.2 8.2 12.2
4 − 58.8 42.3 42.8 45.7 40.1
8 − − 219.4 167.1 216.2 157.0

Table 2: Average Rate Call Options: Efficiency Gains for Bridge Monte Carlo
over Plain Monte Carlo

continue to increase with the introduction of further stratification times.

5 Conclusions

We have shown how an inverse Gaussian bridge may be used in conjunction
with stratified sampling in the NIG model to give much improved Monte Carlo
estimates of average rate option values. We find efficiency gains of a factor of
around between 220 and 160 for 8 stratification times.
The use of the bridge Monte Carlo technique in the NIG framework should

be considered whenever (i) Monte Carlo is used to value path dependent options
or (ii) a single Monte Carlo run is used to price options with different maturities.
Bridge Monte Carlo may be used to maximum effect if an efficient algorithm

is available to compute the inverse of the bridge distribution function. Such
an algorithm exists in the NIG case. For the variance-gamma model Ribeiro
and Webber (02) [20] found smaller efficiency gains then expected, which they
attributed, in part, to the inefficiency of the available algorithm to compute the
inverse of the bridge distribution function in that case.
In principle the bridge Monte Carlo method is widely applicable, but its ease

of application depends upon the nature of the conditional distribution function
at intermediate times, and on the efficiency of available algorithms to compute
the inverse of that distribution function.
For the NIG process the use of the inverse Gaussian bridge is recommended

for appropriate applications.
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