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Abstract

The Variance-Gamma model has analytical formulae for the values
of European calls and puts. These formulae have to be computed using
numerical methods. In general, option valuation may require the use of
numerical methods including PDE methods, lattice methods, and Monte
Carlo methods.

We investigate the use of Monte Carlo methods in the Variance-Gamma
model. We demonstrate how a gamma bridge process can be constructed.
Using the bridge together with stratified sampling we obtain consider-
able speed improvements over a plain Monte Carlo method when pricing
path-dependent options.

The method is illustrated by pricing lookback, average rate and barrier
options in the Variance-Gamma model. We find the method is up to
around 400 times faster than plain Monte Carlo.

∗Corresponding author. Claudia Ribeiro gratefully acknowledges the support of Fundação
para a Ciência e a Tecnologia and Faculdade de Economia, Universidade do Porto. The paper
has benefited from comments from Lynda McCarthy.
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1 Introduction

The variance-gamma model has been investigated by a number of authors
for application to option valuation (Madan and Seneta (90) [16], Madan and
Milne (91) [15], Madan, Carr and Chang (98) [14], Ané (99) [4] and Carr, Ge-
man, Madan and Yor (01) [7]). Although analytical solutions are available for
European-style options, other options require the use of numerical methods.
These include Monte Carlo methods, Fourier transform (FFT) methods (Carr
and Madan (99) [8]), and PDE approaches (the ‘method of lines’; Albanese,
Jaimungal and Rubisov (01a), (01b) [1], [2]).
This paper investigates the use of Monte Carlo methods with the variance-

gamma model. In particular we show how a gamma bridge may be constructed
and used in conjunction with stratified sampling. We demonstrate that consid-
erable efficiency gains are possible. If improved algorithms for sampling certain
distributions become available these gains may be further improved.
The gamma bridge can be used with, augment and supplement control vari-

ate methods, importance sampling methods and other variance reduction tech-
niques.1

The second section of this paper recaps the variance-gamma process and its
application to option pricing. We review how Monte Carlo methods may be
applied by exploiting the subordinated Brownian motion representation of the
variance-gamma process. In the third section we show how a gamma-bridge can
be constructed and applied. The fourth section presents numerical results and
the fifth section concludes.

2 The Variance-Gamma Framework
We review the variance-gamma process and its application to option pricing. We
describe a ‘plain’ Monte Carlo method related to the subordinated Brownian
motion representation of the variance-gamma process.

2.1 The Variance-Gamma Process

A variance-gamma process Xt has three parameters: µ ∈ R, σ > 0, ν > 0. It is
pure jump with Lévy density kX (x),

kX (x) dx =
exp

¡
µx
σ2

¢
ν |x| exp

Ã
− 1
σ

r
2

ν
+
µ2

σ2
|x|
!
dx (1)

1 Indeed a suitable delta control variate for the variance-gamma model of asset returns
is the delta of the option value generated by ordinary geometric Brownian motion. Since
the density function of the variance-gamma process is known, importance sampling can be
applied by using shifted mean and variance parameters to sample more closely the region of
the distribution of interest.
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and characteristic function

E [exp (iuXt)] =
µ

1

1− iµνu+ 1
2σ

2νu2

¶ t
ν

. (2)

The density function fV Gt (x) of Xt may be found explicitly. It is

fV Gt (x) =
2 exp

¡
µx
σ2

¢
ν
t
ν

√
2πσΓ

¡
t
ν

¢ Ã x2

2σ2

ν + µ2

! t
2ν−1

4

K t
ν−1

2

Ã
1

σ2

s
x2
µ
2σ2

ν
+ µ2

¶!
(3)

where Kv (z) is the modified Bessel function of the third kind,

Kv (z) =
1

2

Z ∞
0

yν−1 exp
µ
−1
2
z
¡
y + y−1

¢¶
dy. (4)

Xt can be represented as a subordinated Brownian motion, Xt = wh(t),
where wt is Brownian motion with drift µ and variance σ2 and h (t) is a gamma
process ht ∼ G

¡
t
ν , ν

¢ ∼ νG
¡
t
ν

¢
. The density fht (x) of ht conditional on h (0) =

0 is

fht (x) =
x
t
ν−1 exp

¡−xv ¢
ν
t
ν Γ
¡
t
ν

¢ . (5)

fV Gt (x) can be obtained directly from this representation since

fVGt (x) =

Z ∞
0

1

σ
√
2πg

exp

Ã
−1
2

µ
x− µg
σ
√
g

¶2! g t
ν−1 exp

¡−gv¢
ν
1
ν Γ
¡
t
ν

¢ dg. (6)

The variance gamma process can be used to model stock price returns. Let
St be the stock price at time t. In this exposition we assume that the stock pays
no dividends. We take the state space Ω to be the path space of Xt equipped
with the filtration induced by the variance-gamma process. Following Madan,
Carr and Chang (98) [14], Barndorff-Nielsen and Shephard (00) [5], Eberlein
and Keller (95) [12], et cetera, we model a stock price process St under the
pricing measure2 F as

St = S0 exp (rt+Xt −$t) (7)

where Xt is a variance-gamma process, r is the short rate, a constant, and
the presence of the compensator $, defined by e$ = E [exp (X1)], ensures that
Ste−rt is a martingale under the measure associated with the accumulator ac-
count numeraire. From (2) we have

$ = −1
ν
ln

µ
1− µν − 1

2
σ2ν

¶
. (8)

The log price relative zt = ln (St/S0) of St has density fzt (x) = f
VG
t (x0) where

x0 = x− rt− t
ν ln(1− µν − σ2ν/2).

2 In general there is no unique martingale measure for a Lévy process. Since we focus on
numerical solutions for processes of the form (7) we do not pursue this issue further.
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2.2 Monte CarloMethods for the Variance-Gamma Process

Suppose an option has payoff HT ≡ HT (ω) at time T , where HT may depend
on the state ω ∈ Ω. Under the martingale measure F associated with the
accumulator numeraire the option value ct at time t < T is

ct = E
h
HT e

−r(T−t)
i
. (9)

In this section we recall how (9) can be solved using plain Monte Carlo. A
standard reference for applications of Monte Carlo methods in finance is Jäckel
(02) [13].
The valuation equation (9) is an integral over the state space Ω,

ct = E
h
HT e

−r(T−t))
i
= e−r(T−t)

Z
Ω

HT (ω) dF (ω) . (10)

The integral can be approximated by constructing a set {bωm}m=1,...,M of dis-

crete sample paths randomly selected under a measure bF , a discrete approxi-
mation to the measure F . Then the approximation bct to ct is

bct = e−r(T−t) 1
M

MX
m=1

HT (bωm) . (11)

Discrete sample paths for a subordinated Brownian motion, Xt = wh(t), can
be constructed by first constructing discrete sample paths for the subordinator
h (t) and then sampling the process wt at times determined by the paths found
for h (t).
We construct discrete sample paths forXt over the period [0, T ] with N time

steps at times 0 = t0 < t1 < . . . < tN = T . First we construct a discrete sample
path

nbhno
n=0,...,N

for h (t) . Set bh0 = 0. Iteratively, bhn+1 − bhn is a random
increment in h over the interval ∆tn = tn+1 − tn. For the variance-gamma
process, ∆bhn = bhn+1 − bhn ∼ G

¡
∆tn
ν , ν

¢
and is easy to simulate. Given the

path
nbhno

n=0,...,N
, and setting bw0 = 0, we set iteratively ∆ bwn = bwn+1− bwn ∼

N
³
µ∆bhn,σ2∆bhn´. The path bw = {bwn}n=0,...,N is a discrete approximation to

a sample path ω of Xt.
The plain Monte Carlo method constructsM discrete sample paths {bwm}m=1,...,M ,

as above. The plain Monte Carlo estimate is then given by (11).
We may assume elsewhere that the time step ∆t = T

N is a constant. This
assumption is for simplicity only and may be relaxed trivially.
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3 A Gamma Bridge for the Variance-Gamma
Process

The plain Monte Carlo estimate bct converges to ct as M and N go to infin-
ity. However, convergence to within an error bound may be very slow.3 An
effective Monte Carlo method requires effective speed-ups. When simulating a
Brownian motion, a Brownian bridge is often used in conjunction with stratified
sampling. This technique helps to ensure that the set {bwm}m=1,...,M of discrete

sample paths is drawn more evenly under the measure bF . In this section we
review the method of stratified sampling and the use of a bridge for a stochastic
process and its application to a Wiener process. We describe the construction
of the gamma bridge and its application to the variance-gamma process. The
algorithm, ‘bridge’ Monte Carlo, is presented.

3.1 Stratified Sampling

Initially suppose that the payoff function HT depends solely on the value XT
of a state variable at time T , with distribution function FXT (x) and density
function fXT (x). Then

ct = e
−r(T−t)

Z
Ω

HT (ω) dF (ω) (12)

= e−r(T−t)
Z
HT (x) f

X
t (x) dx (13)

∼ e−r(T−t) 1
M

MX
m=1

HT

³ bXm
´

(14)

where bXm is drawn from the distribution FXT .
A stratified sample of sizeM from FXT is one in which the mth draw, bXm, is

constructed to lie in the mth quantile band,
£
m−1
M , mM

¤
, for 1 ≤ m ≤M . Given

a sample {bvm}m=1,...,M drawn from U [0, 1], the set {bum}m=1,...,M , where bum =
m−1+bvm

M , is a stratified sample of U [0, 1]. An alternative to this Monte Carlo
stratification method is to sample U [0, 1] using a low discrepancy sequence.
If the function

¡
FXT

¢−1
is known, and given a stratified sample {bum}m=1,...,M

of the uniform distribution U [0, 1], then the set
n¡
FXT

¢−1
(bum)o

m=1,...,M
is a

stratified sample from the distribution FXT . We use this technique, the inverse
transform method, in the sequel.
An option value constructed using a stratified sample may have an actual

standard deviation significantly less the size of that of a value found using plain
Monte Carlo.4

3Benchmark comparisons are presented in the next section.
4This is because a stratified sample has autocorrelation. We find the actual standard

deviation may be a tenth or less than the standard error.
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If HT depends on an entire sample path, as is the case for an average
rate option, a set of sample paths may be found by first finding a stratified
sample

n bXm
o
m=1,...,M

from the terminal time, and then constructing a path

0 = bXm
0 < bXm

1 < . . . < bXm
N = bXm so that each bXm

n has the correct conditional
distribution. This set of paths will sample from bF more evenly than a sample
without stratification. We call the path

n bXm
n

o
n=0,...,N

, constructed from bXm
0

and bXm
N , an X-bridge. Intermediate points bXm

n are constructed by sampling
from a bridge distribution, defined and described in the next section. This sam-
pling may also be stratified, leading to improved sampling at the intermediate
times and of the path as a whole.

3.2 A Bridge for a Wiener Process

Suppose that x ∼ Fx and y ∼ Fy are random variables with distributions Fx
and Fy, densities fx and fy and joint density function fx,y. Set z = x+ y with
density fz. We are interested in the conditional distribution of x | z. Write fx|z
for the density of x | z. Then

fx|z (x) =
fx,y (x, z − x)

fz (z)
. (15)

If x and y are independent then fx|z (x) = fx (x) fy (z − x) /fz (z).
When x and y represent increments in a Markov stochastic process their

densities will depend on the time increment. For instance, for a Wiener process
wt where x = wtj − wti is a random increment between times ti and tj and
y = wtk−wtj is a random increment between times tj and tk, then x ∼ N

¡
0,σ2x

¢
,

y ∼ N ¡0,σ2y¢, z ∼ N ¡0,σ2z¢ where σ2x = tj − ti, σ2y = tk − tj and σ2z = tk − ti.
In this case the density fx|z (x) is

fx|z (x) =
1√
2π

σz
σxσy

exp

Ã
−1
2

Ã
x2

σ2z
+
(z − x)2

σ2y
− z

2

σ2z

!!
(16)

=
1√
2π

1

b
exp

Ã
−1
2

µ
x− az
b

¶2!

where

a =
σ2z
σ2z
=
tj − ti
tk − ti , (17)

b =
σxσy
σz

=

s
(tj − ti) (tk − tj)

(tk − ti) .

Hence, given z = wtk − wti , x = wtj − wti is normally distributed, x ∼
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N
¡
za, b2

¢ ∼ N³z tj−titk−ti ,
(tj−ti)(tk−tj)

(tk−ti)
´
, so that

wtj =
tk − tj
tk − ti wti +

tj − ti
tk − tiwtk +

s
(tj − ti) (tk − tj)

(tk − ti) εtj , (18)

for εtj ∼ N(0, 1). This is the bridge distribution for a Brownian bridge.

3.3 A Bridge for a Gamma Process

Consider a gamma process gt observed at times ti, tj and tk. Set τx = tj − ti,
τy = tk − tj and τz = tk − ti. Let x be an increment in gt over the period
[ti, tj ], y an increment over [tj , tk] and z an increment over [ti, tk]. Then x =
gtj − gti ∼ G

¡
τx
ν , v

¢
, y = gtk − gtj ∼ G

¡ τy
ν , v

¢
and z = gtk − gti ∼ G

¡
τz
ν , v

¢
.

The conditional density fx|z (x) is

fx|z (x) =
x
τx
ν −1 exp

¡−xv ¢
ν
τx
ν Γ

¡
τx
ν

¢ (z − x)
τy
ν −1 exp

¡−z−xv ¢
ν
τy
ν Γ

¡ τy
ν

¢ ν
τz
ν Γ

¡
τz
ν

¢
z
τz
ν −1 exp

¡− zv¢ (19)

=
1

z

Γ
¡
τx
ν +

τy
ν

¢
Γ
¡
τx
ν

¢
Γ
¡ τy
ν

¢ ³x
z

´ τx
ν −1 ³

1− x
z

´ τy
ν −1

.

Change variable to p = x
z , then p =

x
z ∼ B

¡
τx
ν ,

τy
ν

¢
has a beta distribution with

parameters τx
ν and τy

ν . Given gtk and gti ,
x
z =

gtj−gti
gtk−gti

has a beta distribution
so

gtj = gti + βtj (gtk − gti)

for βtj ∼ B
³
tj−ti
ν ,

tk−tj
ν

´
. This is the bridge distribution for a gamma process.

This result is intuitive. A beta variate takes values in the interval [0, 1]. The
gamma process is an increasing process. Given the increment z over the pe-
riod [ti, tk], the beta distribution samples from the proportion of this increment
achieved by time tj .

3.4 Application of the Gamma Bridge

To apply bridge Monte Carlo we use the subordinator representation of the
variance-gamma process and stratify it at the terminal time. We construct a
bridge to the points we have constructed. The bridge may itself be stratified at
intermediate times.
Suppose Xt = wh(t) for a Brownian motion wt ∼ N

¡
µt,σ2t

¢
and subordina-

tor ht ∼ G
¡
t
ν , ν

¢
. Time is discretised into N time steps, 0 = t0, t1, . . . , tN = T ,

up to the terminal time T . For a sample of size M we construct:

1. A stratified sample (bui, bvi), i = 1, . . . ,M , from the unit hypercube of
dimension 2.
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2. A stratified sample bhiN , i = 1, . . . ,M , of the subordinator at time tN = T ,
using the variates bui, i = 1, . . . ,M . Set bhiN = G−1T (bui), where G is the
distribution function for hT .

3. An h-bridge bhi = ³bhi0, . . . ,bhiN´, for i = 1, . . . ,M . We discuss below how
the h-bridge may be further stratified at intermediate times.

4. For each i = 1, . . . ,M a sample point bwiN ∼ N
³
µbhiN ,σ2bhiN´, bwiN =

N−1
µbhiN ,σ2bhiN (bvi), whereNµ,σ2 is the normal distribution function with mean

µ and variance σ2.

5. A w-bridge bwi = ¡ bwi0, . . . , bwiN¢, at times bhi0, . . . ,bhiN , i = 1, . . . ,M . This is
an X-bridge for times t0, . . . , tN . The w-bridge may be stratified further
at intermediate times.

The set of paths bwi, i = 1, . . . ,M , is a stratified bridge sample from the path
space of the Lévy process Xt.
Note that we stratify both ht and wh(t) at the terminal time. We found ex-

perimentally that full speed-ups were not achieved unless both the subordinator
and the Brownian motion were stratified. In the sequel we always stratify both
ht and wh(t).

3.5 Stratifying the Variance-Gamma Bridge

For ti < tk, given gti and gtk , the value gtj of a gamma process at an intermediate

time tj is generated as gtj = gti + βtj (gtk − gti) for βtj ∼ B
³
tj−ti
ν ,

tk−tj
ν

´
. A

stratified sample for βtj yields a stratified sample for gtj . We obtain such a
sample by inverse transform from a stratified sample bun, n = 1, . . . ,M of the
unit interval. Set βntj = B−1tj−ti

ν ,
tk−tj
ν

(bun), where B−1α,β is the inverse of the
cumulative distribution function B (α,β).
If the gamma process is stratified at time tj then we also stratify w at time

htj .
We present in the next section comparisons of bridge Monte Carlo when

stratified at different numbers of times. To stratify at K times, where K = 2P

and N = QK for integer P and Q, we first compute a stratified sample of
points hiN and wiN , i = 1, . . . ,M , at time tN . We then stratify successively at
times 12 tN ,

3
4 tN ,

1
4 tN ,

7
8 tN ,

5
8 tN ,

3
8 tN ,

1
8 tN , and so on, until all times

k
K tN , k =

1, . . . ,K have been stratified. The remaining intermediate points (when Q > 1)
are filled in using ordinary random draws from beta and normal distributions.
We stratify by constructing a stratified sample from a 2K-dimensional unit
hypercube. For K ≤ 2 it may be plausible to use a Monte Carlo stratified
sample. In the numerical section, except where noted, we use low discrepancy
sampling for all K ≥ 1.

8



4 Numerical Results

We first benchmark the bridge Monte Carlo method against European call op-
tion values. Then we use the bridge to value average rate, lookback and barrier
options and compare the results to those found with plain Monte Carlo. The
performance of the bridge under various degrees of stratification is investigated.
All the path dependent instruments mature in one year. We investigate reset

frequencies from quarterly to approximately daily. We find that the bridge
method benchmarks very accurately, achieving efficiency gains of a factor of
50 for European calls with one year to maturity. For path dependent options
with daily resets and 16 stratification times we achieve gains of a factor of 130
for lookback options and 380 for average rate options. Gains are also found
for barrier options but these may be significantly less. For our examples one
stratification (at the terminal time) is ten to twenty times faster than plain
Monte Carlo, but further stratification does not always bring further efficiency
gains.

4.1 Algorithm Issues

We require algorithms for generating uniform, normal, gamma and beta random
variates.
Uniform variates are generated using a VBA version of ran2 from Numerical

Recipes (92) [18]. All normal variates were generated by inverse transform.
N−1, the inverse of the normal distribution function, is computed using Applied
Statistics Algorithm 111 [3] downloadable from lib.stat.cmu.edu/apstat/111.
To generate gamma variates directly we use the Best (83) and Best (78)

algorithms as described in Devroye (86) [10]. To compute the inverse of the
gamma distribution function, G−1, to use with the inverse transform method
for stratified sampling, we use the algorithm of DiDonato and Morris (87) [11],
downloadable from www.netlib.org/toms/654. It uses an iterative method to
find solutions of G

¡
gntN
¢− bun = 0.

Beta variates from the distribution B(α,β) are generated directly by Cheng’s
method if min (α,β) < 1, Johnk’s method if max (α,β) < 1, by Atkinson and
Whittaker’s method if min (α,β) < 1 < max (α,β), and by ratio of gammas
otherwise.5 For stratified sampling, the inverse of the beta distribution function,
B−1, is computed using an algorithm due to Moshier (00) [17]. This algorithm

uses an iterative method to solve for B τx
ν ,

τy
ν

³
βntj

´
− bun = 0. We shall see that

this particular procedure is relatively slow compared, for instance, to computing
N−1. Should faster algorithms emerge to compute B−1τx

ν ,
τy
ν

(or indeed G−1τy
ν ,v
)

then the efficiency gains to the algorithm would be even greater than those we
find below.
For low discrepancy sampling we use a Sobol’ sequence based on Bratley and

Bennett (88) [6]. Code is downloadable from www.netlib.org/toms/659. The
5See [9] and [10]. Johnk’s method sometimes fails when both α and β are small. In these

cases we revert to the ratio of gammas method.
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Monte Carlo
Maturity Explicit Plain Stratified Gain

0.25 3.4742
3.4548
(0.035)

3.4748
(0.003)

26

0.5 6.2406
6.2414
(0.056)

6.2401
(0.004)

45

0.75 8.6909
8.6928
(0.077)

8.6955
(0.005)

35

1 10.9815
10.9381
(0.099)

10.9721
(0.006)

53

Time: − 0.3 1.4

Table 1: Comparison of Plain and Stratified Monte Carlo: Calls, one time step.

code generates low discrepancy samples from a unit hypercube of dimension at
most 39. Since bridge Monte Carlo uses two low discrepancy coordinates at
each stratified time, we are constrained to have at most 18 stratification times.

4.2 Benchmarking to European calls

We value European calls and compare values obtained from an analytic formula
(“Explicit”) against Monte Carlo values.6 Table 1 compares plain Monte Carlo
with stratified Monte Carlo, taking 10, 000 samples directly from the terminal
distribution for each maturity (M = 10, 000, N = 1). Explicit values are
computed using the analytical formula of Madan, Carr and Chan (98) [14].
Standard deviations are shown in brackets.7 ,8 Tables 1 and 2 use ‘ordinary’
Monte Carlo stratification instead of low discrepancy stratification.
For each option in table 1 plain Monte Carlo took about 26 seconds for a

hundred replications. Stratified Monte Carlo took about 144 seconds.
The final column of table 1 gives the efficiency gain of the stratified Monte

Carlo method over plain Monte Carlo. Suppose for some option plain Monte
Carlo gives a standard deviation of σP in time tP and an alternative Monte
Carlo method gives σA and tA. The efficiency gain EAP of the alternative
method to plain Monte Carlo is

EAP =
σ2P tP
σ2AtA

. (20)

Under the assumption that standard deviation scales inversely with the square
6Call values are for options on an asset with initial value S0 = 100, exercise price X = 101

and riskless rate r = 0.1. Parameters of the variance-gamma process are µ = −0.1436,
σ = 0.12136, ν = 0.3 (based upon Madan, Carr and Chan (98) [14]). Maturities, in years,
range up to 1 year.

7For plain Monte Carlo the standard deviation is approximately equal to the standard
error. For bridge Monte Carlo, in all the tables of this section, the true standard deviation is
found from a hundred replications of the Monte Carlo procedure.

8All programmes were written in Visual Basic 6.0 and were run on an 800 Mhz PC.
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Stratified Monte Carlo: Number of sample paths, M
Maturity Explicit 10000 1600 900 400 225

0.25 3.4742
3.475
(0.003)

3.476
(0.011)

3.494
(0.018)

3.436
(0.037)

3.505
(0.052)

0.5 6.2406
6.240
(0.004)

6.242
(0.017)

6.285
(0.026)

6.268
(0.050)

6.301
(0.068)

0.75 8.6909
8.696
(0.005)

8.717
(0.020)

8.660
(0.032)

8.666
(0.066)

8.667
(0.093)

1 10.9815
10.972
(0.006)

10.977
(0.024)

10.925
(0.032)

11.097
(0.066)

11.036
(0.126)

Time: − 1.4 0.24 0.13 0.06 0.04

Table 2: Stratified Monte Carlo: Standard deviation against sample paths:
Calls, one time step

root of the number of sample paths M , and that time taken is proportional to
M , then EAP is the multiple of the time the plain method takes to achieve a
particular standard deviation compared to the alternative method.
We note efficiency gains of around 50 for one year maturity options. The

efficiency appears to be increasing with increasing maturity.
Table 2 compares stratified Monte Carlo with different numbers of sample

paths. The M = 10, 000 column is repeated from table 1. In each case the
gamma and the normal variates have an equal degree of stratification. For
instance, for M = 10, 000, there are a hundred buckets in each dimension of
the stratified 2-dimensional unit hypercube. With only 400 sample paths the
standard deviation of the stratified Monte Carlo method is significantly less
than that of the plain Monte Carlo in table 1 and takes less than a quarter of
the time.9

Now we investigate how bridge Monte Carlo behaves when valuing non-
path dependent options of different maturities simultaneously. We evolve the
variance-gamma process out to 1 year in four time steps of 0.25 years each, and
value simultaneously the benchmark option maturing at the conclusion of each
time step.
Table 3 shows benchmarked call values computed with plain Monte Carlo

and with bridge Monte Carlo stratified at (i) step 4, the terminal time, (ii)
steps 2 and 4, (iii) steps 1, 2, 3 and 4, so that K = 1, 2 and 4 for the three
cases. In this table M = 10, 000 for plain Monte Carlo and M = 100, 000 for
each stratified Monte Carlo. Stratification is by low discrepancy sampling. At
the stratification times, stratification is entirely deterministic so no standard
deviation can be reported. Table 4 displays the efficiency gains achieved by
bridge Monte Carlo over plain Monte Carlo.
We see that for these non-path-dependent options, stratification gives only

slight gains for options maturing away from the stratification time. Efficiencies
9Efficiency gains decrease as M decreases because of fixed set-up times in the implemen-

tation of the Monte Carlo algorithm.
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Bridge MC: Stratified at steps:
Maturity Explicit Plain MC K = 1 K = 2 K = 4

0.25 3.4742
3.4756
(0.034)

3.4879
(0.011)

3.4858
(0.009)

3.4738
(−)

0.5 6.2406
6.1712
(0.061)

6.2440
(0.015)

6.2409
(−)

6.2409
(−)

0.75 8.6909
8.6156
(0.088)

8.6811
(0.014)

8.6860
(0.011)

8.6907
(−)

1 10.9815
10.8766
(0.10)

10.9813
(−)

10.9813
(−)

10.9813
(−)

Time: − 0.93 25 40 131

Table 3: Comparison of Plain and Stratified Monte Carlo: Calls, one to four
time steps.

Efficiency Gains
Maturity K = 1 K = 2
0.25 0.38 0.36
0.5 0.62 −
0.75 1.45 1.46
1 − −

Table 4: Bridge Monte Carlo: Efficiency Gains over Plain Monte Carlo.

are less than 1 for distant options because of the computational overhead in
computing the bridge. However, we can confirm that option values at inter-
mediate times computed by the bridge method are close to their true values.

As a further example we compute Black-Scholes implied volatilities for op-
tions maturing at times n

N for n = 1, . . . , N , N = 64. Figure 1 compares Black-
Scholes implied volatilities of variance-gamma calls for bridge Monte Carlo strat-
ified only at the terminal time against stratification every 4 time steps. The
sample size isM = 1, 000. Option prices for each maturity are computed all to-
gether. With 16 stratification times (and one replication) the programme takes
9.2 seconds to run. When stratifying only at the terminal time the programme
takes 2.0 seconds. In this instance pricing is improved with greater stratifica-
tion, even taking the increased run time into account, particularly at longer
maturity times.
We conclude that bridge Monte Carlo benchmarks well to European calls,

achieving superior accuracy to plain Monte Carlo. We now value path dependent
options in the variance-gamma framework.

12



Comparison of Implied Volatilities
M = 1000,  N = 64
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Figure 1: Comparison of implied volatilities: 1 and 16 stratification times

4.3 Valuing path dependent options

We value one year average rate, lookback and barrier options with various num-
bers of reset times up to final maturity, comparing the results to plain Monte
Carlo. We use bridge Monte Carlo with various numbers of stratification times.
We report results for plain Monte Carlo with M = 1, 000, 000 sample paths.

The results for bridge Monte Carlo are for M = 10, 000. Actual standard
deviations, based on 100 replications of the full Monte Carlo procedure, are
shown in round brackets. Times in seconds for a single replication are shown
in square brackets. For the options investigated, the standard error and actual
standard deviation of plain Monte Carlo are very similar, so only the standard
error is reported.
Each option is priced under varying numbers of reset times per year, from 4

to 256, corresponding to quarterly up to approximately daily reset frequencies.
The number of times steps is equal to the number of reset times. With N reset
times, resets are at times 1

N ,
2
N , . . . , 1. Bridge Monte Carlo is implemented with

from 1 to 16 stratification times. With K stratification times, stratifications
are at times 1

K ,
2
K , . . . , 1. When the number of stratification times equals the

number of reset times, the method is fully low discrepancy and non-stochastic.
Results in this case are based on a single replication and no standard deviation
is reported. For options with 4, 8 and 16 resets we ‘benchmark’ by pricing using
fully low discrepancy sampling with M = 1, 000, 000 sample paths. We note
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that convergence in M for fully low discrepancy methods is not uniform.
In the tables, the K = 0 row reports the plain Monte Carlo results.

4.3.1 Average rate options

Table 5 shows results for average rate call options. The payoff at time one is
HT = max (A−X, 0) where A is the arithmetic average of the asset value at
each reset time and X = 101 is the exercise price.
We see that the standard deviation decreases significantly with each addi-

tional level of stratification. Computation times also increase. Doubling the
number of stratification times roughly halves the standard deviation but only
approximately doubles the computation time. This means that each additional
level of stratification is approximately doubling the efficiency gain. These are
shown in Table 6.
Efficiency gains are most pronounced for options with greater numbers of

reset times, but even the quarterly reset option with two stratification times is
7 times faster than plain Monte Carlo. For the daily reset case (N = 256) using
16 stratification times we achieve an efficiency gain of a factor of 383 over plain
Monte Carlo. We have no reason to suppose that efficiency gains would not
continue to increase with the introduction of further stratification times.

4.3.2 Lookback options

Table 7 shows results for lookback call options. The payoff at time one is
HT = max (ST −M, 0) where M is the minimum of the asset values at each
reset time. Table 8 gives efficiency gains for these options.
For lookbacks we see that increasing the number of stratification times brings

increasing efficiency gains, although less so than for the average rate option. The
gains are most pronounced for the daily reset lookback with an efficiency gain
of 129 with 16 stratification times. Efficiency gains are greater for options with
fewer reset times, compared to average rate options.

4.3.3 Barrier options

We report results for pricing of up-and-in call options. Pricing for down-and-
out barrier options was also investigated but as we found similar results to the
up-and-in case, these are not reported.
‘Out’-type barrier options may be given a zero payoff immediately that an

asset value is generated that has hit the barrier, and no further asset values
along that sample path need be generated. An analogous speed-up is possible
for ‘In’-type barrier options. Once the barrier is hit the bridge Monte Carlo
method requires no further asset values to be generated since the bridge has
already generated the terminal asset value. The plain Monte Carlo method
requires the generation of one further asset value, for the terminal time.
Tables 9 shows results for an up-and-in call option. The payoff at time one

is HT = max (ST −X, 0) where X is the exercise price, and where the payoff
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is conditional on the asset value exceeding the barrier level B on at least one
reset time. The table gives results for B = 120. Table 10 gives efficiency gains
for these options. We see that a single stratification, at the terminal time, gives
efficiency gains from around 12 up to 23 for daily reset options. Additional
stratification does not necessarily increase the efficiency, although there are
gains for the daily reset option. On the whole, efficiencies do not decrease by
much, implying that there is likely to be little loss from additional stratification.
Investigation showed that efficiency gains are greater when the barrier level

B is further away from the initial asset value S0. When B is close to S0 the gains
are considerably less. For down-and-out options with B = 100, efficiency gains
of around 2 were obtained for one level of stratification, at the terminal time.
However, further stratifications do not lead to further gains. On the contrary,
for all except the option with 256 reset times, the efficiency gains diminish.
We attribute the pricing behaviour of barrier options to two factors. The

first is that the values of barrier options depend on the path of asset values only
through the hitting, or otherwise, of a barrier level; payoffs are not computed
directly from intermediate asset values. In this sense barrier options are ‘less’
path dependent than average rate or lookback options whose payoffs depend
directly upon intermediate asset values and whose valuation benefits from a
more sophisticated sampling at intermediate times. The second factor is the
efficiency of the algorithms used to compute the inverse of the beta distribution
function. In fact, from table 5, for instance, we can estimate that (for M =
10, 000 and with 100 replications) a ‘plain’ unstratified gamma bridge step takes
about 0.2 seconds, the gamma stratification step at the terminal time takes
about 0.6 seconds and a beta stratification step takes about 5 seconds. Were
a beta stratification step to be as fast as the gamma stratification step a daily
reset average rate option would have an efficiency gain of over 800.

5 Conclusions

We have shown how a gamma bridge may be used in conjunction with strati-
fied sampling in the variance-gamma model to give much improved Monte Carlo
estimates of option values, both for benchmark calls and for various path depen-
dent options. We find efficiency gains of a factor of around 380 for average rate
options and 130 for lookback options. There are also gains for barrier options
which are significant for a stratification at the terminal time.
The use of the bridge Monte Carlo technique should be considered whenever

(i) Monte Carlo is used to value path dependent options or (ii) a single Monte
Carlo run is used to price options of different maturities but maturing close to
stratification times. From the example of barrier options it appears that the
greater the effective degree of path dependence, the greater are the efficiency
gains due to the use of bridge Monte Carlo.
Bridge Monte Carlo may be used to maximum effect if an efficient algo-

rithm is available to compute the inverse of the bridge distribution function.
Very good algorithms exist to compute the inverse of the normal distribution.
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Further efficiency gains would be possible for the gamma bridge if improved
algorithms for the computation of the functions G−1 and particularly for B−1

were available. We would then expect to see that stratifications at intermediate
times for barrier options with asset values close to the barrier level could lead
to much greater efficiency gains.
In principle the bridge Monte Carlo method is widely applicable, but its ease

of application depends upon the nature of the conditional distribution function
at intermediate times, and on the efficiency of available algorithms to compute
the inverse of that distribution function.
For the variance-gamma process the use of the gamma-bridge is strongly

recommended for appropriate applications.
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Average rate call options: Times and standard deviations.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets

0
6.7720
(0.0064)
[85.6]

6.0666
(0.0058)
[175.0]

5.7274
(0.0055)
[335.4]

5.5497
(0.0053)
[647.5]

5.4625
(0.0052)
[1277]

5.4075
(0.0052)
[5034]

1
6.7993
(0.029)
[2.4]

6.0290
(0.025)
[3.5]

5.7234
(0.023)
[5.5]

5.5242
(0.025)
[9.3]

5.4830
(0.029)
[17.0]

5.3874
(0.024)
[52.2]

2
6.7635
(0.011)
[4.0]

6.0741
(0.012)
[5.0]

5.7187
(0.014)
[6.9]

5.5208
(0.014)
[10.8]

5.4761
(0.013)
[18.5]

5.376
(0.013)
[54.9]

4
6.7594
(−)
[13.0]

6.0656
(0.0065)
[14.0]

5.7149
(0.0067)
[16.0]

5.5510
(0.0072)
[19.9]

5.4765
(0.0063)
[27.6]

5.3934
(0.0064)
[62.9]

8 −
6.0711
(−)
[33.8]

5.7283
(0.0029)
[35.8]

5.5465
(0.0033)
[39.6]

5.4667
(0.0035)
[47.4]

5.3997
(0.0035)
[83.0]

16 − −
5.7245
(−)
[77.3]

5.5527
(0.0014)
[80.7]

5.4627
(0.0017)
[88.1]

5.4008
(0.0017)
[123.1]

Bench-
mark

6.7626
(−)
[1297]

6.0702
(−)
[3370]

5.7250
(−)
[7638]

− − −

Table 5: Average Rate Call Options: Comparison of Plain and Bridge Monte
Carlo

Average rate call options: Efficiency gains.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets
1 1.7 2.7 3.5 3.1 2.4 4.5
2 7.2 8.2 7.5 8.6 11 15
4 − 10 14 18 32 53
8 − − 34 42 60 134
16 − − − 115 136 383

Table 6: Average Rate Call Options: Efficiency Gains for Bridge Monte Carlo
over Plain Monte Carlo
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Lookback call options: Times and standard deviations.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets

0
13.2481
(0.0097)
[87.7]

13.8007
(0.0095)
[175.7]

14.1696
(0.0094)
[337.3]

14.3828
(0.0093)
[651.7]

14.4969
(0.0093)
[1276]

14.6072
(0.0093)
[5015]

1
13.2416
(0.025)
[2.5]

13.8618
(0.032)
[3.5]

14.1860
(0.028)
[5.5]

14.4244
(0.033)
[9.4]

14.4911
(0.030)
[17.1]

14.5600
(0.030)
[53.3]

2
13.2663
(0.014)
[4.0]

13.7919
(0.017)
[5.0]

14.1576
(0.018)
[7.0]

14.3781
(0.020)
[10.9]

14.5186
(0.023)
[18.5]

14.5955
(0.020)
[54.9]

4
13.2590
(−)
[13.2]

13.8087
(0.011)
[14.3]

14.1568
(0.013)
[16.1]

14.3885
(0.012)
[20.1]

14.4937
(0.012)
[27.8]

14.5973
(0.013)
[63.7]

8 −
13.8129
(−)
[34.4]

14.1729
(0.0073)
[35.9]

14.3947
(0.0066)
[39.6]

14.5176
(0.0075)
[47.3]

14.6003
(0.0094)
[83.6]

16 − −
14.1657
(−)
[77.9]

14.3854
(0.0042)
[80.3]

14.5051
(0.0053)
[88.3]

14.5955
(0.0052)
[124.8]

Bench-
mark

13.2527
(−)
[1330]

13.7994
(−)
[3375]

14.1602
(−)
[7650]

− − −

Table 7: Lookback Call Options: Comparison of Plain and Bridge Monte Carlo

Lookback call options: Efficiency gains.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets
1 5.3 4.4 6.9 5.5 7.2 9.0
3 11 11 13 13 11 20
4 − 9.2 11 20 28 40
8 − − 16 33 42 59
16 − − − 40 45 129

Table 8: Lookback Call Options: Efficiency Gains for Bridge Monte Carlo over
Plain Monte Carlo
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Up-and-In barrier call options: Times and standard deviations.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets

0
7.0347
(0.011)
[85.2]

7.2316
(0.011)
[169.0]

7.3727
(0.011)
[315.4]

7.4765
(0.011)
[597.5]

7.5351
(0.011)
[1157]

7.5851
(0.011)
[4507]

1
7.0094
(0.018)
[2.1]

7.2556
(0.024)
[2.8]

7.4214
(0.028)
[4.1]

7.4392
(0.028)
[6.6]

7.5155
(0.027)
[11.3]

7.5433
(0.027)
[32.5]

2
7.0283
(0.014)
[3.6]

7.2211
(0.019)
[4.4]

7.4261
(0.023)
[5.7]

7.4640
(0.026)
[8.1]

7.5607
(0.024)
[12.8]

7.5608
(0.025)
[34.0]

4
7.0261
(−)
[11.8]

7.2220
(0.014)
[12.6]

7.4015
(0.017)
[13.9]

7.4826
(0.021)
[16.3]

7.5713
(0.018)
[21.0]

7.6147
(0.017)
[42.1]

8 −
7.2255
(−)
[28.0]

7.4021
(0.013)
[29.3]

7.5134
(0.018)
[31.8]

7.5316
(0.014)
[36.4]

7.6206
(0.015)
[57.8]

16 − −
7.3772
(−)
[58.7]

7.4905
(0.008)
[61.1]

7.5456
(0.011)
[65.8]

7.5941
(0.013)
[87.0]

Bench-
mark

7.0268
(−)
[1180]

7.2348
(−)
[2801]

7.3857
(−)
[5860]

− − −

Table 9: Up-and-In Barrier Call Options: Comparison of Plain and Bridge
Monte Carlo. B = 120

Up-and-In barrier call options: Efficiency gains.
K 4 resets 8 resets 16 resets 32 resets 64 resets 256 resets
1 15.2 12.7 11.9 14.0 17.0 23.0
2 14.6 12.9 12.7 13.2 19.0 25.7
4 − 8.3 9.5 10.1 20.6 44.8
8 − − 7.7 7.0 19.6 41.9
16 − − − 18.5 17.6 37.1

Table 10: Up-and-In Barrier Call Options: Efficiency Gains for Bridge Monte
Carlo over Plain Monte Carlo
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