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Abstract 

This paper examines the pricing performance of various discrete-time option models that 

accept the variation of implied volatilities with respect to the strike price and the time-to-

maturity of the option (implied volatility tree models). To this end, data from the S&P 100 

options are employed for the first time. The complex implied volatility trees are compared to 

the standard Cox-Ross-Rubinstein model and the ad-hoc traders model. Various criteria and 

interpolation methods are used to evaluate the performance of the models. The results have 

important implications for the pricing accuracy of the models under scrutiny and their 

implementation. 
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1. Introduction 

There are two general approaches to developing an option-pricing model: the traditional and 

the smile-consistent approach (also termed implied models approach; see Bates, 2003, for a 

survey of the development of the approaches taken in option pricing). In the traditional 

approach, first a stochastic process for the underlying traded/non-traded asset is assumed. 

Then arbitrage/equilibrium arguments are used to develop the option-pricing model. In the 

smile-consistent approach, the market prices of European options are taken as given, and are 

used to infer the process that the underlying asset follows. The derived process is used to price 

and hedge American and exotic options consistently with the market European option prices. 

Models that fall within the first approach include the geometric Brownian motion 

Black-Scholes (1973) model, jump diffusion models (e.g., Merton, 1976, Bates, 1996b), 

stochastic volatility models (e.g., Hull and White, 1987, Heston, 1993), and combinations of 

stochastic volatility and jump processes models (e.g., Bates, 1996a, Scott, 1997). The models 

that are more complex to the Black Scholes (1973) have been developed so as to explain the 

variation of implied volatilities with respect to the strike price and the expiry date (implied 

volatility smiles/skews, term structure of implied volatilities, see e.g., Rubinstein, 1985, 1994, 

and Jackwerth, 1999, for a review of the literature), as well as their dynamics (see e.g., 

Skiadopoulos et al., 1999). However, a number of studies (see e.g., Bakshi et al., 1997, Das 

and Sundaram, 1999, Buraschi and Jackwerth, 2001) have confirmed the anecdotal evidence 

that models falling within the traditional approach cannot account for the empirically 

observed implied volatility smiles, or for their evolution over time. As a response, the ''smile-

consistent'' models have emerged. Models falling within this category may be further 

classified as deterministic and stochastic volatility ''smile-consistent'' models. The former 
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category (see e.g., Derman and Kani, 1994, Rubinstein, 1994, Barle and Cakici, 1995, 

Jackwerth, 1997, among others) assumes that volatility is a deterministic function of the asset 

price and time. The latter assumes that volatility evolves stochastically (see e.g., Dupire, 

1992, Derman and Kani, 1998, Schönbucher, 1999, Skiadopoulos and Hodges, 2001, Britten-

Jones and Neuberger, 2002, Rossi, 2002, Panigirtzoglou and Skiadopoulos, 2004). The 

models are developed in either discrete (deterministic/stochastic implied volatility trees) or 

continuous time (see also Jackwerth, 1999, and Skiadopoulos, 2001, for surveys on the smile-

consistent models). The implementation of the models requires the choice of an interpolation 

method so as to obtain a continuum of implied volatilities across strikes and maturities (see 

e.g., Rubinstein, 1994, Avellaneda et al., 1997). 

Despite the fact that the literature on smile-consistent models is growing fast, the 

empirical performance of these models has not been tested extensively. To the best of our 

knowledge, there are only four papers on the empirical performance of deterministic volatility 

smile-consistent models; the stochastic volatility smile-consistent models have not been tested 

since their implementation is subject to various computational limitations. 

Dumas et al. (1998) used S&P 500 European options data to compare a class of 

''smile-consistent'' deterministic volatility models with the Black-Scholes model (1973), and 

an ad-hoc procedure that smooths the Black-Scholes (1973) implied volatilities across strikes 

and times-to-maturity (ad-hoc model). The models are calibrated to the data on some date and 

the accuracy in terms of pricing European options is assessed for some future date. They 

found that the complex ''smile-consistent'' deterministic volatility models perform no better 

than the ad-hoc procedure in pricing and hedging terms. Hull and Suo�s (2002) study is close 

to the one by Dumas et al. (1998) in that they compare a class of implied deterministic 
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volatility models with the Black-Scholes model as well. However, they test the ability of 

implied models to price exotic options accurately in the presence of model error where the 

data are assumed to be generated by a stochastic volatility process. The process is fitted to 

S&P 500 and foreign currency options, separately, on some date and the performance is 

evaluated for the same date. They find that the implied models are superior to the Black-

Scholes model; the out-performance depends on the type of the exotic option to be priced.  

Lim and Zhi (2001) and Brandt and Wu (2002) have assessed the pricing performance 

of various specific deterministic implied volatility trees using data on the FTSE-100 options 

(see Chriss, 1997, for an excellent description of deterministic implied volatility trees). The 

methodology that is followed in both papers consists of calibrating first the models under 

scrutiny to the market prices of European style options. Then, the calibrated models are used 

to price the American style options. The two studies differ in the sample period, in the models 

employed, in the metrics that they use to assess the models, and in the interpolation methods 

that are applied to obtain the required implied volatilities. In particular, Lim and Zhi (2001) 

have compared the pricing and (delta) hedging performance of the Derman and Kani (1994) 

and Jackwerth (1997) generalized binomial model, and the standard binomial Cox-Ross-

Rubinstein (CRR, 1979) models. Their data set was comprised of daily prices of the FTSE 

100 Index options over the period January�November 1999. A quadratic curve was used to 

describe the variation of implied volatilities as a function of the strike price; the term structure 

was assumed to be linear. The results were mixed depending on the type of option to be 

priced (call or put), the criterion under which the assessment was carried out, and the 

moneyness and the time-to-maturity of the option. In general, in pricing terms, the Derman 

and Kani implied volatility tree was found to perform best for American call options with 
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earlier maturity than the maturity span of the implied trees. On the other hand, the generalized 

binomial tree performed best for American at-the-money put options pricing for any maturity. 

Brandt and Wu (2002) have examined the pricing performance of the Barle and Cakici 

(1995), the CRR, and the ad-hoc models by using daily prices of the FTSE 100 index options 

over the period October 1995�September 1997. To this end, they employed a complex 

functional form (Legendre polynomials) to interpolate the implied volatilities across the strike 

prices and the times-to-maturity. In line with Dumas et al. (1998), they found that the implied 

binomial tree model performs no better than the ad-hoc model. 

This paper adopts the approach taken by Lim and Zhi (2001) and Brandt and Wu 

(2002), and it applies it to a different data set, the liquid Standard & Poor's 100 (S&P 100) 

option data traded in the Chicago Board of Exchange (CBOE). The S&P 100 Index is a 

capitalization-weighted index of 100 stocks from a broad range of industries. Many traders 

regard it as the best gauge for the performance of the US stock market. Given its importance, 

the S&P 100 options data set has been used in a number of studies to examine the properties 

of option models that fall within the traditional approach (see Bates, 1996c, for a detailed 

survey). Surprisingly, this data set has not been used so far for the purposes of evaluating the 

performance of implied models. 

The pricing performance of two deterministic volatility implied trees (Derman and 

Kani, DK, 1994, and Barle and Cakici, BC, 1995) versus the CRR and the ad-hoc models is 

investigated. All four models are very popular among practitioners and this is the primary 

reason that we subject them to investigation. The DK model was one of the first deterministic 

volatility implied trees to be introduced while the BC model was suggested as an improved 

algorithm over the DK model. The CRR model is used as a benchmark for the more complex 
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implied models. The ad-hoc model compromises between the simplicity and a theoretically 

sound structure of an option pricing model so as to be consistent with the empirically 

documented behavior of implied volatilities.  

To perform our study, the models are calibrated to the European market option prices 

and then the American options are priced. Various metrics are employed to assess the relative 

pricing performance of the models. Two different interpolation methods (linear and cubic 

splines) are also used to investigate the effect of the interpolation method on the pricing 

performance of each model. For instance, Brandt and Wu (2002) found that a more complex 

interpolation scheme does not necessarily improve the performance of the model. The results 

have important implications for the pricing accuracy of the models under scrutiny and their 

implementation. 

The remainder of the paper is structured as follows. The implied tree models 

employed are briefly reviewed in Section 2. Section 3 describes the data set and the filtering 

constraints that are applied. Section 4 outlines the methodology and the criteria that are used 

to assess the pricing performance of the various models. The results are presented and 

discussed in Section 5. Section 6 concludes and highlights the implications of the results. 

 

2. Various Binomial Tree Models: Description 

2.1 The Derman and Kani (1994) Implied Tree 

Derman and Kani (DK, 1994) build a recombining implied binomial tree that uses as input the 

market prices of European-style index options across all available strikes and expirations. 

Their algorithm uses forward and backward induction simultaneously to deduce the 
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deterministic volatility structure of the process that the underlying asset follows1. Their model 

has uniformly spaced levels ∆t apart. To construct it, they assume that they have already 

implied the tree's nodes and the transition probabilities out to time level n. The known price 

Si,n at node i and level n can evolve into an ''up'' node with price Si+1,n+1, or into a ''down'' node 

with price Si,n+1 at level (n+1). The (unknown) probability of making a transition into the ''up'' 

node is denoted by pi. The aim is to determine the nodes of the (n+1)th level at time tn+1 and 

the corresponding transition probabilities. 

 The DK model can be expressed formally as follows: The martingale condition delivers 

the forward price Fi,n of the stock expiring at time n+1 as  

 , 1, 1 (1 )i n i i n i i n, 1F p S p S+ + += + −  (1) 
where Fi is given by 
 ( )

, ,
i ir q t

i n i nF S e − ∆=  (2) 
 

and qi, ri are the stock�s dividend yield and the risk-free rate at the ith time step, respectively. 

The notation indicates that we extend the original DK algorithm to take into account a term 

structure of interest rates and dividends (see also Brandt and Wu, 2002, and the discussion 

therein). 

 Let C(Si,n, tn+1) and P(Si,n, tn+1) be the known market prices of a European call and a 

European put option, respectively, struck today at K=Si,n and expiring at tn+1. The values of 

those options can be calculated from interpolating the smile curve implied from options 

expiring at time tn+1 across strikes. The theoretical binomial value of a call option struck at K 

and expiring at tn+1 is given by: 
                                                 
1 Backward and forward induction are the discrete analogues of the Kolmogorov backward and forward 
equations, respectively. The binomial backward equation states that the price at any period n is the discounted 
value of the average of the prices at the two up and down nodes in the next period n+1. The binomial forward is 
the �dual'' or the �adjoint'' of the binomial backward equation. It states that the price of an Arrow-Debreu 
security of any maturity (n+1) is the average of the discounted Arrow-Debreu prices of maturity n that 
correspond to the previous two up and down nodes. 
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where the sum is taken over all nodes j at the (n+1) level and Qj,n is the price at node j of the 

Arrow-Debreu security expiring at tn+1. 

 Setting the strike price K = Si,n, only the up node and all nodes above it contribute to the 

call value. Therefore, by simultaneously solving equations (1) and (3) for Si+1,n+1 and the 

transition probability pi, we obtain formulae that can be written in a general form as follows 

(see Derman and Kani, 1994, for the exact formulae) 

  (4) 1, 1 , 1 , 1 , , ,( , , , ( , ), , , , )i n i n i n n c i n i n i nS f r t S C S t Q S F+ + + += ∆ Σ
 
 , , 1 1, 1( , ,i i n i n i np f F S S+ + +=  (5) 

where . The Arrow-Debreu prices Q, , ,
1

(
n

c j n j n
j i

Q F S
= +

Σ = −∑ )i n

j n

                                                

j,n are calculated by applying 

forward induction. Equations (4) and (5) can be used to find iteratively Si+1,n+1 and pi for all 

the nodes above the center of the tree. This iterative procedure requires knowledge of Si,n+1 at 

one initial node. Centering conditions are used towards this end; the conditions depend on 

whether the number of nodes is even or odd2. 

 Similarly, for all the nodes below the central node at level n the stock prices are calculated 

by using the known market put prices. The analogous formula that determines a lower stock 

price from a known upper one is given by 

  (6) , 1 1, 1 , 1 , ,( , , , ( , ), , , )i n i n i n n p i n i nS f r t S P S t Q F+ + + += ∆ Σ

where  
1

, , ,
1

( )
i

p j n i n
j

Q S F
−

=

Σ = −∑

 
2 Space limitations do not allow us to report the centering conditions. See Derman and Kani (1994) for more 
details. 
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 The transition probability calculated by equation (5) should fall between zero and one. 

However, it may often be the case that the calculated probabilities do not fall within this 

interval (commonly termed as �bad probabilities�); this indicates arbitrage opportunities. In 

this case, Derman and Kani suggest overriding the stock price that yields a bad probability 

and choosing a stock price that keeps the logarithmic spacing between this node and its 

adjacent node the same as that between corresponding nodes at the previous level, i.e. 

. 1, 1 , 1 1, ,ln ln ln lni n i n i n i nS S S+ + + +− = − S

2.2 The Barle and Cakici (1995) Implied Tree 

Barle and Cakici (BC, 1995) note that the DK algorithm fails to reproduce the smile 

accurately in the case where the interest rate is high. The reason is that with higher interest 

rates, negative probabilities are encountered more frequently, thus overriding the 

corresponding stock/option prices. Hence, the constructed tree does not fully incorporate the 

information from the smile. In order to correct for this problem they propose three 

modifications to the DK method3. 

 First, they choose the option to be struck at K=Fi,n. Second, rather than fixing the center of 

the tree at the current stock price as DK do, they allow it to follow the evolution of the mean 

of the risk-neutral distribution by setting it to 1nrtSe + . Third, in the case where there is a 

missing stock price due to the violation of the arbitrage condition, they set 

,
1, 1 2

i n i n
i n

F F
S +

+ +

+
= 1,

                                                

. BC's modifications are equivalent to working with the futures rather 

 

i

3 The transition probabilities calculated from equation (5) can be either negative or greater than one causing 
small errors, which accumulate, and lead to serious discrepancies (i.e. option prices that are negative). In the case 
where , the corresponding transition probability pi, given by equation (5), is between zero and one. 

In the cases where  or , pi is negative or greater than one, respectively.  
1+≤≤ iii SFS

iS F< 1i iF S +>
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than the spot price. In a standard binomial tree this trick guarantees non-negative transition 

probabilities (see Hull, 2003). Despite the proposed modifications, �bad probabilities� may 

still be encountered in the BC tree and hence they should be overridden. This results in losing 

information about the smile at the corresponding nodes. Fortunately, on most occasions the 

bad probabilities occur for far away-from-the-money options that do not trade heavily. 

2.3 The Cox-Ross-Rubinstein (1979) Model 

Cox, Ross, Rubinstein (CRR, 1979) developed the binomial tree that is the discrete-time 

analogue of the Black Scholes (1973) model. The asset price may move either up or down. 

The size of the movement is determined by the time step ∆t that is used to divide the time to 

maturity T into Tn
t

=
∆

 time steps, and by a constant volatility σ. In the limit, as , the 

CRR model converges to the Black Scholes model. For the purposes of our study, the CRR 

model is used as a benchmark for the more complex models that incorporate the variation of 

the implied volatility with respect to the strike. The CRR is built by considering σ to be the 

implied volatility of the at-the-money option with time-to-maturity that corresponds to the one 

of the option to be priced. 

0t∆ →

2.4. The Ad-Hoc (AH) Binomial Tree 

The Ad-hoc model is a modification of the CRR tree (see Hull, 2003, page 336). It has been 

adopted by traders to price American/exotic options by taking into account the variation of the 

implied volatility with respect to the strike and time-to-maturity. The implied volatilities are 

extracted from European options by using the Black-Scholes model. Then, for the option 

contract under scrutiny (i.e. for a specific strike and time-to-maturity) the corresponding 

implied volatility is obtained by interpolating the already constructed implied volatility 

 10



surface. Finally, the interpolated implied volatility is inserted in the CRR model and the 

option is priced. This procedure is ad-hoc because it is internally inconsistent. It uses the Cox-

Ross-Rubinstein binomial tree that assumes constant volatility, but it takes as input the 

implied volatility that depends on the strike and the maturity of the option under scrutiny. 

 

3. The Data Set 

3.1 Source Data 

We use daily data on European and American style options on the Standard & Poor's 100 

(S&P 100) index from the Chicago Board of Exchange Trade (CBOE) for the period August 

15th, 2001 � July 21st, 2003. This data set contains the following daily information for each 

option traded: the expiration date, the strike price, the last bid and ask prices, the trading 

volume, and the S&P 100 closing price. The average of the bid-ask option price is used as the 

option�s market price. This is a standard approach taken to reduce the impact of measurement 

errors on the implied volatilities calculated subsequently, which are necessary to implement 

the models employed (see Figlewski, 1997, for a detailed discussion). 

 The American style options on the S&P 100 (ticker symbol OEX) were the first index 

options introduced in CBOE, on March 11th, 1983. The European style options on the S&P 

100 (ticker symbol XEO) were introduced on August 15th, 2001. The last trading day of the 

OEX and XEO options is the business day (usually a Friday) preceding the expiration date. 

The expiration date is the Saturday following the third Friday of the expiration month. Up to 

four near-term months plus up to one month on the March quarterly cycle are traded every 

day. The strike prices are spaced at intervals of five index points and ten/twenty points for the 

 11



far-term months OEX/XEO options. Both OEX and XEO options are traded from 8:30 a.m-

3.15 p.m. central time (Chicago time). 

 In addition, we use London Euro-currency interest rates (middle rates) on the US dollar 

obtained from Datastream to proxy for the risk-free rate. Daily interest rates for 7-days, one-

month, three months, six months and one year were used, while those for other maturities 

were obtained by linear interpolation. 

3.2 Screening the Data 

The raw data is screened for data errors for the purposes of the subsequent analysis. Options 

with zero trading volume, with less than five trading days to maturity, and less than $0.5 

premium were discarded. For each day, the OEX options with time to maturity that does not 

exceed the maximum time-to-maturity of the XEO options are retained. This is necessary 

since the implied models constructed from European options cannot price American options 

with longer time-to-maturity. 

 The underlying S&P 100 of the OEX and XEO options is a dividend-paying asset. 

Therefore, the dividend yield to be realized over the life of the option is required as an input 

so as to implement the implied volatility tree models. Towards this end, historical data on 

dividends may be used to proxy for the expected future dividend yield. However, this type of 

data is backward-looking and there is no reason to assume that they forecast accurately the 

expected future dividends at the time the option is priced. Hence, following Ait-Sahalia and 

Lo (1998), the implied dividend yield calculated from put-call parity is used as a proxy.  

 For each day t, put-call parity states that 

 ,tr
t tC Ke P S e ,tq

t
τ ττ τ−+ = + −  (7) 
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where τ is the time-to-maturity, Ct and Pt are the European call and put options prices at time t 

with time-to-expiration τ, respectively, St is the spot price of the S&P 100 index on day t, rt,τ is 

the discount rate on trading day t corresponding to maturity τ, K is the strike price of the 

option, and qt,τ is the dividend yield on day t corresponding to time-to-maturity τ. The implied 

dividend yield is obtained from the at-the-money (ATM) market option prices. This is 

because the ATM options have the greatest liquidity and therefore their prices are expected 

not to contain significant measurement errors due to non-synchronous trading. For each day t 

and time-to-maturity τ, the price of the ATM call and put was calculated from the prices of the 

nearest-the-money call and put options by linear interpolation. To perform the linear 

interpolation, at least two call option and two put option should be trading for each maturity 

date. Therefore, maturities not complying with this condition were deleted from the dataset. 

Maturities where negative implied dividend yields were encountered (suggesting the existence 

of arbitrage opportunities) were also deleted. Finally, the standard upper and lower arbitrage 

bounds for the European option prices (Merton, 1973) were checked using the dividend yield 

obtained. 

 To construct the implied trees, the implied volatilities need to be backed out using 

Merton�s (1973) model. Towards this end, only out-of-the-money and at-the-money European 

option prices are used. This is done so as to minimize the effect of measurement errors on the 

implied volatilities calculated; in-the-money options are notoriously illiquid and their prices 

are therefore prone to greater measurement errors (see e.g., Skiadopoulos et al., 1999, Brandt 

and Wu, 2002, and Panigirtzoglou and Skiadopoulos, 2004, for the same practice). 

Furthermore, in-the-money options are redundant due to put-call parity. Figure 1 shows the 

implied volatility surface of the S&P 100 for a representative date, that of April 22nd, 2003; 
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cubic spline interpolation was used to obtain a continuous volatility surface. We can see that 

the Black-Scholes assumption of a flat implied volatility surface is violated; the implied 

volatilities depend on both the strike and the maturity. For any given time-to-maturity, the 

implied volatility decreases as the strike price increases (implied volatility skew). Also, for 

any given strike, the implied volatility increases as the time to maturity increases. Moreover, 

the volatility skew attenuates as the time-to-maturity increases. These results are in 

accordance with those reported in the literature. 

 In summary, the raw data contained 123,608 XEO and 167,250 OEX contracts. Applying 

the above discussed constraints left us with 3,015 XEO and 11,739 OEX contracts. Table 1 

shows the summary statistics for the European (XEO) and American (OEX) style options 

data. The average quoted bid/ask mid-point price, the average bid/ask, and the average 

percentage bid/ask (spread divided by the bid/ask mid-point) are reported. The results are 

classified according to the type of option (call or put), and the maturity class. Short-, medium- 

and long-term refer to options with less than 40 days, with between 40 and 70 days, and with 

more than 70 days to expiration, respectively. 

 

4. Methodology 

4.1 Models and Implementation 

The pricing performance of the DK, BC, CRR, and AH models is compared. At any given 

day, each one of the models is calibrated to the European XEO options for any traded 

maturity; the implied volatility trees were checked that they price the set of input European 

options well within the bid/ask spread. Then, each one of the calibrated models is used to 
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price the available American OEX options in our dataset. The pricing errors are assessed 

using various criteria. 

 Each one of the above four tree models is built using 50 time steps. Since options are 

traded across a discrete set of strike prices and times-to-maturity, an interpolation method 

needs to be chosen. The implied volatilities are interpolated either linearly (denoted with L) or 

using cubic splines (denoted with CS) with respect to the strike price4; for instance, DK-L 

denotes the Derman-Kani model implemented by using linear interpolation. Therefore, for 

any given date and maturity, eight binomial trees are implemented and compared: DK-L, BC-

L, AH-L, CRR-L, DK-CS, AH-CS, and CRR-CS. Following Lim and Zhi (2001), the implied 

volatilities are interpolated linearly with respect to the maturity dimension. This is also 

consistent with the construction of various implied volatility indices (e.g., the method to 

construct the �old� VIX, currently termed VXO, see Whaley, 1993). 

4.2 Assessing the Pricing Performance: Criteria 

Following Brandt and Wu (2002), six measures are used to assess the pricing performance of 

the models employed. These are the following: 

1. The mean valuation error MVE is the average difference between the market and model 

prices. The MVE is positive if the model overprices, and negative if it underprices a set 

of options on average. 

2. The root mean squared valuation error RMSVE is the square-root of the average squared 

difference between the market and model prices. 

3. The frequency in bid/ask FIBA is the frequency the model price falls within the 

observed bid/ask spread. The greater the FIBA, the better the model performs. 

                                                 
4 Cubic splines assume that each segment between the data points is represented as a cubic polynomial. They 
have been commonly used to obtain smooth implied volatility surfaces (see e.g., Bates, 1991). 
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4. The mean outside error MOE is the average error outside of the bid/ask spread. This is 

defined as follows: if the model price is below the bid or above the ask quote, the error 

is defined as the model price minus the bid or ask quote, respectively. If the model price 

is within the bid/ask spread, the error is set to zero. MOE reveals whether the bid/ask 

violations measured by FIBA are symmetric (i.e. the model overprices as much as it 

underprices the options) or whether there are systematic biases in the mispricing relative 

to the bid/ask spread. 

5. The root mean squared outside error RMSOE measures the variability of the errors 

outside the bid/ask spread. 

6. The mean relative outside error MROE is the average outside error divided by the 

market price. It measures the same form of mispricing as MOE but in relative terms. 

 

5. Pricing Performance: Results and Discussion 

5.1 Aggregate Results 

Table 2 shows the results on the comparative pricing performance of the various models in the 

case where the options data are considered across the whole spectrum of maturities and strike 

prices. The Table is structured in three panels: Panel A reports the results across the whole 

data set (calls and puts, aggregate results) and Panels B and C report the results for the call 

and put data, respectively. The results for calls and puts are reported separately because the 

pricing performance of the models may depend on the type of option to be priced. For 

instance, Lim and Zhi (2002) found that the pricing of the American put option is less 

accurate than that of the American call in the case where deterministic implied trees are used. 
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 We can see that in the case where linear interpolation is applied, all models perform quite 

similarly in terms of the MVE, RMSVE, MOE, RMSOE and MROE metrics; the AH model 

presents marginally the best and the CRR model the worst performance. On the other hand, 

under the FIBA metric the AH model outperforms significantly the other models. 

Interestingly, in the case where cubic spline interpolation is applied, the CRR model 

outperforms the other models in all but the FIBA metric where the AH model performs best. 

 However, we can also see that it is preferable to use linear rather than cubic spline 

interpolation; Brandt and Wu (2002) had also found that it is preferable to use simpler 

interpolation schemes. The former yields smaller pricing errors for all models and under 

almost all metrics; this holds especially under the RMSVE and the RMSOE metrics. The poor 

performance of cubic interpolation may be explained by the fact that it yields more 

unacceptable transition probabilities. Therefore, more information has to be excluded 

compared to the case where linear interpolation is used. Finally, the comparison of the DK 

versus the BC model shows that the latter performs marginally better in most of the cases; 

some exceptions appear in the case where call options are considered. This is to be expected 

since the BC model has adopted modifications so as to reduce the occurrence of bad 

probabilities. The results discussed here hold, irrespective of whether one examines the whole 

data set, or the calls and puts separately. 

5.2 Pricing Errors of Individual Models 

In this Section, we focus on the pricing performance of the individual pricing models for 

given moneyness and maturity levels. The results are discussed first with respect to the 

moneyness level, and then with respect to the time-to-maturity. These two dimensions are 

examined separately since they are expected to affect the pricing performance of any pricing 
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model; for instance, in the presence of an implied volatility smile, it is well known that the 

Black-Scholes model underprices away from-the-money options and overprices close-to-the-

money options. Moreover, the Black-Scholes pricing biases are more severe for long maturity 

options (see e.g., Rubinstein, 1985). 

Moneyness Dimension 

Tables 3, 4, 5, and 6 show the behavior of the DK, BC, CRR and AH models with respect to 

the moneyness level, respectively. Call options are regarded in-the-money (ITM) when S/K > 

1.02, at-the-money (ATM) when 0.98 ≤ S/K ≤ 1.02 and out-of-the-money (OTM) when S/K < 

1.02. Put options are characterized ITM when S/K < 0.98, ATM when 0.98 ≤ S/K ≤ 1.02 and 

OTM when S/K > 1.02. The results for the American calls and puts are reported separately 

under each criterion and for each interpolation method.  

We can see that in general, the DK, BC, and AH models (Tables 3, 4, and 6, 

respectively) perform better in the case where linear rather than cubic interpolation is applied. 

Regarding the CRR model (Table 5), we can see that the results on the performance of linear 

versus cubic spline interpolation are mixed. Hence, the discussion of the (absolute values of 

the) results focuses on the linear interpolation case. Moreover, the results depend on the type 

of option (put or call), the moneyness level, and the criterion under which they are assessed. 

This is in line with the implications drawn in Lim and Zhi (2002). 

In particular, regarding the MVE and RMSVE criteria, in the case of the DK, BC, and 

AH models, the most severe mis-pricing occurs for the ITM options while the results improve 

for OTM options. The CRR model performs best for ATM options. These results hold for 

both calls and puts. Regarding the FIBA criterion, in the case of the call options the AH-FIBA 

increases as they get ITM (it exceeds 70%); this is also the case for the implied tree models. 
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In the case of put options, the DK, BC, and AH-FIBA are maximized for ATM options. The 

CRR-FIBA criterion is maximized for ATM call and ITM put options; OTM call and put 

options present a poor CRR-FIBA performance. 

Regarding the MOE metric, the systematic biases relative to the bid-ask spread are 

greatest for ITM options and they decrease as the option gets OTM in the cases where the DK 

and BC models are used. On the other hand, in the case of the CRR model, the MOE reaches 

its maximum value for OTM options. In the case of the AH model, the MOE is maximized for 

OTM calls and ITM puts. The RMSOE is maximized for ITM options and it is minimized for 

OTM options in the case where the DK, CRR, and AH models are used. In the case of the BC 

model, the RMSOE is maximized for ATM calls and ITM puts. Finally, the MROE criterion 

is maximized for OTM and it is minimized for ITM options.  

                                                

Maturity Dimension 

Figure 2 shows the pricing error (model price minus market price) of ITM call and put options 

separately using the DK-CS model with respect to the time-to-maturity. The first row 

corresponds to call options and the second row to put options. The horizontal axis measures 

the ratio S/K and the vertical axis measures the pricing error. We can see that the range of 

pricing errors decreases significantly as the time-to-maturity increases. This is in line with the 

results that have been previously reported in the literature on the behavior of the pricing errors 

incurred by the Black-Scholes model. The results are quite similar for OTM, ATM, and ITM 

options for both interpolation methods and for all pricing models5. Hence, given the space 

limitations no additional figures are reported. 

 
5 This is not the case for the AH-ATM call options; it only holds for AH-ITM calls. Two more exceptions occur. 
The first appears in the BC model: the medium-term options have the narrowest range of valuation error in the 
case where cubic spline interpolation is applied. The second exception occurs for the CRR model where the 
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6. Conclusions 

This paper has been motivated by the extensive literature on smile consistent models and has 

compared the pricing performance of four widely used pricing models. The Derman and Kani 

(DK, 1994) and Barle and Cakici (BC, 1995) deterministic volatility implied binomial trees 

were compared to the standard Cox-Ross-Rubinstein (CRR, 1979) and the traders� ad-hoc 

(AH) implied model. To this end, the S&P 100 options data set was used for the first time. A 

number of criteria were employed to compare the models under investigation. Linear and 

cubic splines were used separately, to obtain a continuum of implied volatilities across strikes. 

The comparative performance of the models was first investigated by using the whole data set 

(aggregate level analysis). Then, the performance of each model was analyzed for given 

maturity and moneyness levels. 

 We found that for any given model and metric, linear interpolation should be preferred to 

cubic spline interpolation since the former yields smaller pricing errors. Focusing on the 

linear interpolation case, on the aggregate level the four models compete closely, with the AH 

model performing better and the CRR model worse. The BC model performs marginally 

better than the DK model despite the additional modifications to the DK that it has adopted. 

Moving on to the pricing performance of each individual model with respect to moneyness, 

we found that the results are mixed depending on the type of option (put or call), and on the 

criterion under which the model is assessed. The evidence is far clearer in the case where the 

performance of each model is evaluated with respect to the time-to-maturity; the pricing 

errors decrease as the time-to-maturity increases. 
                                                                                                                                                         
range of pricing error is smaller for the short-term OTM calls (linear interpolation case) and for the ATM 
medium-term calls (cubic interpolation case). 

 20



 The results of this study have at least three implications. First, the interpolation method 

does affect the pricing performance of the models under investigation. In fact, a more 

complex interpolation method may not necessarily improve the pricing performance of the 

model. This is in line with the results found in Brandt and Wu (2002). Second, the presence of 

implied volatility smiles does not dictate that implied volatility tree models should necessarily 

be used on an aggregate level. Simpler models that lack of a sound theoretical foundation 

such as the ad-hoc model may be used instead without loss of accuracy in pricing terms. This 

is in accordance with the results found in previous studies that compared competing pricing 

models, which found that simpler is better (see e.g., Backshi et al., 1997, and Dumas et al., 

1998, Brandt and Wu, 2002). Finally, the pricing performance of each model depends on the 

metric under which it is assessed, on the type of option to be priced (call or put), its 

moneyness level, and the time-to-maturity. This is in line with the implication drawn from 

Lim and Zhi (2002) who also performed a horse race of implied volatility models and stated 

�the results�indicate that different methods should be used for different applications, and 

some cautions should be exercised�. Future research should investigate the hedging 

performance of implied models for various hedging schemes (e.g., delta, gamma, vega). The 

performance of deterministic volatility implied models versus the more complex stochastic 

volatility implied models should also be studied. In the interests of brevity, these extensions 

are best left for future research. 
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Table 1: Summary Statistics for the European and American style S&P 100 options 

 Maturity    Short Medium Long
 Call Put   Call Put Call Put

Retained Options 
(% of Same Maturity Options) 

1,300 
(89.97%) 

1,439 
(91.66%) 

122 
(8.44%) 

118 
(7.52%) 

23 
(1.59 %) 

13 
(0.83%) 

Average Mean Price 5.405 5.771 8.868 10.582 17.058 30.2 

Average Bid/Ask Spread 0.631 0.641 0.937 1.016 1.524 2.662 

Average % Bid/Ask Spread 0.172 0.157 0.144 0.123 0.137 0.094 

Subtotal (% of Options) 2,739 (90.85%) 240 (7.96%) 36 (1.19%) 

Retained Options 
(% of Same Maturity Options) 

4,588 
(44.44%) 

5,735 
(55.56%) 

590 
(44.46%) 

737 
(55.54%) 

37 
(41.57%) 

52 
(58.43%) 

Average Mean Price 15.491 15.719 13.908 22.079 17.957 29.198 

Average Bid/Ask Spread 0.941 0.902 1.079 1.267 1.307 1.552 

Average % Bid/Ask Spread 0.112 0.110 0.143 0.116 0.095 0.082 

Subtotal (% of Options) 10,323 (87.94%) 1,327 (11.30%) 89 (0.76%) 
 

This Table shows the summary statistics for daily data on European (XOE) and American style (OEX) S&P 100 index options from 
August 15, 2001 to July 21, 2003. For each type of option and maturity class, we report (i) the average quoted bid/ask mid-point price, 
(ii) the average bid/ask spread, and (iii) the average percentage bid/ask spread (spread divided by the bid/ask mid-point). The 
percentage of retained call and put options is also reported within the parentheses. Short, Medium and Long-Term refers to options 
with less than 44 days, with between 44 and 81 days, and with more than 81 days to expiration, respectively. 
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Table 2: Pricing Performance of Derman-Kani (DK), Barle-Cakici, Cox-Ross-
Rubinstein (CRR) & Ad-Hoc (AH) Models 

 
Model MVE RMSVE FIBA (%) MOE RMSOE MROE 

 
Panel A: Aggregate Results 

 
DK-L -0.142 1.215 49.511 0.022 0.943 -0.024 
BC-L -0.140 1.204 49.254 0.023 0.928 -0.025 
AH-L -0.156 1.132 51.287 -0.004 0.854 -0.036 

CRR-L -0.177 1.594 24.430 -0.101 1.254 -0.040 
DK-CS 0.741 8.223 50.480 0.882 8.136 0.160 
BC-CS 1.088 7.639 49.794 1.218 7.519 0.281 
AH-CS 0.960 15.888 59.144 1.134 15.839 0.467 

CRR-CS -0.386 1.610 23.941 -0.254 1.289 -0.070 
 

Panel B: Call Options 
 

DK-L -0.376 0.795 51.370 -0.135 0.569 -0.028 
BC-L -0.372 0.809 51.409 -0.130 0.586 -0.026 
AH-L -0.395 0.687 53.628 -0.162 0.452 -0.044 

CRR-L 0.019 1.334 20.996 0.167 0.924 0.166 
DK-CS 0.552 8.394 52.740 0.763 8.312 0.167 
BC-CS 0.833 7.381 52.547 1.032 7.270 0.335 
AH-CS 0.058 7.947 61.386 0.315 7.905 0.233 

CRR-CS -0.205 1.386 21.459 -0.009 0.988 0.124 
 

Panel C: Put Options 
 

DK-L 0.046 1.440 48.023 0.149 1.142 -0.020 
BC-L 0.045 1.418 47.529 0.144 1.115 -0.023 
AH-L 0.035 1.358 49.413 0.122 1.056 -0.030 

CRR-L -0.033 1.759 27.177 -0.315 1.430 -0.205 
DK-CS 0.892 8.081 48.672 0.978 7.993 0.155 
BC-CS 1.291 7.835 47.591 1.366 7.711 0.238 
AH-CS 1.681 20.065 57.350 1.789 20.016 0.654 

CRR-CS -0.531 1.756 25.927 -0.451 1.457 -0.226 
The models are implemented using linear (L) interpolation (DK-L, BC-L, AH-L, CRR-L) and 
Cubic Spline (CS) interpolation (DK-CS, BC-CS, AH-CS, CRR-CS). We measure the pricing 
errors by (i) the mean valuation error (MVE), (ii) the root mean squared valuation error 
(RMSVE), (iii) the frequency in bid/ask spread (FIBA), (iv) the mean outside error (MOE), 
(v) the root mean squared outside error (RMSOE), and (vi) the mean relative outside error 
(MROE). The pricing performance is examined for the whole data set (call and put options, 
aggregate results), and for the call and put options, separately. 
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Table 3: Pricing Performance of the Derman & Kani (1994) Model 

Moneyness MVE RMSVE FIBA (%) MOE RMSOE MROE 

 L CS L CS L CS L CS L CS L CS 

Panel A: Call Options 

OTM -0.222 0.701 0.668 6.659 36.326 44.444 -0.109 0.743 0.550 6.636 -0.048 0.312

ATM -0.299 -0.108 0.834 6.161 64.896 53.285 -0.138 0.150 0.587 6.096 -0.009 0.003

ITM -0.734 0.793 0.870 12.093 69.385 68.169 -0.184 1.286 0.589 11.912 -0.005 0.019

Panel B: Put Options 

OTM -0.117 0.650 0.813 6.978 41.603 47.274 -0.029 0.693 0.684 6.951 -0.047 0.247

ATM 0.393 0.595 1.428 6.204 62.985 48.921 0.333 0.678 1.188 6.123 0.020 0.035

ITM 0.163 1.636 2.253 10.967 51.789 51.607 0.414 1.820 1.711 10.780 0.010 0.036

We measure the pricing errors by (i) the mean valuation error (MVE), (ii) the root mean 
squared valuation error (RMSVE), (iii) the frequency in bid/ask spread (FIBA), (iv) the mean 
outside error (MOE), (v) the root mean squared outside error (RMSOE), and (vi) the mean 
relative outside error (MROE). OTM, ATM, ITM stand for out-of-the-money, at-the-money, 
and in-the-money, respectively. Call options are regarded ITM when S/K > 1.02, ATM when 
0.98 ≤ S/K ≤ 1.02 and OTM when S/K < 1.02. Put options are characterized ITM when S/K < 
0.98, ATM when 0.98 ≤ S/K ≤ 1.02 and OTM when S/K > 1.02. The pricing errors are 
classified according to their moneyness (OTM, ATM, ITM), their type (Call or Put), and the 
employed interpolation method (linear, L, or cubic spline, CS). 
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Table 4: Pricing Performance of the Barle & Cakici (1995) Model 

 
Moneyness MVE RMSVE FIBA (%) MOE RMSOE MROE 

 L CS L CS L CS L CS L CS L CS 

Panel A: Call Options 

OTM -0.213 1.389 0.703 7.619 36.326 44.968 -0.098 1.421 0.585 7.568 -0.045 0.629

ATM -0.293 0.595 0.855 7.999 64.806 52.115 -0.132 0.844 0.599 7.881 -0.009 0.036

ITM -0.740 -0.045 0.844 6.220 69.599 67.382 -0.188 0.437 0.574 6.036 -0.005 0.010

Panel B: Put Options 

OTM -0.124 1.262 0.763 7.838 41.249 46.510 -0.038 1.298 0.626 7.784 -0.052 0.382

ATM 0.398 1.245 1.389 7.960 62.726 47.627 0.333 1.311 1.149 7.844 0.020 0.066

ITM 0.171 1.390 2.252 7.742 50.819 49.970 0.419 1.558 1.706 7.450 0.010 0.037

We measure the pricing errors by (i) the mean valuation error (MVE), (ii) the root mean 
squared valuation error (RMSVE), (iii) the frequency in bid/ask spread (FIBA), (iv) the mean 
outside error (MOE), (v) the root mean squared outside error (RMSOE), and (vi) the mean 
relative outside error (MROE). OTM, ATM, ITM stand for out-of-the-money, at-the-money, 
and in-the-money, respectively. Call options are regarded ITM when S/K > 1.02, ATM when 
0.98 ≤ S/K ≤ 1.02 and OTM when S/K < 1.02. Put options are characterized ITM when S/K < 
0.98, ATM when 0.98 ≤ S/K ≤ 1.02 and OTM when S/K > 1.02. The pricing errors are 
classified according to their moneyness (OTM, ATM, ITM), their type (Call or Put), and the 
employed interpolation method (linear, L, or cubic spline, CS). 
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Table 5: Pricing Performance of the Cox-Ross-Rubinstein (1979) Model 
 

Moneyness MVE RMSVE FIBA (%) MOE RMSOE MROE 
 L CS L CS L CS L CS L CS L CS 

Panel A: Call Options 

OTM 0.947 0.719 0.687 0.783 6.809 10.587 0.745 0.551 0.614 0.661 0.333 0.261 

ATM -0.244 -0.561 0.843 1.054 49.865 48.515 -0.118 -0.308 0.547 0.813 -0.003 -0.019 

ITM -1.552 -1.697 0.985 1.057 25.179 20.744 -0.711 -0.840 0.857 0.947 -0.020 -0.025 

Panel B: Put Options 

OTM -1.185 -1.340 0.966 1.046 3.790 1.772 -0.978 -1.118 0.863 0.945 -0.376 -0.407 

ATM 0.435 0.105 1.356 1.388 55.824 48.835 0.321 0.157 1.115 1.149 0.018 0.004 

ITM 1.015 0.816 2.217 2.180 59.066 63.554 0.713 0.607 1.786 1.748 0.018 0.015 

We measure the pricing errors by (i) the mean valuation error (MVE), (ii) the root mean 
squared valuation error (RMSVE), (iii) the frequency in bid/ask spread (FIBA), (iv) the mean 
outside error (MOE), (v) the root mean squared outside error (RMSOE), and (vi) the mean 
relative outside error (MROE). OTM, ATM, ITM stand for out-of-the-money, at-the-money, 
and in-the-money, respectively. Call options are regarded ITM when S/K > 1.02, ATM when 
0.98 ≤ S/K ≤ 1.02 and OTM when S/K < 1.02. Put options are characterized ITM when S/K < 
0.98, ATM when 0.98 ≤ S/K ≤ 1.02 and OTM when S/K > 1.02. The pricing errors are 
classified according to their moneyness (OTM, ATM, ITM), their type (Call or Put), and the 
employed interpolation method (linear, L, or cubic spline, CS). 
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Table 6: Pricing Performance of the Ad-hoc Model 

Moneyness  MVE RMSVE FIBA (%) MOE RMSOE MROE 
  L CS L CS L CS L CS L CS L CS 

Panel A: Call Options 

OTM  -0.262 0.417 0.474 6.041 39.469 59.110 -0.151 0.510 0.349 6.025 -0.078 0.462

ATM  -0.271 -0.564 0.762 0.977 66.157 59.586 -0.140 -0.284 0.503 0.777 -0.009 -0.020

ITM  -0.751 -0.134 0.830 12.790 70.744 67.167 -0.201 0.419 0.567 12.708 -0.006 -0.003

Panel B: Put Options 

OTM  -0.146 0.975 0.665 14.419 43.457 60.196 -0.070 1.063 0.527 14.438 -0.064 1.133

ATM  0.426 0.118 1.329 1.371 63.848 55.910 0.327 0.201 1.098 1.128 0.020 0.010

ITM  0.160 4.344 2.194 33.258 52.517 52.032 0.405 4.520 1.649 33.151 0.010 0.042

We measure the pricing errors by (i) the mean valuation error (MVE), (ii) the root mean 
squared valuation error (RMSVE), (iii) the frequency in bid/ask spread (FIBA), (iv) the mean 
outside error (MOE), (v) the root mean squared outside error (RMSOE), and (vi) the mean 
relative outside error (MROE). OTM, ATM, ITM stand for out-of-the-money, at-the-money, 
and in-the-money, respectively. Call options are regarded ITM when S/K > 1.02, ATM when 
0.98 ≤ S/K ≤ 1.02 and OTM when S/K < 1.02. Put options are characterized ITM when S/K < 
0.98, ATM when 0.98 ≤ S/K ≤ 1.02 and OTM when S/K > 1.02. The pricing errors are 
classified according to their moneyness (OTM, ATM, ITM), their type (Call or Put), and the 
employed interpolation method (linear, L, or cubic spline, CS). 
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Figure 1: Implied Volatility Surface obtained from the European Style S&P 100 Options 
(XEO) on April 22nd, 2003. 
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Figure 2: Pricing Errors of in-the-money (ITM) call and put options as a function of the 
moneyness level for various times-to-maturity. Short, Medium and Long-Term refers to 
options with less than 44 days, with between 44 and 81 days, and with more than 81 days to 
expiration, respectively. The options have been priced by the Derman and Kani model using 
cubic splines interpolation (DK-CS). 
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