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Abstract

In this paper three econometric issues related to private-equity return indices, such as real

estate indices, are explored (smoothing, nonsynchronous appraisal, and cross-sectional ag-

gregation). Under certain assumptions, it is found that index returns based on appraisals

follow an ARFIMA(0,d,1) process, where the long memory parameter (d) explains the level

of smoothing and the MA parameter explains the nonsynchronous appraisal problem. The

empirical results show that: 1) the level of smoothing in appraisal based real estate indices

is far less than assumed in many academic studies; 2) nonsynchronous appraisal problem

exists and becomes a more serious problem for higher frequency returns; and, 3) the level of

volatility of real estate securities is higher than that recovered from an appraisal based index

by around 50 percent. We interpret this difference as the level of noise in stock markets.

Key Words: Smoothing, Nonsynchronous Appraisal, Long Memory
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1 Introduction

The reduction in global interest rates and the poor performance of stock markets in recent

years has seen investors turn to less liquid assets in order to maintain yield or support carry

trades. Attention has increasingly focused on asset classes such as commercial real estate,

emerging market bonds and hedge funds. However one difficulty for investors in these markets

is that readily observable measures of performance based on transactions are not generally

available. As an example, indices based on infrequent estimates of market price (appraisals)

are widely used to measure performance in the commercial real estate sector in contrast

to the equity or bond markets, where minute by minute transactions data can be used to

compile real-time performance measures. When current transaction prices for an asset can

not be readily observed it is necessary to infer market values from the evidence available.

In many developed markets there are established procedures for appraising or valuing assets

from limited transaction information.

A number of well known problems exist with use of these appraisal or valuation based

indices, perhaps the most well known problem is that of smoothing. Smoothing helps explain

why such indices exhibit an extreme downward bias in the volatility and thus movements in

the series appear excessively flat or ‘smooth’. This topic has been extensively investigated

in many studies in real estate finance (inter alia Barkham and Geltner 1994, 1995; Geltner,

MacGregor and Schwann, 2003; Cho, Kawaguchi and Shilling, 2003; Bond and Hwang,

2003). However, to our knowledge none of the previous studies in this area explain how

the smoothing level found in an appraisal-based index is related to the smoothing levels of

individual assets. Moreover, the variability of appraisal time points of an individual asset

and how this may distort the underlying return process has not yet been investigated.
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In this paper we investigate three econometric problems associated with appraisal-based

performance indices. In addition to the problem of smoothing discussed above, we also

identify nonsynchronous appraisal and cross-sectional aggregation as potential problems for

appraisal-based indices. Our approach has application in many areas of finance as it may help

to understand other non-transaction based indices such as hedge fund, consumer confidence,

business survey, or market sentiment indices. All of these indices suffer similar econometric

problems to those investigated in this paper though the effects of each of these issues may

differ.

The first issue we explore is the smoothing problem associated with the valuation of

individual assets which form an appraisal-based index. According to the efficient market

hypothesis, decision makers fully update asset prices at the arrival of new information.

However, as argued in behavioral finance (see for instance Mullainathan and Thaler, 2001),

the bounded rationality of human beings could deter a full updating of the market price.1 For

example when an appraisal-based real estate index is compared with its equivalent securitized

(public) price index, the former is noticeably smoother than the latter with much lower

volatility.2

The second issue we discuss is the nonsynchronous appraisal on individual assets. In

financial markets many assets trade infrequently, with few assets trading in such a way that

their price processes can be observed continuously. For example, a price reported for a given

calendar time interval such as day, week or month may not reflect the true underlying price;

the reported price may be the price traded before the reporting time. In this we argue a

1Smoothing is closely related with underreaction in behavioural finance. In finance evidence of underreac-
tions has been reported in many studies such as stock prices (Jegadeesh and Titman, 1993), divesting firms
(Cusatis et al. 1993), stock splits (Desai and Jain, 1997), open-market share repurchases (Ikenberry et al.
1995).

2Some examples of appraisal-based real estate indices are the National Council of Real Estate Investment
Fiduciaries (NCREIF) index in the US or the Investment Property Databank (IPD) index in the UK.
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similar process may occur with the timing and recording of market appraisals. This problem

of nonsynchronous trading (or appraisal) is prevalent in most financial and economic data,

though the seriousness of the problem varies.

The third econometric problem we investigate is cross-sectional aggregation. An index is

constructed by cross-sectionally aggregating its constituents. When individual asset returns

do not follow a specific time series process, aggregation is a simple task. However, cross-

sectionally aggregated processes in the presence of smoothing do not necessarily have the

same characteristics as the constituent assets.

In this study we investigate the effects of these three econometric problems on modelling

asset returns under the assumption that asset returns are log-normally distributed. Using

a simple exponential smoothing process, we first show that asset returns follow an AR(1)

process in the presence of smoothing. The smoothing creates positive autocorrelation and

lowers the volatility of the returns. Our study also shows that when the true asset returns

are infinitely divisible, the reported returns follows an MA(1) process in the presence of

nonsynchronous appraisal. It is found that the MA parameter is negative and the returns

have a larger variance than the true returns. The magnitudes of the negative MA parameter

and the variance of the returns increase with the Sharpe ratio and with the variability of

nonsynchronous appraisals. When the nonsynchronous appraisal process is modelled by a

negative exponential distribution, these results become more clear. The combined effects

of nonsynchronous appraisals and smoothing appear as an ARMA(1,1) process, where the

AR parameter explains the level of smoothing and the MA parameter explains the level of

nonsynchronous appraisal. Finally, we show that an appraisal-based index, which is obtained

by cross-sectionally aggregating individual assets, is far more persistent than the average

3



smoothing level of individual assets. Analytically appraisal-based indices can be modelled

by an ARFIMA(0,d,1) process under the assumption that individual AR parameters follow

the Beta distribution.3 The long memory parameter d approximates the average level of

individual AR parameters better than conventional short memory processes such as an AR(1)

or ARMA(1,1) process.

Using the results, we investigate appraisal-based and securitized real estate indices in

the UK and US. We find that conventional methods to determine the level of smoothing

in an index suggest a much higher level of smoothing than is the case. Estimates from an

ARFIMA(0,d,1) model show that the smoothing levels of calculated for UK and US commer-

cial real estate indices are 0.856 and 0.572 respectively. These estimates are much smaller

than the values suggested by other previous studies. We also find evidence of nonsynchronous

appraisal, which is more prominent in the monthly UK index than in the quarterly US index.

Finally, as an interesting outcome of the methods discussed in this paper we are able

to compare the volatility of the same asset traded in both the public and private markets.

In doing this we can obtain an estimate of the noise associated with stock markets. By

comparing the volatility of returns calculated from the securitized real estate index with that

from the adjusted appraisal-based index we find that the securitized index return volatility

is higher than the adjusted appraisal-based volatility by around 50 percent. We interpret

the difference between the two as an estimate of the noise in equity markets. In other words

30 to 35 percent of monthly and quarterly stock returns are noise. These numbers look

significantly larger than French and Roll (1986) who suggest 4 to 12 percent of daily returns

come from misspricing.

3Simulation results presented in the paper show that even if AR parameters are normally distributed, the
ARFIMA model works well.
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2 An Econometric Investigation of Appraisal-based Perfor-

mance Measures

In this section we analytically investigate three econometric issues related to appraisal-based

indices; these are (1) smoothing, (2) discrepancies between the time an appraisal is conducted

and when the information is recorded (that is nonsynchronous appraisal), and (3) the process

by which appraisals of the individual assets are cross-sectionally aggregated to form an index.

For the data generating process of the individual asset returns we use a widely accepted model

in finance; a mean plus noise process;

rit = µi + σiεit (1)

where rit is the log-return of asset i at time t, εit
iid∼ N(0, 1), and µi and σi are the expected

return and standard deviation of the log-returns per unit time respectively. The log-normality

is equivalent to a geometric Brownian motion in continuous time, which we need to examine

the nonsynchronous appraisal problem.

A The Effects of Smoothing on Asset Returns

There is substantial empirical evidence of momentum in finance. Momentum occurs be-

cause of investors’ underreaction to information; in other words, a degree of smoothing takes

place in the formation of an estimate of value. The problem of smoothing is a particularly

important issue when widely used data are based on non-transaction price estimates such

as appraisals. For example, in real estate markets where appraisal-based indices play an

important role, many different models have been proposed to reverse appraisers’ smooth-
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ing behavior in order to recover market prices (see for example, Geltner, MacGregor and

Schwann, 2003 for a survey on appraisal smoothing).

When appraisers underreact to information, they combine past and current information

during the process of extracting price signals from noise, and tend to lag the true innovations.

A simple but widely used smoothing model assumes that past information affects current

price with an exponentially decreasing weight. When smoothing is present, the innovation

at time t, εit, is not fully reflected at time t, but over time with an exponential rate. When

the rate is φsi, the smoothed return process for asset i, rsit, is

rsit = µi + (1− φsi)σiεsit, (2)

where

εsit = φsiεsit−1 + εit.

In this model, φsi is an AR parameter for the level of smoothing, where 0 ≤ φsi < 1. Note

that 1 − φsi in (2) is necessary to make the sum of the weights on past innovations one so

that asset returns do not under or over reflect the innovations in the long run. The smoothed

process in (2) can be written as

rsit − µi = φsi(rsit−1 − µi) + σsiεit (3)

= φsi(rsit−1 − µi) + (1− φsi)(rit − µi),

where σsi = (1 − φsi)σi. When φsi = 0, there is no smoothing and the return process in

(3) is the same as the data generating process in equation (1). On the other hand, as φsi

becomes larger, the relative weight on the current information (εit) decreases and the past

6



information (εit−1, εit−2, ...) becomes more important in the return process.

The variance and autocorrelation of the smoothed return process are

V ar(rsit) =
(1− φsi)

1 + φsi
σ2i (4)

Cor(rsit, rsit−τ ) = φτsi for τ = 1, 2, ...

The variance of smoothed returns decreases by 1−φsi
1+φsi

times and thus is less volatile than the

true process; i.e., V ar(rsit) < V ar(rit) for 0 ≤ φsi < 1. However, the expected return (µi)

remains unchanged by the smoothing procedure.

When there are two asset returns for the same underlying asset, one smoothed and the

other unsmoothed, then the level of smoothing can be obtained by equating the smoothed

asset’s return volatility to the unsmoothed asset’s return volatility, or simply comparing the

AR parameters of the two asset returns. However, it is not easy to find asset returns free from

smoothing but with the same underlying asset. Returns from securitized markets could be

used as unsmoothed return series, but it is not clear if securitized returns can provide us with

the true volatility since stock markets are well documented to be noisy. In addition, as will

be explained later, the AR parameter from index returns whose constituents are smoothed

should not be used to find an appropriate smoothing level of the constituents since there is

a significant difference between the smoothing level of the index and the smoothing level of

its constituents.

Although the level of smoothing, φsi, is an empirical matter, some studies such as Chat-

field (1978) and Makridakis et al. (1982) suggest a range of 0.3 to 1 as a plausible can-

didate in general. In real estate markets, Brown and Matysiak (1998) show that for 30

randomly-selected individual properties among the Investment Property Databank (IPD)
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index constituents, the values of φsi range from 0.08 to 0.95.4

B The Effects of Nonsynchronous Appraisal on Asset Returns

The next econometric issue we discuss is the nonsynchronous appraisal problem of individual

assets. When an appraiser evaluates an asset whose returns follow the mean plus noise model

in (1), but the appraisal time points change over time, we face a problem that the appraisal-

based price does not reflect the price at the time when it is reported. Nonsynchronous

appraisal is different from smoothing as the former is about the time difference between

appraisal and reporting, while the latter is about how much new information is reflected in

the price when it is updated.

There are two sources of nonsynchronous appraisal. The first one arises when assets are

not valued at the specific time required. For example, a consumer confidence index or market

sentiment index is not constructed by individual evaluations which are carried out at the

same time. Another example is in the construction of a commercial real estate index, such at

the UK IPD monthly index, which states in their index rules that “the values recorded and

included in the computation [of the index] will be as at the end of each month - or no more

than ten working days prior to that date”.5 This implies that the reported estimates of price

at the end of each month may be the estimates made up to ten working days previously.

The second source, which could be more significant, comes from the way appraisers use

information. For example, let us consider the interest rate, an important factor in determin-

ing the discount rate which is used to estimate a market value of an asset based on its cash

4Brown and Matysiak (1998) assume that the smoothing parameter changes over time. This range comes
from 23 time-varying and 7 constant smoothing parameters reported in their study. The ‘smoothing param-
eter’ used in other real estate studies is equivalent to 1− φsi.

5See ”UK Monthly index - Rules for Construction, Computation and Review” of Investment Property
Databank Ltd. We expect similar practice for the National Council of Real Estate Investment Fiduciaries
(NCREIF), which is a US equivalent appraisal based index to the UK IPD index.
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flows. Unless a significant change in interest rates is observed, appraisers might treat small

daily changes in the interest rate as uninformative or simply noise. This heuristic approach

could create a large difference between the time points when asset prices are reported and

when the information appraisers use becomes available. The latter may be far earlier than

the former, and thus reported appraisals may reflect past information well before the time

the appraisal is official reported. This could be a particularly significant problem with the

appraisal of commercial real estate values as often only one appraiser (or firm of appraisers)

provides a price estimate and as this is done without knowing other appraisers price esti-

mates. It is hard to expect that information is fully updated as in securitized markets where

prices are determined by the interplay of a large number of market participants.

The discrepancy between the appraisal time point and the time point when the asset

should be appraised (we call this ‘reporting time’ from now on, which is usually the end of

the unit time) creates the econometric problem of ‘errors in variables’. The effects of the

nonsynchronous trading (or appraisal) problem have been studied since its importance was

first recognized by Fisher (1966). Many studies have investigated the effects on asset pricing

(systematic risk) (see for example, Scholes and Williams, 1977; and Dimson, 1979). Recent

studies such as Lo and Mackinlay (1990) investigate the effects of nonsynchronous trading

on spurious autocorrelations.6 Most of these studies investigate nonsynchronous trading in

a multiperiod framework; i.e., infrequent trading over multiple periods.

To investigate the effects of the nonsynchronous appraisal problem, we follow the method

of Scholes and Williams (1977). Let a nonsynchronous variable, sit, represent the time

difference between appraisal and reporting such that 0 ≤ sit ≤ 1. This implicitly assumes
6See Chapter 3 of Campbell, Lo, and Mackinlay (1997) for a summary of studies on nonsynchronous

trading.
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that appraisers use new information after the last appraisal. When sit = 0 ∀t, there is no

nonsynchronous appraisal problem for asset i, and thus the reported returns represent the

true process in (1). On the other hand when sit = 1, there is no price updating between the

unit time interval t− 1 and t, and the last price estimate is the information used to evaulate

the current price. In our study sit is not allowed to be larger than 1 because assets are

appraised once in a unit time. Since sit can take any value from 0 to 1, the nonsynchronous

appraisal problem we investigate in our study requires underlying asset returns to be infinitely

divisible (or a geometric Brownian motion).

Let rnit be the discrete time returns calculated with reported prices at time t. To examine

the effects of nonsynchronous appraisal on the return process, we derive the mean, variance,

and autocovariance of reported returns, and then investigate what process they follow.

Theorem 1 When asset returns follow a mean plus noise process (an infinitely divisible

process), but are appraised with a non-negative nonsynchronous variable sit which is iid and

not correlated with εit, then the mean, variance, and autocovariance of the appraisal based

returns, rnit, are

E[rnit] = E[1− sit + sit−1]µi (5)

V ar(rnit) = σ2iE(1− sit + sit−1) + µ2iV ar(1− sit + sit−1),

Cov(rnit, rnit−τ ) =


µ2iCov(1− sit + sit−1, 1− sit−1 + sit−2) for τ = 1,

0 for τ > 1.

Proof. See the Appendix.

The result suggests that when the true process follows a random walk, the mean and

variance of appraisal based returns are not the same as those of the true process because of
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the nonsynchronous appraisal problem (which depends on sit). Only when sit is constant, is

the above statistic the same as those of the true process in (1). Even if there is a difference

between appraisal and reporting times, as far as the difference is constant over time, the

nonsynchronous problem does not create ‘errors in variables’. Thus the variability of sit

matters, not the average value of sit.

Theorem 1 shows that the return process in the presence of nonsynchronous appraisal is

autocorrelated only with lag 1. Therefore the underlying process (random walk) becomes a

moving average process with lag 1 (MA(1)). However without an appropriate assumption

on the nonsynchronous variable, sit, it is not easy (delete possible) to further analyze the

effects of nonsynchronous appraisal on the asset return process.

a Modelling Nonsynchronous Appraisal

The statistics in Theorem 1 can be simplified with some additional assumptions on the non-

synchronous variable. In finance information arrival is usually assumed to follow the Poisson

distribution (for example, Easley, Hvidkjaer, and O’Hara, 2002). Then the nonsynchronous

variable, which measures time difference between any two (Poisson distributed) information

arrivals, follows the negative exponential distribution.7

When the nonsynchronous variable sit follows a negative exponential distribution with

mean and variance λi(= E(sit)) and λ2i respectively, the probability density function of sit

is8

f(sit) =
1

λi
exp(−sit

λi
). (6)

7In some cases the arrival time is modelled by the Weibull distribution which inlcudes the negative expo-
nential distribution as a special case. See for instance Dufour and Engle (2000).

8Usually the negative exponential distribution function is expressed in terms of the number of appraisals
during a unit time period. However, since we are interested in the time difference between appraisal and
reporting, we use the distribution function as in equation (6).
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Remark 2 When the nonsynchronous variable sit is iid negative exponentially distributed,

the mean, variance, and autocovariance of the reported returns are

E[rnit] = µi (7)

V ar(rnit) = σ2i + 2µ
2
iλ
2
i ,

Cov(rnit, rnit−τ ) =


−µ2iλ2i for τ = 1,

0 for τ > 1.

Proof. See the Appendix.

Although the expected return is the same as the true expected return, the variance and

autocovariance of reported returns are not. This is similar to the results of Lo and Mackinlay

(1990) in a multiperiod setting, though in our case the nonsynchronous variable is assumed

to be less than or equal to one. The variance increases in the presence of the nonsynchronous

appraisal because of the additional term 2µ2iλ
2
i . The more volatile the appraisal variables,

the larger the variance of the reported returns. The negative autocovariance also becomes

larger when the variability of sit is larger.

The autocorrelation function of the reported returns is

Cor(rnit, rnit−τ ) =


− 1
2+v−2i λ−2i

for τ = 1,

0 for τ > 1,

, (8)

where vi is the Sharpe ratio calculated for total returns rather than excess returns (vi =
µi
σi
).

For a given positive Sharpe ratio we have a negative first order autocorrelation. When the

variability of sit is small, the autocorrelation will be close to zero while for a large variabil-

ity of sit the autocorrelation will approach −0.5, suggesting −0.5 < Cor(rnit, rnit−1) < 0.
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Autocorrelations with lags larger than one, on the other hand, are all zero, a direct result

of assuming that there is one appraisal in a unit of time.9 Therefore, the reported returns

follow a moving average (MA) process in discrete time even if the true asset price follows

the mean plus noise process.

The MA(1) process which shows the variance and covariance structure in (7) is10

rnit − µi = σniεit + θiσniεit−1, (9)

where

θi = − 2v2i λ
2
i

1 + 2v2i λ
2
i +

q
1 + 4v2i λ

2
i

, (10)

σni = σi

s
1

2

·
1 + 2v2i λ

2
i +

q
1 + 4v2i λ

2
i

¸
, (11)

and

V ar(rnit) = σ2i (1 + 2v
2
i λ
2
i ). (12)

The MA(1) process depends on two parameters, v2i and λ2i . The importance of the non-

synchronous appraisal problem will be answered with empirical tests in the next section.

However, it is interesting to see how the MA parameter and the volatility of the returns are

affected by the volatility of the nonsynchronous variable (λ2i ) as well as the Sharpe ratio

(v2i ).

We calculate the values of θi and the volatility ratios (
q

V ar(rnit)
σ2i

=
q
1 + 2v2i λ

2
i ) in

9The result suggests that when we allow the nonsynchronous variable to be larger than 1, we need to
consider higher lags for autocorrelation. Then we have similar results as those of Lo and Mackinlay (1990)
where assets are allowed not to be traded (appraised) for multiperiod and thus the reported process becomes
persistent over multiperiod.
10We only consider the invertible MA process.
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equations (10) and (12) for various values of λ2i and v2i . When the annual Sharpe ratio is

less than one, the MA parameter and the volatility of the MA process increase little by the

nonsynchronous appraisal. Only when a large Sharpe ratio is combined with a large volatility

of the nonsynchronous variable, does the MA coefficient becomes large. In some cases where

the standard deviation of the nonsynchronous variable is 0.7 (or V ar(sit) = λ2i = 0.49) and

the annual Sharpe ratio is 3, then we have θi = −0.222 and the standard deviation of returns

increases by 31.7 percent for the monthly case. The quarterly cases show that the effects

of the nonsynchronous appraisal are even larger; θi = −0.399 and the standard deviation

of returns increases by 79 percent. The difference between the monthly and quarterly cases

comes from the higher Sharpe ratios of the quarterly case. The details of these results are

available from the authors upon request.

The effect of nonsynchronous appraisal on volatility is the opposite to that of smooth-

ing. Smoothing reduces volatility and increases persistence while nonsynchronous appraisal

increases volatility. However, the effects of nonsynchronous trading do not seem to be more

serious than those of smoothing, since we do not expect λ2i and v2i to be excessively large.

C The Combined Effects of Smoothing and Nonsynchronous Appraisal on

Asset Returns

The true mean plus noise process becomes an AR(1) process when there is smoothing or a

MA(1) process when the nonsynchronous appraisal problem exists. In practice, these two

effects are likely to exist together. To find out the form of the process in the presence of

the two econometric problems, we need to note that 1) the exponential smoothing can be

modelled by making error terms follow an AR process as in (2), and 2) nonsynchronous

appraisal can be modelled by making the error terms follow a MA(1) process as in (9).
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These results suggest that we have an ARMA(1,1) process because of the smoothing

and nonsynchronous appraisal. When the error term in the MA(1) process in (9) follows an

AR(1) process, we have

rcit − µi = σni(1 + θiL)(1− φsi)εsit,

εsit = φsiεsit−1 + εit,

where rcit represents asset return at time t in the presence of the smoothing and nonsyn-

chronous appraisal and L is the lag operator. This gives us

rcit − µi = φsi(rcit−1 − µi) + θiσciεit−1 + σciεit, (13)

where σci = (1− φsi)σηi and εit
iid∼ N(0, 1) as in (1).

Note that the AR and MA parameters are the same as those in the smoothed process

of (3) and in the nonsynchronously appraised process of (10) respectively. However, the

volatility (σci) of the error term in the smoothed and nonsynchronously appraised process is

a function of both smoothing and nonsynchronous appraisal;

σci = σi(1− φsi)

s
1

2

·
1 + 2v2i λ

2
i +

q
1 + 4v2i λ

2
i

¸
, (14)

which can be obtained using σηi in (11). The variance of rcit is

V ar(rcit) =
1 + θ2i + 2θiφsi

1− φ2si
σ2ci, (15)

and comparing the variance of true return process in (1) with that we have after the smooth-
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ing and nonsynchronous appraisal in (15) gives

V ar(rcit)

σ2i
=
1

2

(1 + θ2i + 2θiφsi)(1− φsi)

1 + φsi

·
1 + 2v2i λ

2
i +

q
1 + 4v2i λ

2
i

¸
, (16)

which is a nonlinear function of v2i λ
2
i (or θi) and φsi.

Figure 1 shows the ratios of the two variances for various values of θi and φsi.We choose

−0.301 ≤ θi ≤ 0 (or 0 ≤ v2i λ
2
i ≤ 0.653) and 0 ≤ φsi ≤ 0.9. Figure 1 shows that in most cases

V ar(rcit) becomes smaller than σ
2
i , in particular for θi = 0 or large values of φsi. The ratio is

more sensitive to the level of smoothing than the nonsynchronous appraisal, suggesting that

the main component that affects the volatility ratio is the smoothing level. When the level of

smoothing is high, e.g., the AR parameter is 0.8 or 0.9, the ratio becomes less than 0.15. The

ratio is not sensitive to different values of θi especially when φsi is close to 1. However, when

the MA parameter becomes large, i.e., θi ≤ −0.15, the nonsynchronous appraisal increases

volatility significantly.

Another point that arises from the nonsynchronous appraisal is that when we calculate

the smoothing level of appraisal-based property returns, we should not just consider the

autocorrelation with lag 1. Because of a negative MA parameter, the autocorrelation with

lag 1 is likely to be less than it should be. A proper way to calculate the persistence level is

to consider higher lags.

In real estate, for the smoothing levels (0.08 < φsi < 0.95) suggested by Brown and

Matysiak (1998) and the annual Sharpe ratio less than 3, the variance ratio ranges from 0.03

to 1.4. This suggests that the true volatility (standard deviation) is at least 0.85 (= 1.4−1/2)

times or up to 5.77 (= 0.03−1/2) times of the volatility of the smoothed reported monthly

returns.
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D The Effects of Cross-sectional Aggregation of Smoothed and Nonsyn-

chronously Appraised Individual Asset Returns

In this section we investigate what happens when N individual assets are cross-sectionally

aggregated to construct an index. For instance, the IPD index consists of thousands of

individual UK properties, each of which is appraised once at the end of a month. The

investigation in this section also provides an analytical explanation for why the smoothing

levels of individual properties are significantly lower than those of an index.

Our analysis so far showed that a simple mean plus noise model becomes an ARMA(1,1)

process after smoothing and nonsynchronous appraisal. With N such assets in the market,

an index is constructed by aggregating these N ARMA(1,1) processes. Applying the result

of Lippi and Forni (1990), we have an ARMA(p, q) process for the index where p ≤ N and

q ≤ N .11 However, it cannot be an realistic option to allow thousands of AR and MA

components for index returns.

To investigate the effects of cross-sectional aggregation in detail, we decompose the error

term in (1) into two components; an idiosyncratic error, ηit, and a market-wide common

factor, �t. Let these two components be independent of each other and over time; E(ηit�t) = 0,

ηit ∼ iid(0, σ2η), and �t ∼ iid(0, σ2�) such that

σiεit = βi�t + ηit, and

σ2i = β2iσ
2
� + σ2η,

where βi is the coefficient which represents asset i’s sensitivity to the factor �t. The de-

11In general, Lippi and Forni (1990) show that when ARMA(m1,n1) and ARMA(m2,n2) are aggregated,
we have ARMA(m,n) where m ≤ m1 +m2 and n ≤ max(m1 + n2,m2 + n1).
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composition of the error term into an idiosyncratic error and a market-wide common factor

can be better understood with linear factor models. An idiosyncratic error is asset specific

whereas market-wide common factors include macroeconomic factors, regions or other per-

sistent features. One factor is assumed in our study for simplicity. We do not need a specific

assumption on βi, but for any asset which reacts positively to any positive news, we expect

βi > 0 and thus assume E[βi] > 0 without loss of generality. Then we have

rcit − µi = φsi(rcit−1 − µi) + θi
σci
σi
(βi�t−1 + ηit−1) +

σci
σi
(βi�t + ηit). (17)

The process obtained by cross-sectionally aggregating N ARMA(1,1) return processes is

rmt − µm =
∞X
τ=0

Ec

£
φτsi(θi�

∗
it−1−τ + �∗it−τ )

¤
(18)

as N →∞, where

�∗it−τ =
σci
σi

βi�t−τ

= (1− φsi)

s
1

2

·
1 + 2v2i λ

2
i +

q
1 + 4v2i λ

2
i

¸
βi�t−τ ,

and Ec(.) represents cross-sectional expectation. See the Appendix for proof.

The smoothing level of an index and the average smoothing level of its constituents are

not the same and Gourieroux and Monfort (1997) show the following relationship between

them.

Remark 3 For 0 < φsi < 1 ∀i, the aggregated process, rmt, is more smooth than the average

smoothing level of the individual assets.
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Proof. See page 444, Gourieroux and Monfort (1997) for proof.

Remark 2 shows that any survey or appraisal based index which is constructed by cross-

sectionally aggregating individual evaluations which suffer smoothing problem could result

in a higher level of smoothing than the average smoothing level suggests. This explains why

there is a significant difference in the smoothing levels reported by Brown and Matysiak

(1998) between the 30 individual properties and their portfolio returns.

Although Remark 2 shows that the aggregated series is more smooth than the average

level of individual series, further analytical analysis is not possible without additional as-

sumptions on φsi. In the next subsection we use Monte Carlo simulations to show how much

the smoothing level of the aggregated series is affected by cross-sectional aggregation.

One simple analytical solution for the process in (18) is to assume the Beta distribution

for φsi. Using the same method as in Granger (1980), when φsi is generated by the Beta

distribution, we have a long memory (fractionally integrated) process from the cross-sectional

aggregation of AR(1) processes.12 More generally, we have an autoregressive fractionally

integrated moving average (ARFIMA) (0,d,q) process by aggregating ARMA(1,q) processes.

Theorem 4 Consider the following ARMA(1,q) process of xit;

xit = ψixit−1 + θiqξt−q + θiq−1ξt−q+1+, ...,+ξt, i = 1, 2, ..., N

where ψi and θiq are independent for all i and q, and ξt ∼ iid(0, 1).When ψi follows

Beta(d, 1 − d) distribution with 0 < ψi < 1 ∀i, the cross-sectionally aggregated process
12Studies on cross-sectionally aggregated variables can be found in econometrics literature. Zaffaroni (2004)

uses a more general semiparametric distribution to show how cross-sectional aggregation can lead to long
memory. He also suggests some conditions in addition to Granger (1980), which should be satisfied for
cross-sectionally aggregated AR process to follow a long memory process.
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follows an ARFIMA(0,d,q) process;13

(1− L)dEc(xit) = Ec(θiq)ξt−q +Ec(θiq−1)ξt−q+1+, ...,+ξt. (19)

Proof. See Appendix for proof.

When we apply the above result to equation (18), we have the following ARFIMA(0,d,1)

process;

(1− L)d(rmt − µm) = θ�∗t−1 + �∗t , (20)

where θ = Ec(θi), d = Ec(φsi) and �∗t = Ec[�
∗
it].

Therefore, with some further assumptions an index return process whose constituents

suffer the smoothing and nonsynchronous appraisal problems follows a long memory process

whose properties are summarized by an autocorrelation function with a hyperbolic decay rate.

When the individual AR parameters follow the Beta distribution, we can directly estimate the

average smoothing level and its variance from the ARFIMA(0,d,1) process since d = Ec(φsi)

and V arc(φsi) =
d(1−d)
2 . Therefore estimating d for an index return series is an alternative

way of obtaining the average smoothing level of individual processes. In addition, in our

setting the MA parameter still explains the average level of the nonsynchronous appraisals.

Therefore we can investigate the effects of nonsynchronous appraisal separately from those

of smoothing for any appraisal based index.

a Monte Carlo Simulations

We showed that when individual ARMA(1,1) processes with positive AR parameters are

cross-sectionally aggregated, the aggregated process becomes far more persistent. In this

13To be more strict, ψi should be large with large variance for a long memory process. See Zaffaroni (2004).
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section we use Monte Carlo simulations to examine the increase in persistence for an aggre-

gated time series. In addition, we also evaluate whether or not long memory processes are

appropriate for the aggregated process. In the simulations we compare the normal distribu-

tion with the Beta distribution for AR parameters. Alternative distributions could be used,

but the normal distribution is by far the most common distribution.

We first generate 1000 series each of which follows a mean zero ARMA(1,1) process.

AR parameters are assumed to follow either the normal or Beta distribution, while MA

parameters are drawn from the normal distribution with standard deviation of 0.1.14 We

allow several different standard deviations for the AR parameters (σφ), i.e., 0.1, 0.15, 0.2,

0.25, 0.3, 0.35, but to save space we only report the cases of 0.15 and 0.25. When AR

parameters are assumed to be normal, some parameters are outside the range of 0 ≤ φsi < 1.

Since smoothing implies a positive value of φsi and Remark 2 and Theorem 2 hold when

AR parameters lie between 0 and 1, we truncate the AR parameter values that are less than

0 to 0 and larger than 1 to 1.15 Likewise positive MA parameters are truncated to 0. We

generate 200 observations for each series, the number of which is similar to that of the UK

monthly appraisal based index returns we use in the next section. These 1000 individual

ARMA(1,1) series are then cross-sectionally aggregated to construct one single series which

has 200 observations. Then we estimate ARMA(1,1) and ARFIMA(0,d,1) models for the

aggregated series.16 The generating and estimating procedure is repeated 1000 times and

14We also used different standard deviations for MA parameters, but the results are not significantly
different from those in Table 1.
15When the average levels of AR parameters are close to 0 or 1, there are many cases that individual

AR parameters lie outside the range between 0 and 1. Thus the average level of AR parameters after the
truncation is slightly higher when the average level of AR parameters is close to 0 while it is slightly lower
when the average level of AR parameters is close to 1.
16There are several issues in estimating ARFIMA models. When sample sizes are more than 150 and

d>0, there is little difference between the time domain and frequency domain ML estimates. Both of these
estimates perform well. See Cheung and Diebold (1994) for example. Thus to reduce calculation time we use
frequency domain ML estimation as in Hwang (2000). For a recent study that compares various estimation
methods for ARFIMA(0,d,1) models, see Nielsen and Frederiksen (2004). The purpose of our study is neither
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the results are summarized in Table 1.

We first discuss the estimates of ARMA(1,1) models for the aggregated series. As ex-

pected when ARMA(1,1) models are used for the aggregated series, the AR estimates are

significantly larger than the average level of individual AR parameters. For example when the

average level of AR parameters is 0.595, the estimates of AR parameters for the aggregated

series are over 0.95 with σφ=0.25 and 0.83 with σφ=0.15 when AR parameters are normally

distributed, and 0.95 when they are Beta distributed. In general the cases of the Beta dis-

tribution show far more persistence in aggregated level. The second result is that estimated

MA parameters are significantly downward biased. For example when θi ∼ N(−0.1, 0.12)

and φsi ∼ N(0.6, 0.252), the average value of bθis is -0.395. These biases tend to decrease
with the level of AR parameters, but they are still large for large AR parameters.

Therefore, the large significant upward tendency in the AR estimates and downward

biases in the MA estimates clearly show the inadequate consequences of using misspecified

ARMA(1,1) models for an aggregated series. The level of smoothing of individual assets

estimated from an appraisal based index is significantly inflated with these short memory

processes. However, when the dispersion of individual AR parameters (variance of φsis) is

close to zero, the difference between the smoothing level measured with ARMA(1,1) models

and the average smoothing level of individual AR parameters becomes smaller (not reported).

The high level of smoothing of aggregated series comes from a large disperse of individual

AR parameters, which confirms the results of Zaffaroni (2004).

We next estimate long memory models, ARFIMA(0,d,1), for the aggregated series. Table

1 shows that the upward tendency of bd of ARFIMA(0,d,1) models is not as large as that of
to introduce unbiased estimator nor to compare different estimation methods, and thus we do not discuss
about these econometric issues further in this study.
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AR estimates of ARMA(1,1) models. In fact when φsis are small or the standard deviation

of φsis is small, bds tend to be less than the average levels of φsis. However, the differences are
relatively smaller than those of ARMA(1,1) models. On the other hand with φsis from the

Beta distribution, bds of ARFIMA(0,d,1) models are significantly upward biased. Although
our arguments for long memory processes is based on the Beta distribution for φsis, the

simulation results show that bds are seriously larger than the average level of φsis.
The estimates of the MA parameters show significant upward bias when φsis are drawn

from the normal distribution. The bias is more severe when σφ is small (Panel B). However,

when φsis are drawn from the Beta distribution, we observe negative biases in the estimates

of MA parameters though the biases become trivial for large φsis.

The simulation results support that the aggregated series becomes by far more persistent

and ARMA(1,1) models are not appropriate for the aggregated series. The results also

suggest that it is highly likely that we overestimate the smoothing of an appraisal based

index returns when using an ARMA(1,1) model for appraisal based index returns. Although

ARFIMA(0,d,1) models are based on the rather unintuitive assumption that AR parameters

follow the Beta distribution, the simulation results support ARFIMA(0,d,1) models, even

more strongly when AR parameters follow the normal distribution. For the purpose of

filtering out the average level of AR and MA parameters from an aggregated series, the

overall performance of ARFIMA(0,d,1) models are better than ARMA(1,1) models.

It is important to note that the simulation results depend on the probability density

function assumed for the AR parameters. For the two distributions we used for the individual

AR parameters, we find that the estimates of d could provide useful information for the

average level of individual AR parameters, in particular when φsis are dispersed and large
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as in Panel A. The question is what is the level of dispersion of individual AR parameters

in practice. For the real estate properties Brown and Matysiak’s (1998) study reports that

individual φsis are widely dispersed from 0.08 to 0.95. Therefore, without further information

on the distribution on individual AR parameters we use ARFIMA(0,d,1) models for the

aggregated series with σφ = 0.25 as in Panel A.

3 An Application to the Real Estate Index Returns

We apply the analytical results in the previous section to investigate appraisal based real

estate indices in the UK (IPD) and US (NCREIF), and the difference between these indices

and their equivalent private market indices such as FTSE Real Estate and NAREIT indices

respectively.

A Data

We use the IPD index and its equivalent FTSE Real Estate (FTR from now on) index for a

total number of 192 monthly log-returns from January 1988 to December 2003. The FTSE

All-Share (FTA from now on) index is also used for comparison purpose. Table 2A reports

some basic properties of these three index log-returns. As expected, the IPD index returns

display a far smaller volatility than the FTR index returns. One other clear difference is that

the IPD index returns are highly persistent; autocorrelation of the IPD index returns decays

very slowly. We examine if the IPD returns have a unit root using an augmented Dickey-

Fuller test. The result rejects a unit root for the IPD returns at the usual 5% significance

level, but not at the 1% significance level. Therefore the test does not provide a decisive

conclusion as in FTR or FTA index returns.
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The properties of the FTR and FTA returns have similar characteristics; high volatility,

negative skewness, and little autocorrelation. These basic statistics suggest that the FTR

is related more to the FTA than to the IPD. Direct comparison between the three indices

can be found in the estimated cross-correlation coefficients. The FTR and FTA are highly

correlated, while the IPD is far less correlated with these two securitized indices. Although

the IPD and FTR indices represent the same underlying real estate, the two show little

similarity.

Direct comparison between FTR and IPD however has some problems. Firms in the

public markets are leveraged and liable to corporate tax while the appraisal based IPD

index is not. We use a similar method to Geltner (1993), Fisher, Geltner and Webb (1994),

and Barkham and Geltner (1995) to obtain an leverage-free and tax-free index from the

FTR. From the weighted average cost of capital, the return on the unlevered and untaxed

property, rumt, can be obtained with

rumt =
Et

Vt

rlmt

1− tc
+

Dt

Vt
rDt, (21)

where rlmt is the return on the levered and taxed firms at time t, rDt is the return on debt

at time t, tc is the corporate tax rate, Dt and Et are total debt and shareholders’ equity

respectively, and Vt = Dt + Et. Note that the returns in the equity market need to be

‘untaxed’ by dividing rlmt by 1 − tc. Using total debt for Dt, market value of equities for

Et, the UK corporate bond yield for rDt, the FTR index returns for rlmt, and assuming 30

percent corporate tax, we recover unlevered untaxed property index returns and report the

statistical properties of these returns in Table 2A. The unlevered untaxed property index

(from now on we call it FTRU) returns show little difference from those of the FTR returns,
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except for a few interesting differences; 1) the volatility of the FTRU decreases, and 2) the

average return of the FTRU is close to that of the IPD index. Figure 2A shows that although

the average return of the FTRU is similar to that of the IPD, the level of the FTRU at the

end of 2003 is slightly lower than the IPD because of the high volatility of the FTRU returns.

However, there are still significant differences in the volatility and correlation between FTRU

and IPD. Thus leverage and tax do not explain the difference between the appraisal based

index and the security market index.

For the US real estate market, we use 104 quarterly log-returns of NCREIF, NAREIT,

unlevered NAREIT, and CRSP value weighted index returns for the period of the first

quarter of 1978 to the fourth quarter of 2003. The basic statistical properties in Table 2B

show similar attributes as those of the UK cases. The securitized index returns are closer

to normality than the appraisal based index returns. This tendency towards normality of

NAREIT can be explained by the central limit theorem for the low frequency (quarterly)

returns. Other characteristics - the high persistence and the possibility of nonstationarity

of the NCREIF index returns, and a higher correlation between NAREIT and CRSP index

returns - are similar to those of the UK market. Augmented Dickey-Fuller tests show that

the NCREIF index returns are non-stationary at conventional 5% significance level.

We calculate the unlevered NAREIT index returns using equation (21) with tc = 0 (there

is no tax on REITs in the US under certain tax regulations). We use the US corporate bond

yield (Moodys AAA) for rDt, market value of equities for Et, and the total debt for Dt.

Again the unlevered NAREIT index (from now on we call it NAREITU) returns show a

significant drop in volatility. The average return of the NAREITU is also smaller than the

NAREIT, suggesting that leverage increases average returns as well as volatility in the US
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market. These results in the UK and US markets are in line with the results Barkham and

Geltner (1995).

Figures 2A and 2B shows that appraisal based index returns are smoother and less volatile

than the equity market index returns. In the US market, it is the NCREIF index that

performs worse than the NAREIT index while in the UK it is the FTR index that performs

worse than the IPD index. In the US market, the decreased volatility and average return of

the NAREITU result in a large cumulative difference in the NAREIT and NAREITU at the

end of our sample period.

B Evidence of Smoothing and Nonsynchronous Appraisal

a Estimation Methods

We estimate AR(1), ARMA(1,1) and ARFIMA(0, d, 1) models for the securitized and ap-

praisal based index returns. The popular AR(1) and ARMA(1,1) models are used to compare

their results with those of ARFIMA(0,d,1) models. We use the exact time domain maximum

likelihood (ML) estimation method of Sowell (1992).17

Estimating ARMA models is straightforward whereas estimating ARFIMA models is not

so simple. The confusion between short and long memory processes is well documented in

empirical tests, especially in small samples, and most econometric tests are not powerful

enough to differentiate these two in finite samples. For example, Agiakloglou, Newbold

and Wohar (1993) and Agiakloglou and Newbold (1993) show that it is difficult to detect

the existence of long memory in the presence of AR or MA processes. Therefore unless a

17We use Ox version 3.30 (see Doornik, 2002) and the ARFIMA package version 1.00 (Doornik and Ooms,
1999) for the exact time domain ML estimates. Because of the possible nonstationarity of the appraisal based
index returns (see Table 2), the appraisal based index returns are differenced again for the estimation of
ARFIMA models.
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well specified model is used for ARFIMA models, inserting short and long memory param-

eters could cause a serious bias in long memory parameters. From this reason we focus on

ARFIMA(0, d, 1) models rather than including arbitrary numbers of AR and MA lags.

Another important characteristic of appraisal based index returns such as IPD and

NCREIF is that they show seasonal patterns. Using autocorrelations of residuals from the

estimated ARFIMA(0, d, 1) models and other model selection criteria such as ML, AIC and

BIC, we include AR(3) and AR(4) for the IPD and NCREIF respectively. There are seasonal

movements every three months (or quarterly patterns) for the monthly IPD while for the

quarterly NCREIF we have seasonal movements every four quarters (or annual patterns).

b Securitized Returns

Panel A of Tables 3A and 3B show the estimates of AR(1), ARMA(1,1), and ARFIMA(0,d,0)

models for the FTR and the NAREIT returns. We find no evidence of long memory in

these securitized index returns. In addition, the estimated AR and MA parameters are not

significant. When individual equity returns in securitized markets follow an AR(1) process

because of momentum, the cross-sectionally aggregated returns (index returns) will follow

an ARMA(p,q) process or a long memory process. No evidence of a short or long memory

suggests that individual equities’ AR parameters are not significantly different from zero on

average or could be positive or negative because of momentum or contrarian effects.

For the securitized index returns we select the mean plus noise model, and conclude that

smoothing and nonsynchronous appraisal do not exist in securitized markets. These results

are not different for those in the FTRU and NAREITU in Panel B of Tables 3A and 3B.
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c Level of Smoothing

Panel C of Tables 3A and 3B show that our theoretical ARFIMA(0,d,1) models are selected

rather than the widely used AR(1) or ARMA(1,1) models (short memory processes) for the

appraisal based index returns. In addition, as reported in the simulations in the previous

section, the estimates of AR(1), ARMA(1,1) and ARFIMA(0,d,1) models for the appraisal

based index returns show that AR parameters are much higher than long memory parameters

in both UK and US markets. The large AR parameters are not different from those reported

in previous studies such as Barkham and Geltner (1994).

However, the average level of smoothing approximated by the estimates of the long mem-

ory parameter is 0.572 for the NCREIF index and 0.856 for the IPD index. The differences

between bφ of the ARMA(1,1) model and bd are at least 0.36 for the quarterly NCREIF returns
and 0.09 for the monthly IPD returns, suggesting that the index returns are far more per-

sistent than the average level of smoothing of individual properties. Therefore, studies such

as Barkham and Geltner (1994) which implicitly assume that the smoothing level estimated

from an appraisal based index represents the average smoothing level of individual properties,

lead to a serious upward bias in the average smoothing level of individual properties.

The smoothing level of the monthly IPD returns (0.856) is higher than that of the quar-

terly NCREIF returns (0.572). This could be attributed to the difference between the two

countries. However, this can also be interpreted that smoothing may be less serious in lower

frequency data (i.e., quarterly returns). In general temporal aggregation does not affect

the long memory parameter (see Hwang, 2000). Therefore the reason why we observe a

smaller long memory parameter for low frequency data is that the long memory parameter

in our study represents the average level of AR parameters which decrease with frequency
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of returns.

In terms of stationarity of appraisal based index returns, we are not conclusive. The

estimates of d show that the IPD returns are nonstationary (since bd is larger than 0.5 at the
5% significance level) while we do not reject stationarity for the NCREIF returns (bd is not
significantly different from 0.5 at the 5% significance level). These are opposite results to

those of the Dickey-Fuller test in Table 2.

When individual AR parameters are large and dispersed, there are many cases where

individual φsis are close to 1. For example, for the cases in Panel A of Table 1 the mass near

one increases with the average level of AR parameters. Therefore for the IPD index, where

d is much larger than that of the NCREIF index, has many individual properties where the

appraisals are not updated with new information as quickly as the NCREIF, resulting in

‘stale appraisal’.18

d Nonsynchronous Appraisal

From the estimates of ARFIMA(0,d,1) models we find that the MA estimates are negative,

i.e., −0.193 and −0.111 in the UK and US markets, though neither of them are significant.

However, the simulation results in Panel A of Table 1 indicate that these estimates are

positively biased by 0.05 to 0.1, and the insignificance of the MA estimates could be affected

by the upward bias in the MA estimates. Thus the real values are likely to be around

−0.25 and −0.2 on average for the IPD and NCREIF index returns. On the other hand,

the MA estimates are large, negative and significant in the ARMA(1,1) models. However,

the simulation results in Table 1 show that these are significantly negatively biased. In fact

using the simulation results and the MA estimates from ARMA(1,1) models we arrive at

18The argument for the existence of stale appraisal is more clear with the Beta distribution. The result
relating to the Beta distribution can be obtained from authors upon request.
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similar levels of the MA estimates as those suggested above.

The large negative MA estimates suggest that the nonsynchronous variable (sit) is highly

volatile. In particular for a given annual Sharpe ratio and volatility of the nonsynchronous

variable we expect larger MA parameters for the quarterly index returns. However, it is the

monthly index which suffers greater nonsynchronous appraisal problems when the country

difference is disregarded.

This is because a time difference between the appraisal time point (or information arrival

time point) and the time point when the asset should be appraised becomes smaller for lower

frequency. For example, the value of the nonsynchronous variable for 10 days difference in a

month is 1/3 while the same 10 days in a quarter is only 1/9 when we assume that there are

30 days in a month. Therefore ceteris paribus, the standard deviation of the nonsynchronous

variable for quarterly data will be λ/3, where λ is the standard deviation of nonsynchronous

variable for monthly data. Because of the nonlinear relationship between the MA coefficient

and the nonsynchronous variable in equation (10), we cannot directly compare the UK

and US nonsynchronous effects. However it is clear that the monthly index suffers more

nonsynchronous appraisal problems.

4 How Noisy Are Stock Markets?

Our analytical results make it possible to investigate an interesting issue in finance; the

level of noise in stock markets. Many studies in real estate investigate the smoothing level

of appraisal-based real estate index by matching the appraisal-based index return volatility

to the securitized market index return volatility. However this method is appropriate only

when the securitized market index return volatility represents the true volatility. It is now
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commonly accepted that financial asset prices are noisy and deviate from fundamentals. For

example Black (1986) emphasizes the role of noise in financial markets, while De Long at

el. (1990) show that equilibrium prices are influenced by noise traders. However, very few

suggest how much noise involved in asset returns. Note that calculating the absolute level of

volatility for individual asset returns is not possible in our model because of the idiosyncratic

error and βi, which are unknown.

A Unsmoothed Appraisal Based Index Return Volatilities with AR(1)

Models

We first calculate the level of volatility of real estate index returns by applying the most

widely used unsmoothing method in the real estate finance literature. This method entails

applying an AR(1) filter to the appraisal-based index disregarding the nonsynchronous ap-

praisal problem and the cross-sectional aggregation effects. The obtained AR parameters

are then used to unsmooth the appraisal based index returns by applying the estimated AR

model to the series and then taking the residuals (or the scaled residuals) to represent the

true return process.

Using a over-bar for an average value calculated from the estimates in Table 2, the vari-

ance ratios (V ar(rcit)V ar(rit)
) for the NCREIF and the IPD indices are 0.194 and 0.055 respectively

(see equation (4)). The unsmoothed standard deviations are calculated as 2.27 (=0.194−1/2)

and 4.24 (=0.055−1/2) times larger than those of the NCREIF and IPD index returns re-

spectively. Therefore we have standard deviations of 3.76 for the NCREIF and 3.53 for

the IPD, which are significantly larger than the volatilities of the NCREIF and IPD index

returns reported in Table 2. Figures 2A and 2B show that the unsmoothed indices with

AR(1) models are far more volatile than the equivalent appraisal based indices. However
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these reconstructed standard deviations are likely to be significantly upward biased since the

AR parameters are seriously upward biased from the cross-sectional aggregation.

B Unsmoothed Appraisal Based Index Return Volatilities with ARFIMA(0,d,1)

Models

We next calculate volatility considering the nonsynchronous appraisal and cross-sectional

aggregation problems. Using the estimates of the ARFIMA(0,d,1) model in equations (14)

and (16), we calculate the average ratio of the smoothed nonsynchronously appraised return

volatility to the true volatility.

Using a over-bar for an average value calculated from the estimates in Table 2, we have

V ar(rcit)
V ar(rit)

= 0.345 and σci
σi
= 0.535 for the NAREIT index, since bd = 0.572 (or φsi = 0.572)

and v2i λ
2
i = 0.311 from bθ = −0.2 (see equation (10)). On the other hand, for the IPD

index, we have V ar(rcit)
V ar(rit)

= 0.088 and σci
σi
= 0.192 using bd = 0.856 (or φsi = 0.856) and

v2i λ
2
i = 0.443 from

bθ = −0.25. These results suggest that for the individual property returns
the true standard deviations are on average 1.70 (=0.345−1/2) and 3.37 (=0.088−1/2) times

larger than the standard deviations we obtain with appraisal based individual returns for

the NCREIF and the IPD respectively.

Applying these multipliers to the standard deviation of appraisal based index returns

in Table 2, we have standard deviations of 2.82 for the NCREIF returns and 2.80 for the

IPD returns. The reconstructed standard deviation of the NCREIF returns is 42.7 percent

of the NAREIT returns. For the IPD the reconstructed standard deviation of returns is

50.7 percent of the standard deviation of the FTR returns. Compared with the unlevered

and untaxed securitized index return volatilities, the reconstructed standard deviation of the

NCREIF returns is 71.1 percent of the standard deviation of the NAREITU returns, while
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the reconstructed standard deviation of the IPD returns is 64.8 percent of the standard

deviation of the FTRU returns.

In these two cases the differences between volatilities from appraisal based and securi-

tized index returns are around 30% to 35% for quarterly and monthly returns. Under the

assumption that the reconstructed returns from an appraisal based index are not likely to be

exposed to noise traders, the difference could be interpreted as the noise level in stock mar-

kets. Disregarding the difference between countries we could say that low frequency returns

have less noise than higher frequency returns; high frequency returns such as daily returns

are expected to include more noise than low frequency returns such as annual returns. This

is because noise in high frequency returns is expected to cancel out each other when tempo-

rally aggregated in low frequency returns. Therefore we expect that the proportion of noise

in daily returns is much higher than 35 percent of the FTRU while that in annual returns is

lower than 30 percent of the NAREITU.

Our results suggest a higher level of noise than those suggested by French and Roll (1986)

who investigate the level of noise by comparing volatilities during trading and nontrading

hours. They find 4 to 12 percent of mispricing from daily returns. The difference could come

from our assumption that the volatility calculated with ARFIMA models is appropriate to

filter out smoothing and nonsynchronous appraisal problems. However considering the series

of studies on excess volatility in financial markets by Shiller (1981, 2000, 2003) and others,

we believe that the level of noise calculated in this paper is not different from the actual

level.
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5 Conclusion

In this study we have investigated the effects of three problems of an appraised-based per-

formance index; smoothing, nonsynchronous appraisal and cross-sectional aggregation. In

the presence of these econometric problems, it is found that an index comprised of the per-

formance of individual assets is far more persistent than the average level of smoothing in

individual assets. Using simulations we show that an ARFIMA(0,d,1) process is a good

analytical representation of a cross-sectionally aggregated process, where the long memory

parameter d explains average level of smoothing of individual constituents and the MA pa-

rameter explains the level of nonsynchronous appraisal.

We have applied our analytical results to UK and US appraisal-based real estate index

returns and then compared the results with their equivalent stock market index returns.

Several interesting empirical results are derived from the analytical models developed in

this paper. The level of smoothing of appraisals (downward bias in volatility) is far less

than assumed in many academic studies. In addition, when the assets also trade in public

markets, the securitized market volatility is much higher than that of the true underlying

process. The empirical results also find evidence of nonsynchronous appraisal, which is a

more serious problem for indices constructed using higher frequency returns, such as the

monthly IPD index in the UK.

In our study we applied our model to real estate index returns. However, the results of this

study also have application to other non-transaction based indices used in macroeconomics

and finance (such as consumer confidence measures). Any time series index based on a

survey, expert’s opinion or non-transaction based estimate of price has potentially similar

econometric problems to those discussed in this study. Application of these results to a
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broader range of performance measures may provide an interesting area for future study.
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Appendix

Proof of Theorem 1

The length of the interval for the reported return at time t is 1− sit + sit−1. The expected

return and variance conditional on the nonsynchronous variable is

E(rnit|sit) = µi(1− sit + sit−1),

V ar(rnit|sit) = (1− sit + sit−1)σ2i ,

Cov(rnit, rnit−τ |sit) = 0 for all τ > 0,

since

Cov(rnit, rnit−τ |sit) = E[(rnit −E(rnit|sit))(rnit−τ −E(rnit−τ |sit))]

= E[(
p
1− sit + sit−1σiεit)(

p
1− sit−τ + sit−τ−1σiεit−τ ))]

= σ2i
p
1− sit + sit−1

p
1− sit−τ + sit−τ−1E(εitεit−τ )

= 0.

Since we assume the nonsynchronous variable, sit, is neither autocorrelated nor correlated

with εit, the unconditional variance of rnit is

V ar(rnit) = E[V ar(rnit|sit)] + V ar(E[rnit|sit])

= σ2iE(1− sit + sit−1) + µ2iV ar(1− sit + sit−1).

37



Unconditional autocovariance with lag 1 is

Cov(rnit, rnit−1) = E[Cov(rnit, rnit−1|sit)] + Cov[E(rnit|sit), E(rnit−1|sit)]

= µ2iCov(1− sit + sit−1, 1− sit−1 + sit−2).

Using similar method, autocovariance with lag τ > 1, is zero.

Proof of Remark 1

The results can be obtained with

V ar(1− sit + sit−1) = [V ar(sit) + V ar(sit−1)]

= 2λ2i ,

Cov(1− sit + sit−1, 1− sit−1 + sit−2) = −V ar(sit−1)

= −λ2i ,

since sit is iid negative exponentially distributed with mean λi and variance λ
2
i .

Proof of Equation (18)

Using (10) and (14), we can rewrite equation (17) as

rcit − µi =
∞X
τ=0

φτsi
σci
σi

£
θi(βi�t−τ−1 + ηit−τ−1) + (βi�t−τ + ηit−τ )

¤
. (22)
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Index returns are equivalent to cross-sectionally aggregated N ARMA(1,1) return processes.

rmt − µm =
1

N

NX
i=1

(rcit − µi) (23)

=
1

N

NX
i=1

" ∞X
τ=0

φτsi
σci
σi

£
θi(βi�t−τ−1 + ηit−τ−1) + (βi�t−τ + ηit−τ )

¤#
,

where rmt and µm are the aggregated smoothed reported index return at time t and its

expected return respectively. As N increases, the idiosyncratic errors can be removed with

a large number of assets,

lim
N→∞

1

N

NX
i=1

ηit−τ = 0 for all τ .

This argument is based on the assumption that θi
σci
σi
is not related to ηit for all t. We also

assume that βi is not related with
σci
σi
since asset i’s sensitivity to the factor �t is not expected

to be related with smoothing or nonsynchronous appraisal. Therefore

rmt − µm =
∞X
τ=0

Ec

£
φτsi(θi�

∗
it−1−τ + �∗it−τ )

¤

where �∗it−τ =
σci
σi
βi�t−τ and Ec(.) represents cross-sectional expectation.

Proof of Theorem 2

Consider the following stationary ARMA(1,q) process;

xit = ψixit−1 + (θiqξt−q + θiq−1ξt−q+1+, ...,+ξt),
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where ξt ∼ iid(0, 1), ψi and θiq are independent for all i and q. Therefore, we have

Ec(xit) =
∞X
τ=0

Ec(ψ
τ
i )
£
Ec(θiq)ξt−τ−q +Ec(θiq−1)ξt−τ−q+1+, ...,+ξt−τ

¤
.

When ψi follows Beta(d, 1 − d) distribution with 0 < ψi < 1 ∀i, whose probability density

function is

f(ψi) =
1

Γ(d)Γ(1− d)
ψd−1
i (1− ψi)

−d,

where d > 0, 1−d > 0, and Γ(.) is the Gamma function. Then, the cross-sectional expectation

of ψτ
i , Ec[ψ

τ
i ], is

Ec[ψ
τ
i ] =

Z ∞

−∞
ψτ
i

1

Γ(d)Γ(1− d)
ψd−1
i (1− ψi)

−ddψ (24)

=
1

Γ(d)

Γ(τ + d)

Γ(τ + 1)

Z ∞

−∞
Γ(τ + 1)

Γ(τ + d)Γ(1− d)
ψτ+d−1
i (1− ψi)

−ddψ

=
1

Γ(d)

Γ(τ + d)

Γ(τ + 1)
,

since
R∞
−∞

Γ(τ+1)
Γ(τ+d)Γ(1−d)ψ

τ+d−1
i (1− ψi)

−ddψ = 1. Therefore, we have

Ec(xit) =
∞X
τ=0

1

Γ(d)

Γ(τ + d)

Γ(τ + 1)

£
Ec(θiq)ξt−τ−q+, ...,+ξt−τ

¤
.

Note that 1
Γ(d)

Γ(τ+d)
Γ(τ+1) is the τth moving average coefficient of fractionally integrated process.

Therefore, we have

(1− L)dEc(xit) = Ec(θiq)ξt−q +Ec(θiq−1)ξt−q+1+, ...,+ξt,

where L is the lag operator.
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Table 1  Monte Carlo Simulations for the Effects of Cross-sectional Aggregation on Persistence

A. When AR and MA Parameters are Normally Distributed: Standard Deviation of AR Parameter is 0.25

AR MA

AR from Normal 
Distribution with 

Standard Deviation 
of 0.25

MA from Normal 
Distribution with 

Standard Deviation 
of 0.1

AR MA d MA

Estimates 0.400 -0.100 0.405 -0.108 0.911 -0.580 0.383 -0.009
STD 0.111 0.162 0.132 0.141

Estimates 0.400 -0.200 0.405 -0.201 0.932 -0.693 0.374 -0.092
STD 0.105 0.149 0.147 0.158

Estimates 0.400 -0.300 0.405 -0.300 0.953 -0.794 0.376 -0.192
STD 0.099 0.130 0.194 0.205

Estimates 0.500 -0.100 0.500 -0.108 0.944 -0.496 0.507 -0.022
STD 0.071 0.120 0.147 0.152

Estimates 0.500 -0.200 0.500 -0.201 0.954 -0.602 0.501 -0.106
STD 0.064 0.112 0.161 0.168

Estimates 0.500 -0.300 0.500 -0.300 0.965 -0.704 0.500 -0.204
STD 0.056 0.098 0.196 0.200

Estimates 0.600 -0.100 0.595 -0.108 0.957 -0.395 0.619 -0.028
STD 0.058 0.102 0.137 0.142

Estimates 0.600 -0.200 0.595 -0.201 0.962 -0.497 0.618 -0.117
STD 0.055 0.098 0.163 0.169

Estimates 0.600 -0.300 0.595 -0.300 0.969 -0.601 0.619 -0.215
STD 0.052 0.091 0.196 0.200

Estimates 0.700 -0.100 0.686 -0.108 0.975 -0.310 0.722 -0.038
STD 0.038 0.086 0.130 0.139

Estimates 0.700 -0.200 0.686 -0.201 0.977 -0.408 0.719 -0.123
STD 0.036 0.085 0.149 0.158

Estimates 0.700 -0.300 0.686 -0.300 0.980 -0.511 0.725 -0.225
STD 0.034 0.082 0.188 0.197

Estimates 0.800 -0.100 0.770 -0.108 0.983 -0.237 0.808 -0.046
STD 0.029 0.079 0.125 0.135

Estimates 0.800 -0.200 0.770 -0.201 0.984 -0.330 0.808 -0.131
STD 0.028 0.080 0.147 0.158

Estimates 0.800 -0.300 0.770 -0.300 0.985 -0.430 0.814 -0.230
STD 0.027 0.079 0.182 0.190

Estimates 0.900 -0.100 0.842 -0.108 0.988 -0.181 0.874 -0.053
STD 0.020 0.076 0.124 0.139

Estimates 0.900 -0.200 0.842 -0.201 0.989 -0.270 0.872 -0.132
STD 0.019 0.078 0.136 0.152

Estimates 0.900 -0.300 0.842 -0.300 0.990 -0.367 0.875 -0.227
STD 0.018 0.079 0.166 0.180

ML Estimates of 
ARFIMA(0,d,1) Model

Data Generating 
Process

We first generate 1000 ARMA(1,1) processes using the parameter values in the column of the 'data generating process'. AR 
parameters are generated from normal distribution with standard deviations of 0.25 (Panel A) and 0.15 (Panel B) or with 
beta distribution (Panel C). MA parameters are generated from normal distribution with standard deviation of 0.1. Any AR 
parameters less than 0 are truncated to 0 and any AR parameters larger than 1 are truncated to 1. MA parameters are also 
truncated such that all MA parameters are negative. 200 observations are generated for each ARMA(1,1) process, and then 
these 1000 ARMA(1,1) series are cross-sectionally aggregated to construct one single time series. The results are based on 
1000 iterations. STD represents standard deviation of estimates. 

ML Estimates of 
ARMA(1,1) Model

Average Values of Truncated AR and 
MA Parameters*



B. When AR and MA Parameters are Normally Distributed: Standard Deviation of AR Parameter is 0.15

AR MA

AR from Normal 
Distribution with 

Standard Deviation 
of 0.15

MA from Normal 
Distribution with 

Standard Deviation 
of 0.1

AR MA d MA

Estimates 0.400 -0.100 0.400 -0.108 0.551 -0.243 0.175 0.132
STD 0.227 0.254 0.094 0.102

Estimates 0.400 -0.200 0.400 -0.201 0.573 -0.359 0.145 0.071
STD 0.292 0.321 0.098 0.109

Estimates 0.400 -0.300 0.400 -0.300 0.589 -0.468 0.108 0.010
STD 0.398 0.417 0.105 0.118

Estimates 0.500 -0.100 0.500 -0.108 0.682 -0.264 0.281 0.138
STD 0.160 0.193 0.094 0.102

Estimates 0.500 -0.200 0.500 -0.201 0.704 -0.384 0.250 0.078
STD 0.187 0.227 0.098 0.108

Estimates 0.500 -0.300 0.500 -0.300 0.733 -0.517 0.212 0.018
STD 0.230 0.271 0.104 0.117

Estimates 0.600 -0.100 0.600 -0.108 0.832 -0.296 0.421 0.115
STD 0.112 0.144 0.098 0.105

Estimates 0.600 -0.200 0.600 -0.201 0.847 -0.413 0.393 0.053
STD 0.116 0.156 0.103 0.112

Estimates 0.600 -0.300 0.600 -0.300 0.865 -0.539 0.358 -0.010
STD 0.124 0.168 0.112 0.124

Estimates 0.700 -0.100 0.699 -0.108 0.929 -0.279 0.586 0.068
STD 0.066 0.101 0.107 0.112

Estimates 0.700 -0.200 0.699 -0.201 0.934 -0.385 0.565 -0.001
STD 0.065 0.103 0.117 0.124

Estimates 0.700 -0.300 0.699 -0.300 0.941 -0.499 0.538 -0.072
STD 0.064 0.105 0.130 0.139

Estimates 0.800 -0.100 0.794 -0.108 0.968 -0.217 0.741 0.016
STD 0.039 0.081 0.111 0.120

Estimates 0.800 -0.200 0.794 -0.201 0.969 -0.315 0.727 -0.057
STD 0.038 0.082 0.124 0.134

Estimates 0.800 -0.300 0.794 -0.300 0.971 -0.419 0.710 -0.136
STD 0.037 0.081 0.139 0.149

Estimates 0.900 -0.100 0.877 -0.108 0.986 -0.158 0.863 -0.027
STD 0.022 0.073 0.114 0.127

Estimates 0.900 -0.200 0.877 -0.201 0.986 -0.248 0.857 -0.103
STD 0.022 0.075 0.128 0.143

Estimates 0.900 -0.300 0.877 -0.300 0.986 -0.346 0.850 -0.188
STD 0.022 0.076 0.151 0.164

Average Values of Truncated AR and 
MA Parameters*

ML Estimates of 
ARMA(1,1) Model

ML Estimates of 
ARFIMA(0,d,1) Model

Data Generating 
Process



C. When AR Parameters are beta-distributed and MA Parameters are Normally Distributed

AR MA AR from Beta 
Distribution

MA from Normal 
Distribution with 

Standard Deviation 
of 0.1

AR MA d MA

Estimates 0.400 -0.100 0.400 -0.108 0.967 -0.572 0.653 -0.228
STD 0.042 0.086 0.191 0.203

Estimates 0.400 -0.200 0.400 -0.201 0.973 -0.652 0.670 -0.332
STD 0.037 0.076 0.205 0.209

Estimates 0.400 -0.300 0.400 -0.300 0.979 -0.729 0.673 -0.426
STD 0.031 0.066 0.201 0.194

Estimates 0.500 -0.100 0.500 -0.108 0.972 -0.477 0.724 -0.202
STD 0.034 0.080 0.171 0.185

Estimates 0.500 -0.200 0.500 -0.201 0.976 -0.562 0.737 -0.301
STD 0.031 0.074 0.183 0.191

Estimates 0.500 -0.300 0.500 -0.300 0.980 -0.646 0.740 -0.397
STD 0.028 0.067 0.187 0.185

Estimates 0.600 -0.100 0.600 -0.108 0.978 -0.386 0.797 -0.183
STD 0.028 0.076 0.156 0.172

Estimates 0.600 -0.200 0.600 -0.201 0.980 -0.474 0.815 -0.286
STD 0.026 0.073 0.181 0.193

Estimates 0.600 -0.300 0.600 -0.300 0.983 -0.563 0.823 -0.386
STD 0.024 0.069 0.192 0.195

Estimates 0.700 -0.100 0.700 -0.108 0.983 -0.301 0.852 -0.151
STD 0.025 0.076 0.154 0.170

Estimates 0.700 -0.200 0.700 -0.201 0.985 -0.390 0.862 -0.246
STD 0.024 0.075 0.171 0.186

Estimates 0.700 -0.300 0.700 -0.300 0.986 -0.483 0.871 -0.346
STD 0.023 0.073 0.187 0.196

Estimates 0.800 -0.100 0.800 -0.108 0.989 -0.222 0.907 -0.121
STD 0.017 0.074 0.137 0.156

Estimates 0.800 -0.200 0.800 -0.201 0.990 -0.309 0.916 -0.211
STD 0.017 0.075 0.159 0.176

Estimates 0.800 -0.300 0.800 -0.300 0.991 -0.403 0.921 -0.305
STD 0.017 0.076 0.173 0.186

Estimates 0.900 -0.100 0.900 -0.108 0.993 -0.146 0.964 -0.103
STD 0.015 0.068 0.136 0.155

Estimates 0.900 -0.200 0.900 -0.201 0.993 -0.229 0.969 -0.184
STD 0.015 0.073 0.149 0.170

Estimates 0.900 -0.300 0.900 -0.300 0.993 -0.320 0.976 -0.278
STD 0.015 0.077 0.169 0.188

Data Generating 
Process

Average Values of Truncated AR and 
MA Parameters*

ML Estimates of 
ARMA(1,1) Model

ML Estimates of 
ARFIMA(0,d,1) 

Model



IPD Index Returns FTSE Real Estate 
Index Returns

Unlevered 
Untaxed FTSE 

Real Estate Index 
Returns

FTSE All Share 
Index Returns

Mean 0.797 0.569 0.810 0.799
STD 0.831 5.516 4.320 4.357

Skewness 0.433 -0.489 -0.408 -0.396
Kurtosis 4.152 3.035 2.952 3.462

Jarque-Bera 16.634 7.669 5.344 6.728
Sharpe Ratio (Monthly) 0.959 0.103 0.187 0.183
Sharpe Ratio (Annual) 3.321 0.358 0.649 0.635

Autocorrelation
1 0.897 0.133 0.099 0.052
2 0.851 0.012 0.019 -0.116
3 0.817 0.023 0.016 -0.053
4 0.731 0.077 0.079 0.049
5 0.652 0.062 0.044 0.022
6 0.578 0.024 0.027 0.039
7 0.486 -0.051 -0.073 -0.059
8 0.411 0.002 0.013 0.031
9 0.329 0.005 -0.013 0.045

10 0.264 -0.071 -0.043 0.046
Augmented Dickey-Fuller Test 

Statistic  -3.021 (3 Lags)  -12.033 (No Lag)  -12.475 (No Lag)  -13.078 (No Lag)

Probability 0.035 0.000 0.000 0.000
Correlation

IPD Index Returns 1.000

FTSE Real Estate Index Returns 0.037 1.000
Unleveraged Untaxed FTSE Real 

Estate Index Returns 0.035 0.988 1.000
FTSE All Share Index Returns -0.014 0.625 0.610 1.000

The basic statistical properties in the table are obtained using 192 monthly log-returns  from January 1988 to 
December 2003. Bold numbers represent significance at 5% level. Monthly Sharpe ratios are calculated with total 
returns rather than excess returns, and thus slightly higher than the values found in other studies during similar 
sample period. Annual Sharpe ratios are calculated by multiplying square-root of 12 to the monthly Sharpe ratios. 
We use the Augmented Dickey-Fuller test to examine if log-return series are unit root. The number of AR lags is 
chosen using Bayesian information criteria. The probability values of the augmented Dickey-Fuller test statistics is 
MacKinnon (1996) one-sided probability values.

Table 2A  Properties of IPD and FTSE Real Estate Index Monthly Log-Returns



NCREIF NAREIT
Unlevered 

NAREIT Index 
Returns

CRSP

Mean 2.233 3.318 2.816 3.523
STD 1.656 6.597 3.963 8.581

Skewness -1.081 -0.105 -0.098 -0.479
Kurtosis 7.286 3.337 3.716 3.368

Jarque-Bera 99.872 0.683 2.387 4.561
Sharpe Ratio (Quarterly) 1.348 0.503 0.711 0.411
Sharpe Ratio (Annual) 2.696 1.006 1.421 0.821

Autocorrelation
1 0.680 0.061 0.065 -0.037
2 0.682 0.021 0.034 0.000
3 0.598 -0.080 -0.047 -0.029
4 0.714 0.006 0.036 -0.059
5 0.468 -0.051 -0.020 -0.069
6 0.423 0.004 0.003 0.001
7 0.381 -0.120 -0.104 -0.111
8 0.436 0.073 0.086 0.145
9 0.250 -0.061 -0.030 0.049

10 0.237 -0.110 -0.114 0.057
Augmented Dickey-Fuller Test 

Statistic  -2.193 (4 Lags)  -9.407 (0 Lag)  -9.402 (0 Lag)  -10.407 (0 Lag)

Probability 0.2101 0.000 0.000 0.000
Cross-Correlation

NCREIF 1.000
NAREIT -0.013 1.000

Unlevered NAREIT Index 
Returns -0.003 0.991 1.000
CRSP -0.040 0.593 0.582 1.000

The basic statistical properties in the table are obtained using 104 quarterly log-returns  from the first 
quarter of 1978 to the fourth quarter of 2003. During 2003 CRSP index returns are not available and we use 
the MSCI Investible 2500 index which explains 98% of the US equity market. Bold numbers represent 
significance at 5% level. Quarterly Sharpe ratios are calculated with total returns rather than excess returns, 
and thus slightly higher than the values found in other studies during similar sample period. Annual Sharpe 
ratios are calculated by multiplying square-root of 4 to the quarterly Sharpe ratios. We use the Augmented 
Dickey-Fuller test to examine if the log-return series are unit root. The number of AR lags is chosen with 
Bayesian information criteria. The probability values of the augmented Dickey-Fuller test statistics is 
MacKinnon (1996) one-sided probability values.

Table 2B  Properties of NCREIF and NAREIT Quarterly Log-Returns



Table 3A  Estimates of ARFIMA(p,d,q ) Models for IPD and FTSE Real Estate Index Monthly Log-Returns

A. Estimation Results of FTSE Real Estate Index Monthly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC

ARFIMA(0,d,0) Long Memory Parameter (d) 0.089 (0.064) -598.781 1201.562 1208.077
Standard Deviation of Error Term 5.472

AR(1) AR1 0.133 (0.072) -598.083 1200.165 1206.680
Standard Deviation of Error Term 5.452

AR1 0.099 (0.614)
ARMA(1,1) MA1 0.035 (0.619) -598.079 1202.159 1211.931

Standard Deviation of Error Term 5.452

B. Estimation Results of Unlevered and Untaxed FTSE Real Estate Index Monthly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC
AR(1) AR1 0.099 (0.072) -551.917 1107.835 1114.350

Standard Deviation of Error Term 4.287
AR1 0.617 (0.468)

ARMA(1,1) MA1 -0.535 (0.501) -551.852 1109.703 1119.476
Standard Deviation of Error Term 4.286

C. Estimation Results of IPD Index Monthly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC
AR(1) AR1 0.895 (0.031) -79.276 162.552 169.067

Standard Deviation of Error Term 0.364
AR1 0.948 (0.023)

ARMA(1,1) MA1 -0.279 (0.065) -72.143 150.285 165.315
Standard Deviation of Error Term 0.351

Long Memory Parameter (d) 0.856 (0.153)
ARFIMA(0,d,1) MA1 -0.193 (0.161) -66.622 141.244 159.532

AR3 0.306 (0.085)
Standard Deviation of Error Term 0.343

The results are obtained using 192 monthly log-returns from January 1988 to December 2002. The sample averege return is taken out from the log-returns and are not
estimated in the ARFIMA models. AR1 and AR3 represent the autoregressive parameters with lags 1 and 3, and MA1 represents the moving average parameter with lag 1.
AIC and BIS are Akaike and Bayesian information criteria respectively. Estimates are obtained with the exact maximum likelihood module provided by Ox version 3.30 (see
Doornik, 2002) and the Arfima package version 1.00 (Doornik and Ooms, 1999). Bold estimates show significance at 5% level. 



Table 3B  Estimation Results of ARFIMA(p,d,q ) Models for NCREIF and NAREIT Quarterly Log-Returns

A. Estimation Results of NAREIT Index Quarterly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC

ARFIMA(0,d,0) Long Memory Parameter (d) 0.005 (0.089) -343.281 690.562 695.850
Standard Deviation of Error Term 6.566

AR(1) AR1 0.061 (0.098) -343.088 690.175 695.464
Standard Deviation of Error Term 6.553

AR1 0.141 (0.834)
ARMA(1,1) MA1 -0.079 (0.835) -343.083 692.166 700.100

Standard Deviation of Error Term 6.553

B. Estimation Results of Unlevered NAREIT Index Quarterly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC
AR(1) AR1 0.064 (0.098) -290.061 584.123 589.412

Standard Deviation of Error Term 3.936
AR1 0.258 (0.980)

ARMA(1,1) MA1 -0.193 (0.993) -290.042 586.085 594.018
Standard Deviation of Error Term 3.935

C. Estimation Results of NCREIF Index Quarterly Returns
Models Parameters Estimates Standard Deviation Maximum Likelihood Value AIC BIC
AR(1) AR1 0.675 (0.071) -167.441 338.882 344.171

Standard Deviation of Error Term 1.207
AR1 0.934 (0.038)

ARMA(1,1) MA1 -0.549 (0.082) -156.868 316.740 327.669
Standard Deviation of Error Term 1.088

Long Memory Parameter (d) 0.572 (0.160)
ARFIMA(0,d,1) MA1 -0.111 (0.160) -139.745 287.490 293.423

AR4 0.556 (0.084)
Standard Deviation of Error Term 0.931

The results are obtained using 104 quarterly log-returns from the first quarter of 1978 to the third quarter of 2003. The sample averege return is taken out from the log-
returns and is not estimated in the ARFIMA models. AR1 and AR4 represent the autoregressive parameters with lags 1 and 4, and MA1 represents the moving average
parameter with lag 1. AIC and BIS are Akaike and Bayesian information criteria respectively. Estimates are obtained with the exact maximum likelihood module provided
by Ox version 3.30 (see Doornik, 2002) and the ARFIMA package version 1.00 (Doornik and Ooms, 1999). Bold estimates show significance at 5% level. 
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Figure 1  The Ratio of the Variance of the True Mean Plus Noise Returns to That of 
the Smoothed Reported Returns When the Variance of Nonsynchronous Variable is 

0.49



Figure 2A UK Commercial Real Estate Indices 
(End of 1987=100)
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Figure 2B US Commercial Real Estate Log-Indices 
(End of 1977=100)
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