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Abstract 

We document violations of stochastic dominance in the one-month S&P 500 index options 

market in the period 1986-1995 when the unconditional index return distribution is taken 

to be that of the historical index sample and two forward-looking samples that include or 

exclude the crash.  Stochastic dominance means that a trader can improve her expected 

utility by engaging in a zero-net-cost trade.  The violations persist when we allow for 

realistic transactions costs.  Even though pre-crash option prices follow the Black-Scholes-

Merton (BSM) model reasonably well, they are incorrectly priced, if index return 

expectations are based on the historical experience.  Furthermore, some of these prices are 

below the bounds, contrary to received wisdom that historical volatility generally 

underprices options in the BSM model, dispelling the common misconception that the 

observed smile is too steep after the crash. 
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1 Introduction and Summary 
 

A robust prediction of the celebrated Black and Scholes (1973) and Merton (1973) 

(BSM) option pricing model is that the volatility implied by market prices of 

options is constant across striking prices.  Rubinstein (1994) tested this prediction 

on the S&P 500 index options traded on the Chicago Board Options Exchange, an 

exchange that comes close to the dynamically complete and perfect market 

assumptions underlying the BSM model.  As a function of the strike price, the 

implied volatility is flat from the start of the exchange-based trading in April 1986 

until the October 1987 stock market crash.  Thereafter, it is downward-sloping, a 

pattern referred to as the “volatility smile” that is also observed in international 

markets and to a lesser extent on individual-stock options.1 

Ait-Sahalia and Lo (1998) Jackwerth and Rubinstein (1996), and Jackwerth 

(2000), among others, refined the result by estimating the risk-neutral stock price 

distribution from the cross section of option prices.  Jackwerth and Rubinstein 

(1996) confirmed that, prior to the October 1987 crash, the risk-neutral stock price 

distribution is close to lognormal, consistent with flat implied volatility.  Thereafter, 

the distribution is systematically skewed to the left, consistent with downward-

sloping implied volatility.  Jackwerth (2000) found that the pricing kernel implied 

by the observed cross section of prices of S&P 500 index options is everywhere 

decreasing prior to the October 1987 crash but that widespread violations are 

observed thereafter. 

These findings raise several important questions.  Does the BSM model work 

well prior to the crash?  If it does, is it because the risk-neutral probability of a 

stock market crash was low and consistent with a lognormal distribution?  Or, is it 

because the risk-neutral probability of a stock market crash was erroneously 

perceived to be low by the market participants?  Why does the BSM model fail 

after the crash?  Is it because the risk neutral probability of a stock market crash 

                                                 
1 Jackwerth (2004), Brown and Jackwerth (2004), and Whaley (2003) review the literature and 

potential explanations.  Jackwerth (2004) also reviews the parametric and non-parametric 

methods for estimating the risk-neutral distribution. 
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increased after the crash and became inconsistent with a lognormal distribution?  

Or, is it because the risk neutral probability of a stock market crash was 

erroneously perceived to do so?  These are some of the questions that we address in 

this paper. 

Whereas a downward sloping implied volatility is inconsistent with the BSM 

model, it is important to realize that this pattern is not inconsistent with economic 

theory in general.  Two fundamental assumptions of the BSM model are that the 

market is frictionless and dynamically complete.  We empirically investigate 

whether the observed cross section of S&P 500 index option prices are consistent 

with various economic models that explicitly allow for a dynamically incomplete 

market and also recognize trading costs and bid-ask spreads. 

Both dynamic incompleteness and frictions have drastic consequences for 

option pricing.  In both cases arbitrage methods alone are incapable of producing a 

unique option price.  Market incompleteness is generally handled either by 

employing an equilibrium model that prices risk, or by testing bounds within which 

the option price should lie, along the lines explored in this paper.2  Bounds 

containing the option price also arise when there are trading costs and bid-ask 

spreads.3 

We avoid any a priori assumptions about the form of the real unconditional 

distribution of the S&P 500 index returns and use histograms extracted from three 

different data samples as estimates of this distribution: the historical index sample 

(1928-1985) and two forward-looking samples, one that includes the October 1987 

crash (1986-1995) and one that excludes it (1988-1995).  Based on the index return 

distributions extracted from these samples, we test the compliance of option prices 

to the predictions of models that sequentially introduce market incompleteness, 

transactions costs, and intermediate trading over the life of the options. 

The paper is organized as follows.  In Section 2, we present a general model 

for pricing options that incorporates market incompleteness, transactions costs, and 

intermediate trading over the life of the options.  We specialize this model into a 

series of models that sequentially introduce market incompleteness, transactions 

                                                 
2 For models that price risk, see, for instance, Bailey and Stulz (1989) and Amin (1993). 
3 See Leland (1985) and Bensaid et al (1992). 
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costs, and intermediate trading over the life of the options.  Each model imposes 

restrictions on the cross section of the prices of options.  In Section 3, we test the 

compliance of bid and ask one-month index options to the theoretical restrictions 

and discuss the results.  The results are summarized in Section 4. 

 

2 Theoretical Restrictions on Option Prices 
 

2.1 A Model for Trading Equity and Bonds 

 
We consider a market with heterogeneous agents and investigate the restrictions on 

option prices imposed by a particular class of utility-maximizing traders that we 

simply refer to as traders.  We do not make the restrictive assumption that all 

agents belong to the class of the utility-maximizing traders.  Thus our results are 

unaffected by the presence of agents with beliefs, endowments, preferences, trading 

restrictions, and transaction cost schedules that differ from those of the utility-

maximizing traders. 

Trading occurs at a finite number of trading dates, = 0,1,..., , ..., 't T T .4  The 

utility-maximizing traders are allowed to hold only two primary securities in the 

market, a bond and a stock.  The stock has the natural interpretation as the 

market index.  Derivatives are introduced in the next section.  The bond is risk free 

and pays constant interest 1R −  each period.  The traders may buy and sell the 

bond without incurring transactions costs.  At date t, the cum dividend stock price 

is ( )δ+1 t tS , the cash dividend is δt tS , and the ex dividend stock price is tS , where 

tδ  is the dividend yield.  We assume that the rate of return on the stock, 

( ) 11 /t t tS Sδ ++ , is identically and independently distributed over time.  The 

assumption of i.i.d. returns is not innocuous and, in particular, rules out stochastic 

                                                 
4 The calendar length of the trading horizon is N years and the calendar length between trading 

dates is / 'N T  years.  Later on we vary 'T  and consider the mispricing of options under different 

assumptions regarding the calendar length between trading dates. 
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volatility.  We deliberately rule out stochastic volatility in order to explore the 

extent to which market incompleteness and market imperfections (trading costs) 

alone explain the prices of index options. 5 

Stock trades incur proportional transaction costs charged to the bond 

account as follows.  At each date t, the trader pays ( )1 tk S+  out of the bond 

account to purchase one ex dividend share of stock and is credited ( )1 tk S− in the 

bond account to sell (or, sell short) one ex dividend share of stock.  We assume that 

the transactions cost rate satisfies the restriction 0 1k≤ < .  Note that there is no 

presumption that all agents in the economy face the same schedule of transactions 

costs as the traders do. 

A trader enters the market at date t with dollar holdings tx  in the bond 

account and /t ty S  ex dividend shares of stock.  The endowments are stated net of 

any dividend payable on the stock at time t.6  The trader increases (or, decreases) 

the dollar holdings in the stock account from ty to 't t ty y υ= +  by decreasing (or, 

increasing) the bond account from tx  to ' | |t t t tx x kυ υ= − − .  The decision 

variable tυ is constrained to be measurable with respect to the information at date t.  

The bond account dynamics is 

 

{ } ( ) δυ υ υ +
+ = − − + + ≤ −1
1 | | , ' 1t t

t t t t t t
t

Sx x k R y t T
S

  (2.1) 

 

and the stock account dynamics is 

 

( ) 1
1 , ' 1.t

t t t
t

Sy y t T
S

υ +
+ = + ≤ −    (2.2) 

 

                                                 
5 The results in Sections 2.3 and 2.4 hold without the i.i.d. returns assumption. The assumption 

may also be relaxed in Sections 2.5 and 2.6 for special classes of stock return distributions. 
6 We elaborate on the precise sequence of events.  The trader enters the market at date t with 

dollar holdings t t tx yδ− in the bond account and /t ty S  cum dividend shares of stock.  Then the 

stock pays cash dividend t tyδ and the dollar holdings in the bond account become tx .  Thus, the 

trader has dollar holdings tx in the bond account and /t ty S  ex dividend shares of stock. 
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At the terminal date, the stock account is liquidated, ' 'T Tyυ = − , and the net 

worth is ' ' '| |T T Tx y k y+ − .  At each date t, the trader chooses investment tυ  to 

maximize the expected utility of net worth, ( )' ' '| | |T T T tE u x y k y S + −  .
7  We 

make the plausible assumption that the utility function, ( )u ⋅ , is increasing and 

concave, and is defined for both positive and negative terminal net worth.8  Note 

that even this weak assumption of monotonicity and concavity of preferences is not 

imposed on all agents in the economy but only on the subset of agents that we refer 

to as traders. 

We define the value function recursively as 

 

( ) { } ( ) ( )υ
δυ υ υ υ+ +

  
= − − + + + +  

  
1 1, , max | | , , 1 |t t t

t t t t t t
t t

S SV x y t E V x k R y y t S
S S

 (2.3) 

 

for ' 1t T≤ −  and 

 

( ) ( )' ' ' ' ', , ' | |T T T T TV x y T u x y k y= + − .   (2.4) 

 

We assume that the parameters satisfy appropriate technical conditions such that 

the value function exists and is once differentiable. 

Equations (2.1)-(2.4) define a dynamic program that can be numerically 

solved for given utility function and stock return distribution.  We shall not solve 

this dynamic program because our goal is to derive restrictions on the prices of 

                                                 
7 The results extend routinely to the case that consumption occurs at each trading date and 

utility is defined over consumption at each of the trading dates and over the net worth at the 

terminal date.  See Constantinides (1979) for details.  The model with utility defined over 

terminal net worth alone is a more realistic representation of the objective function of financial 

institutions. 
8 If utility is defined only for non-negative net worth, then the decision variable is constrained to 

be a member of a convex set that ensures the non-negativity of net worth.  See, Constantinides 

(1979) for details.  However, the derivation of bounds on the prices of derivatives requires an 

entirely different approach and yields weaker bounds.  This problem is studied in Constantinides 

and Zariphopoulou (1999, 2001). 
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options that are independent of the specific functional form of the utility function 

but solely depend on the plausible assumption that the traders’ utility function is 

monotone increasing and concave in the terminal wealth. 

Without explicitly solving the above dynamic program, we identify certain 

necessary properties of the value function.  The value function, ( ) ( )≡ , ,t tV t V x y t , 

is increasing and concave in ( ),t tx y , properties that it inherits from the assumed 

monotonicity and concavity of the utility function, as proved in Constantinides 

(1979).  We state the monotonicity of the value function as 

 

( ) ( )> >0, 0x yV t V t , = 0,..., ,..., 't T T .  (2.5) 

 

and its concavity with respect to ( ),t tx y  as9 

 

( ) ( ) ( ) ( ) ( )( )20, 0, 0,

0,..., ,..., ' .
xx yy xx yy xyV t V t V t V t V t

t T T

< < − >

=
  (2.6) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incur transactions costs.  Therefore, the marginal rate of substitution 

between the bond and stock accounts differs from unity by, at most, the 

transactions cost rate: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 1 , 0,..., , ..., 'x y xk V t V t k V t t T T .  (2.7) 

 

Marginal analysis on the bond holdings leads to the following condition on the 

marginal rate of substitution between the bond holdings at dates t and t+1: 

 

( ) ( )[ ]1 , 0,..., , ..., ' 1x t xV t R E V t t T T= + = − .  (2.8) 

 

                                                 
9 The second-order partial derivatives of the value function exist everywhere except on the 

boundaries of the region of no transactions. 
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Finally, marginal analysis on the stock holdings leads to the following condition on 

the marginal rate of substitution between the stock holdings at date t and the bond 

and stock holdings at date t+1: 

 

( ) ( ) ( )1 11 1t t t
y t y x

t t

S SV t E V t V t
S S

δ+ + = + + +   
, 0,..., ,..., ' 1t T T= − .   (2.9) 

 

Below we employ these conditions on the value function to derive restrictions on 

the prices of options. 

 

2.2 Restrictions on the Prices of Options 

 
We consider J, 1,2,...,j J= , European call and put options on the index, with 

random cash payoff jX  at their common expiration date , 'T T T≤ .  At time zero, 

the trader can buy the thj  derivative at price j jP k+  and sell it at price j jP k− , 

net of transactions costs.  Thus 2 jk  is the bid-ask spread plus the round-trip 

transactions cost that the trader incurs in trading the thj  derivative.  In our 

empirical investigation we consider both the case where jk  is common across 

derivatives and the case where jk  is proportional to the price of the thj  derivative.  

Note that there is no presumption that all agents in the economy face the same bid-

ask spreads and transactions costs as the traders do. 

We assume that the traders are marginal in all the J derivatives.  

Furthermore, we assume that, if a trader holds a finite (positive or negative) 

number of the derivatives, these positions are sufficiently small relative to her 

holdings in the bond and stock that the monotonicity and concavity conditions 

(2.5) and (2.6) on the value function remain valid.  (Conditions (2.7)-(2.9) remain 

valid even if the holdings of the derivatives are not small.) 

Marginal analysis leads to the following restrictions on the prices of options: 

 

( ) ( ) ( )[ ] ( ) ( )00 0 , 1,2,...,j j x j x j j xP k V E X V T P k V j J− ≤ ≤ + = . (2.10) 
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Similar restrictions on the prices of options apply at dates 1,..., 1t T= − . 

Below, we illustrate the implementation of the restrictions on the prices of 

options in a number of important special cases.  First, we consider the case = 1T  

which rules out trading between the bond and stock accounts over the lifetime of 

the options.  We refer to this case as the single-period case.  Note that the single-

period case does not rule out trading over the trader’s horizon after the options 

expire; it just rules out trading over the lifetime of the options.  We discuss the 

single-period case both with and without transactions costs.  Then we consider the 

more realistic case 2T =  which allows for one intermediate trading between the 

bond and stock accounts over the lifetime of the options. 

A useful way to identify the options that cause infeasibility or near-

infeasibility of the problem is to single out a “test” option, say the thn  option, and 

solve the following problem: 

 

( ) ( ){ } ( ) ( ){ }
( )
( )

0,..., 0,...,

0
, ,
max min

0x y x yt T t T

x
n

V t V t V t V t x

V TE X
V= =

            
  (2.11) 

 

subject to the conditions (2.5)-(2.10), where the thn  option is removed from the set 

of the J  options in conditions (2.10).  If this problem is feasible, then the attained 

maximum and minimum have the following interpretation.  If one can buy the test 

option for less than the minimum attained in this problem, then there is stochastic 

dominance: at least one investor, but not necessarily all investors, increases her 

expected utility by trading the test option.  Likewise, if one can write the test 

option, for more than the maximum attained in this problem, then again there is 

stochastic dominance. 

 

2.3 Special Case: Zero Transactions Costs and no Trading 

over the Life of the Options 

 
The stock market index has price 0S  at the beginning of the period; ex dividend 

price iS  with probability π i  in state =, 1,...,i i I  at the end of the period; and cum 
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dividend price ( )δ+1 iS  at the end of the period.  We order the states such that iS  

is increasing in i .  The thj  derivative, = 1,...,j J , has price jP  at the beginning 

period and cash payoff ijX  at the end of the period in state i . 

Since the transactions cost rate is assumed to be zero, we have 

( ) ( )=0 0x yV V  and ( ) ( )=1 1x yV V .  We denote by im  the marginal rate of 

substitution in state i , ( ) ( )≡ 1 / 0i x xm V V .  The conditions (2.8)-(2.10) become: 

 

1
1

I
i ii

R mπ
=

= ∑      (2.12) 

 

( )0 1
1

I
i i ii

S m Sπ δ
=

= +∑ .    (2.13) 

and 

1
, 1,...,

I
j i i iji

P m X j Jπ
=

= =∑ .   (2.14) 

 

The random variable : , 1,...,im m i I=  is the stochastic discount factor or 

pricing kernel.  Absence of arbitrage implies and is implied by the existence of a 

strictly positive pricing kernel that satisfies (2.12)-(2.14).  Non-existence of a 

strictly positive pricing kernel signifies arbitrage such as violations of the Merton 

(1973) no-arbitrage restrictions on the prices of options. 

The concavity of the value function implies additional restrictions on the 

pricing kernel.  Historically, the expected premium of the return on the stock over 

the bond is positive.  Under the assumption of positive expected premium, the 

trader is long in the stock.  Since the assumption in the single-period model is that 

there is no trading between the bond and stock accounts over the life of the option, 

the trader’s wealth at the end of the period is increasing in the stock return.  Note 

that this conclusion critically depends on the assumption that there is no 

intermediate trading in the bond and stock.  Since we employed the convention 

that the stock return is increasing in the state i, the trader’s wealth on date T is 

increasing in the state i.  Then the concavity of the value function implies that the 

marginal rate of substitution is decreasing in the state i: 

 

1 2 ... 0Im m m≥ ≥ ≥ > .    (2.15) 
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Existence of a pricing kernel that satisfies the restrictions (2.12)-(2.15) is 

said to rule out stochastic dominance.  Ruling out stochastic dominance means that 

there exists at least one trader with increasing and concave utility that supports the 

observed prices.  If we cannot rule out stochastic dominance, then any trader with 

increasing and concave utility can improve her expected utility through trading. 

We emphasize that the restriction on option prices imposed by the criterion 

of the absence of stochastic dominance is motivated by the economically plausible 

assumption that there exists at least one agent in the economy with the properties 

that we assigned to a trader.  This is a substantially weaker assumption than 

requiring that all agents have the properties that we assigned to traders.  Stochastic 

dominance then implies that at least one agent, but not necessarily all agents, 

increases her expected utility by trading.10 

In our empirical investigation, we find that in none of the months a pricing 

kernel exists that satisfies the restrictions (2.12)-(2.15), if we rule out bid-ask 

spreads and transactions costs.  Therefore, in all months in our sample there is 

stochastic dominance. 

A useful way to identify the options that cause infeasibility or near-

infeasibility of the problem is to single out a “test” option, say the thn  option and 

derive bounds that signify infeasibility if the price of the test option lies outside the 

bounds.  The general form of this problem was stated in equation (2.11).  In the 

special case of no trading over the life of the option and zero transactions costs, the 

bounds on the test option with payoff inX  in state i are given by 

 

{ } { }( ) 1
max min

i i

I
i i inim m
m Xπ

=∑     (2.16) 

 

                                                 
10 We also emphasize that the restriction of the absence of stochastic dominance is weaker than 

the restriction that the capital asset pricing model (CAPM) holds.  The CAPM requires that the 

pricing kernel be linearly decreasing in the index price.  The absence of stochastic dominance 

merely imposes that the pricing kernel be monotone decreasing in the index price. 
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subject to the conditions (2.12)-(2.15), where the thn  option is removed from the set 

of the J  options in conditions (2.14).11 

 

2.4 Special Case: Transactions Costs and no Trading over 

the Life of the Options 

 
We denote by ( ) ( ), andx yV i V i , the partial derivatives of the value function at date 

one and state i with respect to the bond and stock respectively.  Conditions (2.8)-

(2.10) become 

 

( ) ( )
1

0
I

x i x
i

V R V iπ
=

= ∑ .    (2.17) 

 

( ) ( ) ( )
0 01

0
I

i i
y i y x

i

S SV V i V i
S S

δπ
=

 = +   ∑    (2.18) 

and 

( ) ( ) ( ) ( ) ( )
1

0 0 , 1,...,
I

j j x i ij x j j x
i

P k V X V i P k V j Jπ
=

− ≤ ≤ + =∑ . (2.19) 

 

Conditions (2.5)-(2.7) become12 

 

( ) ( ) ( ) ( )0 0, 0 0, 0, 0, 1,...,x y x yV V V i V i i I> > > > =   (2.20) 

 

( ) ( ) ( )1 2 ... 0y y yV V V I> > > >     (2.21) 

and 

( ) ( ) ( ) ( ) ( )1 1 , 1,...,x y xk V i V i k V i i I− ≤ ≤ + = .  (2.22) 

                                                 
11 Perrakis and Ryan (1984), Levy (1985), Ritchken (1985), and Ryan (2000, 2003) were the first to 

derive upper and lower bounds on the prices of European options in this case and under the 

assumption of zero transaction costs.  See also Perrakis (1986) and Ritchken and Kuo (1988). 
12 Since the value of the bond account at the end of the period is independent of the state i, the 

concavity conditions ( ) 0xxV t <  and ( ) ( ) ( )( )21 1 1 0xx yy xyV V V− >  cannot be imposed.  Only the 

concavity condition ( ) 0yyV t < is imposed as in equation (2.21). 
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In our empirical investigation, we report the percentage of months for which 

the problem defined by equations (2.17)-(2.22) is feasible.  These are months for 

which stochastic dominance is ruled out.  As before, a useful way of pinpointing the 

options that cause infeasibility or near-infeasibility of the problem is to single out a 

“test” option and solve the problem (2.11) subject to the restrictions (2.17)-(2.22), 

where the test option is removed from the set of the J  options in conditions (2.19). 

 

2.5 Intermediate Trading over the Life of the Options 

 
In the next major step towards realism, we allow for intermediate trading, relaxing 

the implausible assumption of the single-period model that, over the life of the 

options, markets for trading are open only at the initial trading date and at the 

common expiration date of the options. 

Recall that the single-period stochastic-dominance model without 

transactions implies that the wealth at the end of the period is an increasing 

function of the stock price at the end of the period and, therefore, the pricing kernel 

is a decreasing function of the stock price at the end of the period.  Likewise, with 

transactions costs, the value of the stock account at the end of the period is an 

increasing function of the stock price at the end of the period and, therefore, the 

marginal utility of wealth out of the stock account is a decreasing function of the 

stock price at the end of the period. 

Constantinides and Zariphopoulou (1999) pointed out that intermediate 

trading invalidates these implications because the wealth at the end of the period 

(or, the value of the stock account at the end of the period) becomes a function not 

only of the stock price at the option’s expiration but also of the entire sample path 

of the stock price.13 

                                                 
13 In the special case of i.i.d. returns, power utility and zero transactions costs, the wealth at the 

end of the period is a function only of the stock price.  However, these assumption would 

considerably diminish the generality of the present paper. 
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In the empirical section, we test for violations of stochastic dominance by 

testing for the feasibility of the conditions (2.5)-(2.10) in the case 2T = .  For T 

large, the numerical implementation becomes tedious and potentially explosive.  

This consideration motivates the development of bounds that are independent of 

the allowed frequency of trading of the stock and bond over the life of the option.  

These bounds are presented below. 

 

2.6 The Constantinides-Perrakis Option Bounds 

 
Constantinides and Perrakis (2002) recognized that it is possible to recursively 

apply the single-period approach and derive stochastic dominance bounds on option 

prices in a market with intermediate trading over the life of the options.  The task 

of computing these bounds is easy compared to the full-fledged investigation of the 

feasibility of conditions (2.5)-(2.10) for large T  for two reasons.  First, the 

derivation of the bounds takes advantage of the special structure of the payoff of a 

call or put option, specifically the convexity of the payoff as a function of the stock 

price.  Second, the set of assets is limited to three assets: the bond, stock and one 

option, the test option. 

The upper and lower bounds on a test option have the following 

interpretation.  If one can buy the test option for less than the lower option bound, 

then there is stochastic dominance between the bond, stock and the test option.  

Likewise, if one can write the test option for more than the upper option bound, 

then again there is stochastic dominance between the bond, stock and the test 

option.  Below, we state these bounds without proof.14 

At any time t prior to expiration, the following is an upper bound on the 

price of a call: 

                                                 
14 These bounds may not be the tightest possible bounds for any given frequency of trading.  

However, they are presented here because of their universality in that they do not depend on the 

frequency of trading over the life of the option.  For a comprehensive discussion and derivation of 

these and other possibly tighter bounds that are specific to the allowed frequency of trading, see 

Constantinides and Perrakis (2002).  See also Constantinides and Perrakis (2004) for extensions 

to American-style options and futures options. 
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[ ]+(1 )( ,  t) -
(1 )t T tT t

S

kc S E S K S
k R −

+  =   −
,   (2.23) 

 

where SR  is the expected return on the stock. 

A partition-independent lower bound for a call option can also be found, but 

only if it is additionally assumed that there exists at least one trader for whom the 

investment horizon coincides with the option expiration, 'T T= .  In such a case, 

transactions costs become irrelevant in the put-call parity and the following is a 

lower bound:15 

 

( )t-T T-t
t t S ( ,  t)  1+ S - / [( ) S ]/R  T t

t Tc S K R E K Sδ − += + −   (2.24) 

 

where R  is one plus the risk free interest rate. 

Put option upper and lower bounds also exist that are independent of the 

frequency of trading.  They are given as follows: 
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  (2.26) 

 

In the empirical section, we test for violations of stochastic dominance by testing for 

violations of these bounds, first without transactions costs and second with 

transactions costs. 

 

                                                 
15 In the special case of zero transactions costs, the assumption 'T T=  is redundant because the 

put-call parity holds. 
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3 Empirical Results 
 

3.1 The Data 

 
We use the historical daily record of the S&P 500 index and its daily dividend 

record over the period 1928-1995.  The monthly index return is based on 30 

calendar day (21 trading day) returns.  In order to avoid difficulties with the 

estimated historical mean of the returns, we demean all our samples and 

reintroduce a mean 4% annualized premium over the risk free rate.  The 

unconditional distribution of the index is extracted from three alternative samples 

of thirty-day index returns: the historical sample uses returns over the period 1928-

1986; the forward-looking sample inclusive of the crash uses the returns over the 

period 1987-1995 and includes the 1987 stock market crash; finally, the forward-

looking sample exclusive of the crash uses the returns over the period 1988-1995 and 

excludes the stock market crash. 

For the S&P 500 index options we use the tick-by-tick Berkeley Options 

Database of all quotes and trades over the years 1986-1995.  We focus on the most 

liquid options by excluding options that are deeper than 10% out of the money or 

deeper than 5% in the money.  For 108 months we retain only the call option 

quotes for the day corresponding to options thirty days to expiration.16  For each 

day retained in the sample, we aggregate the quotes to the minute and pick the 

minute between 9:00-11:00 AM with the most quotes as our cross-section for the 

month.  We present these quotes in terms of their bid and ask implied 

volatilities.  These are the volatilities which would be needed in the BSM formula 

to price the option exactly at the bid or ask quote, respectively.  Details on the 

databases can be found in the appendix, in Jackwerth and Rubinstein (1996), and 

in Jackwerth (2000). 

 

                                                 
16 We lose some month for which we do not have sufficient data, namely after the crash of 

October 1987 and before the introduction of S&P 500 index options in April 1986. 
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3.2 Assumptions on Bid-Ask Spreads and Trading Fees 

 
We introduce bid-ask spreads and trading fees as follows.  For the index, we model 

the combined one-half bid-ask spread and one-way trading fees as a one-way 

proportional transactions cost rate equal to 0.5% of the index price. 

For the options, we present results under a variety of assumptions regarding 

bid-ask spreads and trading fees.  In our standard case, we set the combined one-

half bid-ask spread and one-way trading fees on one option as equal to fraction 

0.002 (or 0.0005 or 0.005) of the index price.  This corresponds to about 75 (or 19 

or 188) cents one-way fee per option, irrespective of the moneyness and, therefore, 

the price of the option.  We also present results in which the transaction cost is 

proportional to the option price and calculated as follows.  The combined one-half 

bid-ask spread and one-way trading fees on the at-the-money option is set equal to 

fraction 0.002 of the index price.  The combined one-half bid-ask spread and one-

way trading fees on some other option equals the fee on the at-the-money option 

multiplied by the ratio of the price of the said option and the price of the at-the-

money option. 

 

3.3 Stochastic Dominance in the Single-Period Case 

 
We check each month for feasibility of the conditions (2.12)-(2.15).  Infeasibility of 

these conditions implies stochastic dominance: an investor can improve her utility 

by trading in these assets without incurring any out-of-pocket costs.  If the 

conditions (2.12)-(2.15) are infeasible, we check for their feasibility by using option 

prices one hour later and one day later.  It is only after we establish that the 

conditions are infeasible at all three dates that we pronounce infeasibility of the 

conditions in a given month. 

If we rule out bid-ask spreads and trading fees, we find that in none of the 

months the conditions (2.12)-(2.15) are feasible.  Therefore, in all months in our 

sample there is stochastic dominance. 
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We introduce bid-ask spreads and trading fees as described in Section 3.2.  

The one-way transactions cost rate (one-way trading fees plus half the bid-ask 

spread) on the index is 50 bps.  The one-way transactions cost on each option is 20 

bps of the index price.  The number of options in each monthly cross-section 

fluctuates between 3 and 34 with a median of 10.  The percentage of months 

without stochastic dominance violations are displayed in Table 1.  The non-

violations in the cases with one-way transaction cost on each option equal to 5 bps 

and 50 bps of the index price are displayed in parentheses. 

The time series of option prices is divided over four subperiods and 

stochastic dominance violations are reported in different columns for each 

subperiod.  The first subperiod extends from May 1986 to October 16 1987, just 

prior to the crash.  The other three samples are all post-crash and span July 1988 

to March 1991, April 1991 to August 1993, and September 1993 to December 1995. 

The time series of index returns is divided into three subperiods and 

stochastic dominance violations are reported in different rows for each subperiod.  

The first subperiod covers 1928-1986.  Since there are too many observations, only 

every 6th return is recorded in building the empirical return distribution.  The 

second subperiod covers 1987-1995, including the crash.  The third subperiod covers 

1988-1995, excluding the crash.  In all three subperiods, the mean premium of the 

index return over the risk free return is adjusted to be 4% annually.17 

 

                                                 
17 We make this adjustment in order to eschew the issue of the predictability of the equity 

premium.  Our results remain practically unchanged if we do not make this adjustment.  

Essentially, the prices of one-month options are insensitive to the expected return on the stock. 
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Table 1.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case 

 
The table displays the percentage of months in which stochastic dominance is absent in the cross-

section of option prices.  The one-way transactions cost rate (one-way trading fees plus half the bid-

ask spread) on the index is 50 bps.  The one-way transactions cost on each option is 20 bps of the 

index price.  In parentheses, the table displays the percentage of months in the cases with one-way 

transactions cost on each option equal to 5 and 50 bps of the index price. 

 

 

Most entries in the table are well below 100%, suggesting that there are a 

number of months in which the risk free rate, the price of the index, and the 

prices of the cross-section of options are inconsistent with a market where none of 

the securities are stochastically dominated, net of generous transactions costs.  

The pattern of violations differs considerably when using the historical index 

sample as opposed to using the forward-looking sample. 

The top left entry of 73% refers to the index return distribution over the 

period 1928-1986 and the option prices over the pre-crash period from May 1986 

to October 16, 1987.  In 27% of the months the conditions (2.11)-(2.14) are 

infeasible and the prices imply stochastic dominance despite the generous 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Number of Months in each Period 18 33 28 28 

Feasibility in the Historical Index 

Sample 1928-1986 

73% 

(47, 100) 

90% 

(41, 97) 

79% 

(18, 96) 

19% 

(0, 96) 

Feasibility in the Forward-Looking 

Index Sample (including the crash) 

1987-1995 

13% 

(13, 73) 

55% 

(31, 83) 

100% 

(57, 100) 

96% 

(42, 100) 

Feasibility in the Forward-Looking 

Index Sample (excluding the crash) 

1988-1995 

13% 

(0, 53) 

34% 

(21, 72) 

89% 

(29, 100) 

100% 

(15, 100) 
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allowance for transactions costs.  In the same row to the right, the entries refer 

to the index return distribution over the period 1928-1986 and the option prices 

over the post-crash sub-periods.  More violations occur in the post-crash sub-

periods, consistent with the evidence in Jackwerth (2000) who finds that the 

estimated pricing kernel is monotonically decreasing in the pre-crash period, but 

locally increasing during the post-crash period.18 

Using the forward-looking index sample 1987-1995 that includes the crash, 

or the forward-looking index sample 1988-1995 that excludes the crash, the 

pattern reverses itself and there are now more stochastic dominance violations in 

the pre-crash period than in the post-crash period.  Comparing the top left 

entries and the bottom right entries that match the index period with the option 

period, we observe fewer cases of infeasibility with recent index and option prices 

than with more distant index and option prices.  Thus, options are more 

rationally priced in the post-crash than the pre-crash period.  This, despite the 

fact that the volatility smile is pronounced in the post-crash period and hardly 

present in the pre-crash period. 

Since it is unclear what are appropriate transactions costs for options, in 

the same table the first entries in brackets present the percentage of non-

violations for the case that the combined one-half bid-ask spread and one-way 

trading fees on one option is 5 bps of the index price.  We observe a huge 

percentage of violations for all index and option price sub-periods.  The second 

entries in brackets present the percentage of non-violations for the case that the 

combined one-half bid-ask spread and one-way trading fees on one option is 50 

bps of the index price.  Violations in the top left and bottom right entries of the 

table disappear but only because the transactions costs now are quite large. 

Table 2 displays the percentage of months in which stochastic dominance 

is absent in the cross-section of in-the-money calls (top entry) and out-of-money 

calls (bottom entry).  The one-way transactions cost rate (one-way trading fees 

plus half the bid-ask spread) on the index is 0.5%.  The one-way transactions 

                                                 
18 The patterns in Jackwerth (2000) do not exactly match with Table 1 as he is using a different 

technique when he estimates the smoothed risk-neutral and actual distributions and divides them 

into each other. 
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cost on each option is 20 bps of the index price.  For the pre-crash sample of 

index and option prices, there are fewer violations for ITM than OTM calls.  

Nonetheless, both ITM and OTM display virtually identical patterns of results, 

which are broadly similar to those in Table 1.  For both forward-looking samples, 

feasibility is poor in the pre-crash and the early post-crash periods, and good to 

excellent in the two late post-crash periods.  In the historical sample, feasibility 

deteriorates substantially in the late post-crash period.  More significantly, 

feasibility improves dramatically for the more recent period in which the index 

and option quotes are matched: the violations disappear in the bottom right 

panel, while their numbers are substantial in the top left panel. 
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Table 2.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case—ITM and OTM Calls Separately 

 

The table displays the percentage of months in which stochastic dominance is 

absent in the cross-section of in-the-money calls (top entry) and out-of-money calls 

(bottom entry).  The one-way transactions cost rate (one-way trading fees plus half 

the bid-ask spread) on the index is 50 bps.  The one-way transaction cost on each 

option is 20 bps of the index price. 

 

 

Table 3 displays the percentage of months in which stochastic dominance 

is absent in the cross-section of option prices but now with proportional instead 

of fixed transactions costs.  The one-way transactions cost rate (one-way trading 

fees plus half the bid-ask spread) on the index is 0.5%.  The one-way transaction 

cost on each option is proportional to the index price, as explained in Section 3.2. 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Number of Months in each Period 18 33 28 28 

Feasibility in the Historical Index 

Sample 1928-1986 

87% 

80% 

90% 

90% 

86% 

100% 

46% 

81% 

Feasibility in the Forward-Looking 

Index Sample (including the crash) 

1987-1995 

53% 

27% 

59% 

66% 

100% 

100% 

96% 

100% 

Feasibility in the Forward-Looking 

Index Sample (excluding the crash) 

1988-1995 

20% 

13% 

41% 

48% 

96% 

89% 

100% 

100% 
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The top left entry of 73% refers to the percent feasibility in case that the 

index return distribution is over the period 1928-1986 and the option prices are 

over the pre-crash period from May 1986 to October 16, 1987.  The feasibility 

with proportional transactions costs is identical to the feasibility with fixed 

transaction costs.  However, with the forward-looking index sample, both 

including and excluding the crash, and with the options in all the post-crash sub-

periods, the feasibility with proportional transactions costs is substantially lower 

than the feasibility with fixed transaction costs.  With proportional transactions 

costs, options are more rationally priced in the post-crash than the pre-crash 

period, but in both periods the percentage of months with feasible pricing is well 

below 100%. 

 

Table 3.  Percentage of Months without Stochastic Dominance Violations in the 

     Single-Period Case and Proportional Transactions Costs 

 
The table displays the percentage of months in which stochastic dominance is absent in the cross-

section of option prices.  The one-way transactions cost rate (one-way trading fees plus half the bid-

ask spread) on the index is 50 bps.  The one-way transactions cost on each option is proportional to 

the index price, as explained in Section 3.2. 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Number of Months in each Period 18 33 28 28 

Feasibility in the Historical Index 

Sample 1928-1986 

73% 

 

90% 

 

86% 

 

50% 

 

Feasibility in the Forward-Looking 

Index Sample (including the crash) 

1987-1995 

13% 

 

48% 

 

89% 

 

92% 

 

Feasibility in the Forward-Looking 

Index Sample (excluding the crash) 

1988-1995 

7% 

 

31% 

 

71% 

 

92% 
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In the next section, we examine the implications of relaxing the 

assumption that trading in the stock and bond over the life of the option is 

forbidden. 

 

3.4 Stochastic Dominance in the Multiperiod Case 
 

In the previous section, we considered feasibility in the context of the single-period 

model.  We established that there is infeasibility, and therefore stochastic 

dominance violations, in a significant percentage of the months.  Does the 

percentage of stochastic dominance violations increase or decrease as the allowed 

frequency of trading in the stock and bond over the life of the option increases?  In 

the very special case of zero transactions costs, i.i.d. returns and constant relative 

risk aversion, we can prove that the percentage of stochastic dominance violations 

increases as the allowed frequency of trading increases.  However, we cannot 

provide a theoretical answer if we relax any of the above three assumptions.  

Therefore, we address the question empirically. 

We compare the percentage of stochastic dominance violations in two 

models, one with one intermediate trading date over the life of the options and 

another with no intermediate trading dates over the life of the options.  To this 

end, we partition the 30-day horizon into two 15-day intervals and approximate the 

15-day return distribution by an 11-point kernel density estimate of the 15-day 

returns.  We use the standard Gaussian kernel of Silverman (1986, pp. 15, 43, and 

45).  The assumed transactions costs are as in the base case presented in Table 1.  

The one-way transactions costs rate (one-way trading fees plus half the bid-ask 

spread) on the index is 50 bps.  The one-way transactions cost on each option is 20 

bps of the index price.  The results are presented in Table 4. 

We may not investigate the effect of intermediate trading by directly 

comparing the results in Tables 1 and 4 because the return generating process 

differs in the two tables.  Recall that the results in Table 1 are based on a 30-day 

stock return generating process that has as many different returns as the different 
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observed realizations and frequency equal to the observed frequency.19  By contrast, 

the results in Table 4 are based on a simplified 15-day 11-point kernel density 

estimate of the 15-day returns.  The coarseness of the grid is dictated by the need 

to keep the problem computationally manageable.  The 30-day return then is the 

product of two 15-day returns treated as i.i.d.  With this process of the 30-day 

return, we calculate the percentage of months without stochastic dominance 

violations and report the results in Table 4 in brackets. 

The effect of allowing for one intermediate trading date over the life of the 

one-month options is illustrated by the main entries in Table 4.  These entries are 

contrasted with the bracketed entries which represent the percentage of months 

without stochastic dominance violations when intermediate trading is forbidden.  

Intermediate trading generally decreases the number of feasible months in our 

subperiods.20  We conclude that intermediate trading strengthens the single-period 

systematic evidence of stochastic dominance violations. 

 

                                                 
19 For the historic sample of stock returns we take only one every six monthly returns. 
20 In only one case does this effect go the other way and we suspect a convergence problem with 

the MATLAB optimization code, pending further investigation. 
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Table 4.  Percentage of Months without Stochastic Dominance Violations, in the 

     2-Period Case 

The table displays the percentage of months in which stochastic dominance is absent in the cross 

section of option prices when one intermediate trading date is allowed over the life of the one-month 

options.  The one-way transactions cost rate (one-way trading fees plus half the bid-ask spread) on 

the index is 50 bps.  The one-way transactions cost on each option is 20 bps of the index price.  In 

parentheses, the table displays the percentage of months in which stochastic dominance is absent in 

the case when no intermediate trading is allowed over the life of the one-month options.  Two periods 

of 15 days and a kernel density of 15-day returns is used (discretized to 11 values from e-0.20 to e0.20, 

spaced 0.04 apart in log spacing). 

 

 

In the next section, we obtain further insights as to which options cause 

infeasibility by displaying the options that violate the upper and lower bounds on 

option prices. 

 

 Panel A: 

860516-

871016 

Panel B: 

880715-

910315 

Panel C: 

910419-

930820 

Panel D: 

930917-

951215 

Number of Months in each Period 18 33 28 28 

Feasibility in the Historical Index 

Sample 1928-1986 

53% 

(80%) 

45% 

(62%) 

14% 

(21%) 

0% 

(0%) 

Feasibility in the Forward-

Looking Index Sample (including 

the crash) 1987-1995 

13% 

(13%) 

17% 

(31%) 

64% 

(64%) 

50% 

(58%) 

Feasibility in the Forward-

Looking Index Sample (excluding 

the crash) 1988-1995 

13% 

(13%) 

41% 

(41%) 

93% 

(86%) 

96% 

(96%) 
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3.5 Stochastic Dominance Bounds in the Single-Period and 

Multiperiod Cases 

 
In Section 2.6, equations (2.23)-(2.26), we stated a set of stochastic dominance 

bounds on option prices that are valid irrespective of whether trading in the bond 

and stock over the life of the option is allowed or not.  In this section, we calculate 

these bounds on option prices and translate them as bounds on the implied 

volatility of option prices.  In the figures that follow, a violation occurs whenever an 

observed option bid price (translated into implied volatility) lies above the tighter 

of the two upper bounds or an observed option ask price (translated into implied 

volatility) lies below the tighter of the two lower bounds. 

In Figures 1-3, we set the transactions costs rate on the stock equal to zero 

and also set the trading fees on the options equal to zero.  The bid-ask spread on 

the option price is taken under consideration, as we present both the bid and ask 

option prices.  With zero transactions costs, the two upper bounds on the implied 

volatility coincide because the put upper bound in equation (2.25) may be obtained 

from the call upper bound in equation (2.23) through the put-call parity.  Likewise, 

with zero transactions costs, the two lower bounds on the implied volatility coincide 

because the put lower bound in equation (2.26) may be obtained from the call lower 

bound in equation (2.24) through the put-call parity. 

In Figure 1, the bounds are based on the historical sample of stock returns, 

1928-1986.  In Figure 2, the bounds are based on the forward-looking sample of 

stock returns, 1987-1995, inclusive of the crash.  In Figure 3, the bounds are based 

on the forward-looking sample of stock returns, 1988-1995, exclusive of the crash.  

The options data confirm what we already know from the literature: before the 

crash, the smile is largely flat and, after the crash, it is downward sloping. 

We find that the bounds are similar across the samples (namely, they are 

downward sloping) but the historical stock sample induces bounds that are 

altogether higher as the volatility is higher in the historical sample than in the 

forward looking samples.  The pattern of violations follows quite naturally.  The 

flat pre-crash smile fits reasonably well within the rather high historical bounds 
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even though these are downward sloping.  The post-crash smiles are too low for the 

rather high location of the historical sample bounds.  Going to the forward-looking 

sample bounds, these are located somewhat lower than the historical sample 

bounds.  Therefore, they match the also downward-sloping post-crash option prices 

rather well because they are located somewhat lower too.  However, they do not 

match very well the higher horizontal smile of the pre-crash options. 

In Figure 1, we observe that both upper and lower bounds exhibit a clear 

smile pattern, which is present in similar forms in all four panels of Figure 1.  In 

particular, the smile in the bounds is very much present in the pre-crash panel A, in 

spite of the fact that the observed option prices conform approximately to the BSM 

model, with a horizontal smile, which lies almost entirely within the bounds.  By 

contrast, in post-crash panels B-D, the observed option prices show progressively 

more marked departures from horizontality, which still lie within the bounds in 

panel B but violate strongly the bounds in panels C and D, even around at-the-

money.  This conforms closely to the observation originally made by Rubinstein 

(1994), that option prices behave differently pre- and post-crash, with the former 

following the BSM model and the latter not. 

In panel A, several pre-crash ask prices of OTM calls fall below the lower 

bound.  Even though pre-crash option prices follow the BSM model reasonably well, 

it does not follow that these options are correctly priced.  Our novel finding is that 

pre-crash option prices are incorrectly priced, if index return expectations are 

formed based on the historical experience.  Furthermore, some of these prices are 

below the bounds, contrary to received wisdom that historical volatility generally 

underprices options in the BSM model. 



 29

Figure 1.  Bounds Based on the Historical Sample without Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 without transaction 

costs on the option prices during those periods, based on the historical sample of stock returns, 1928-

1986.  Since there are no transaction costs, the two upper bounds coincide and the two lower bounds 

coincide. 
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Figures 2 and 3 display the same case as Figure 1, except that the bounds 

are now estimated with the forward-looking sample of stock returns, one including 

the crash (Figure 2) and the other excluding the crash (Figure 3).  We observe very 

different estimates of the bounds, in which the smile is much steeper in all periods 

and creates a very different pattern of bounds violations.  Thus, it is in the pre-

crash panel A that we now observe the sharpest violations of the bounds, while the 

violations are weaker in the first post-crash panel B, and disappear completely in 

the later panels C and D.  The shift in the underlying index distribution, clearly 

visible in the change of the bounds estimates when we move from the historical to 

the forward-looking sample, seems to have been reflected in the option market 

prices as a type of “learning process” for the option investor, albeit with a certain 

lag.  This shift is particularly pronounced in Figure 3, where the crash period has 

been excluded and for which the fit of the bounds with the observed option prices is 

better. 

The following plausible scenario emerges from this pattern.  In the early 

years since April 1986, when index options were introduced on the Chicago Board 

Options Exchange, investors applied the BSM model to price options without 

questioning the empirical validity of the constant-volatility assumption of the 

model.  Hence prices largely adhere to the BSM model during this period.  

Following the crash of 1987, investors seem to have recognized the limitations of 

the BSM model. 

Figures 2 and 3, panels B-D, dispel another common misconception, that the 

observed smile is too steep after the crash.  Our novel finding is that most of the 

bound violations post-crash are due to the option smile not being steep enough 

relative to expectations on the index price formed post-crash.  Even though the 

BSM model assumes that there is no smile, an investor who properly understood 

the post-crash distribution of index returns should have priced the options with a 

steeper smile than the smile reflected in the actual option prices. 
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Figure 2.  Bounds Based on the Forward Looking Sample (1987-1995) without 

     Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 without transaction 

costs on the option prices during those periods, based on the forward looking sample of stock returns, 

1987-1995.  Since there are no transaction costs, the two upper bounds coincide and the two lower 

bounds coincide. 
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Figure 3.  Bounds Based on the Forward Looking Sample (1988-1995) without 

     Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 without transaction 

costs on the option prices during those periods, based on the forward looking sample of stock returns, 

1988-1995.  Since there are no transaction costs, the two upper bounds coincide and the two lower 

bounds coincide. 

 
Panel A: 860516-871016

0

0.1

0.2

0.3

0.4

0.5

0.9 0.95 1 1.05

Moneyness

Im
pl

ie
d 

Vo
la

til
ity

Bid Ask Call Low er

Call Upper Put Low er Put Upper

Panel B: 880715-910315

0

0.1

0.2

0.3

0.4

0.5

0.9 0.95 1 1.05

Moneyness

Im
pl

ie
d 

Vo
la

til
ity

Bid Ask Call Low er

Call Upper Put Low er Put Upper

Panel C: 910419-930820

0

0.1

0.2

0.3

0.4

0.5

0.9 0.95 1 1.05

Moneyness

Im
pl

ie
d 

Vo
la

til
ity

Bid Ask Call Low er

Call Upper Put Low er Put Upper

Panel D: 930917-951215

0

0.1

0.2

0.3

0.4

0.5

0.9 0.95 1 1.05

Moneyness

Im
pl

ie
d 

Vo
la

til
ity

Bid Ask Call Low er

Call Upper Put Low er Put Upper



 33

Figures 4-6 are the counterparts of Figures 1-3 with a generous allowance of 

0.5% transactions cost rate in trading the stock.  With transactions costs, the two 

upper bounds no longer coincide.  We present both upper bounds but focus on the 

tighter of the two.  The two lower bounds almost coincide.  Again, we present both 

lower bounds but focus on the tighter of the two.  Transactions costs have 

relatively little impact on the tighter of the two upper bounds and the tighter of the 

two lower bounds.  The pattern of violations pre-crash and post-crash remains 

unchanged, although their intensity in the post-crash periods decreases due to the 

moderate widening of the bounds. 

When the forward-looking sample is used in the estimation of the bounds, 

the shift in the bounds results in a worse fit of the observed option prices in the 

pre-crash period, but in a much better fit in the post-crash periods.  In fact, the 

observed option prices now lie almost entirely within the bounds in the last two 

post-crash periods.  The fit is best in Figure 6, when the year of the crash is 

excluded from the sample with which the bounds are estimated. 
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Figure 4.  Bounds Based on the Historical Sample with Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 with transaction 

costs on the index of 20 bps during those periods, based on the historical sample of stock returns, 

1928-1986. 
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Figure 5.  Bounds Based on the Forward Looking Sample (1987-1995) with 

     Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 with transaction 

costs on the index of 20 bps during those periods, based on the forward looking sample of stock 

returns, 1987-1995. 
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Figure 6.  Bounds Based on the Forward Looking Sample (1988-1995) with 

     Transactions Costs 

 
The figure displays the observed bid and ask quotes during one pre-crash and three post-crash 

periods.  It also shows the call and put upper and lower bounds from Section 2.6 with transaction 

costs on the index of 20 bps during those periods, based on the forward looking sample of stock 

returns, 1988-1995. 
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4 Concluding Remarks 

 

We document violations of stochastic dominance in the one-month S&P 500 index 

options market in the period 1986-1995 when the unconditional index return 

distribution is taken to be that of the historical index sample (1928-1985), the 

forward-looking sample that includes the crash (1986-1995), or the forward-looking 

sample that excludes the crash (1988-1995). 

Evidence of stochastic dominance means that a trader can improve her 

expected utility by engaging in a zero-net-cost trade.  We consider a market with 

heterogeneous agents and investigate the restrictions on option prices imposed by a 

particular class of utility-maximizing traders that we simply refer to as traders.  We 

do not make the restrictive assumption that all economic agents belong to the class 

of the utility-maximizing traders.  Thus our results are robust and unaffected by 

the presence of agents with beliefs, endowments, preferences, trading restrictions, 

and transactions cost schedules that differ from those of the utility-maximizing 

traders modeled in this paper. 

The violations increase when we allow for trading the index over the life of 

the options.  Violations persist even when we allow for realistic trading fees in the 

index and options markets and recognize bid-ask spreads in the options market.  

The pattern of violations changes with the index sample: the historical sample 

generates fewer violations pre-crash and in the first sub-period after the crash and 

more violations in the later two subperiods of the post-crash period.  The forward-

looking samples generate the opposite pattern. 

We also investigate violations of stochastic dominance through violations of 

upper and lower bounds on the bid and ask prices of options.  This is a less 

demanding scenario in that it tests whether options, taken only one at a time, are 

correctly priced relative to the index.  An advantage of this investigation is that the 

bounds are independent of assumptions regarding the allowed frequency of trading 

during the one-month life of each option.  The observed violations of the bounds 

reinforce our earlier findings. 
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We find that the bounds are similar across the samples (namely, they are 

downward sloping) but the historical index sample induces bounds that are higher 

as the volatility is higher in the historical sample than in the forward looking 

samples.  The flat pre-crash smile fits reasonably well within the rather high 

historical bounds even though these are downward sloping.  The post-crash smiles 

are too low for the rather high location of the historical sample bounds.  The 

forward-looking sample bounds are located somewhat lower than the historical 

sample bounds.  Therefore, they match the also downward-sloping post-crash 

option prices rather well because they are located somewhat lower too.  However, 

they do not match very well the higher horizontal smile of the pre-crash options. 

One novel finding is that, even though pre-crash option prices follow the 

BSM model reasonably well, it does not follow that these options are correctly 

priced.  Pre-crash option prices are incorrectly priced, if index return expectations 

are formed based on the historical experience.  Furthermore, some of these prices 

are below the bounds, contrary to received wisdom that historical volatility 

generally underprices options in the BSM model. 

Another novel finding dispels the common misconception that the observed 

smile is too steep after the crash.  Most of the bound violations post-crash are due 

to the option smile not being steep enough relative to expectations on the index 

price formed post-crash.  Even though the BSM model assumes that there is no 

smile, an investor who properly understood the post-crash distribution of index 

returns should have priced the options with a steeper smile than the smile reflected 

in the actual option prices. 

The violations reported in this paper are based on the unconditional index 

return distribution.  We recognize the non-stationarity of the index return 

distribution to the extent that we model the unconditional index return distribution 

after three different and representative index return samples, the historical index 

sample and the two forward-looking samples, one that includes the crash and one 

that that excludes it.  It remains an open and challenging topic for future research 

to investigate whether the observed violations can be explained away with a more 

detailed model of the conditional index return distribution.  It also remains a topic 
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for future research to investigate whether priced state variables, omitted in our 

investigation, explain the observed violations. 
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Appendix 
 

The empirical tests are based on a database containing all minute-by-minute 

European option quotes and trades on the S&P500 index from April 2, 1986 to 

December 29, 1995.  We use only option quotes since we cannot know for actual 

trades where they occurred relative to the bid/ask spread and our results might be 

affected.  The database also contains all futures trades and quotes on the S&P 500.  

Our goal is to obtain a panel of daily return observations on the index, the risk-free 

rate, and on several options with different strike price/index level ratios 

(moneyness) and constant maturity. 

Index Level.  Traders typically use the index futures market rather than the 

cash market to hedge their option positions.  The reason is that the cash market 

prices lag futures prices by a few minutes due to lags in reporting transactions of 

the constituent stocks in the index.  We check this claim by regressing the index on 

each of the first twenty minute lags of the futures price.  The single regression with 

the highest adjusted R2 was assumed to indicate the lag for a given day.  The 

median lag of the index over the 1542 days from 1986 to 1992 was seven minutes. 

Because the index is stale, we compute a future-based index for each minute from 

the future market 

 

0 1
RS F
δ

=
+

,     (A1) 

 

where F is the futures price at option expiration. 

For each day, we use the median interest rate implied by all futures quotes 

and trades and the index level at that time.  We approximate the dividend yield by 

assuming that the dividend amount and timing expected by the market were 

identical to the dividends actually paid on the S&P 500 index.  However, some 

limited tests indicate that the choice of the index does not seem to affect the results 

of this paper. 

Interest Rates.  We compute implied interest rates embedded in the 

European put-call parity relation.  Armed with option quotes, we calculate separate 
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lending and borrowing interest returns from put-call parity where we used the 

above future-based index.  We assign, for each expiration date, a single lending and 

borrowing rate to each day, which is the median of all daily observations across all 

striking prices.  We then use the average of those two interest rates as our daily 

spot rate for the particular time-to-expiration.  Finally, we obtain the interpolated 

interest rates from the implied forward curve.  If there is data missing, we assume 

that the spot rate curve can be extrapolated horizontally for the shorter and longer 

times-to-expiration.  Again, some limited tests indicate that the results are not 

affected by the exact choice of the interest rate. 

Options with adjusted moneyness and constant maturity.  It is important to 

use options with adjusted moneyness and constant maturity since our test statistics 

involve the conditional covariance matrix of option pricing errors.  If the maturity 

of the options were not constant over time, then the conditional covariance matrix 

of the pricing errors would be time varying, too.  This would require additional 

exogenous assumptions on the structure of the covariance matrix and the 

estimation of several additional parameters, which could lead to additional 

estimation error in our test statistics. 

In our data set, all puts are translated into calls using European put-call 

parity.  Then, we compute the implied volatilities where we use the Black-Scholes 

formula as a translation device only.  We then adjust throughout each day for the 

movement of the stock price by assuming that the implied volatilities are 

independent of the underlying stock price.  Then, we pick the stock price closest to 

12 pm as our daily stock price and value all options from throughout the day as if 

they were call options with the implied volatilities measured above and struck at 

the moneyness level measured above.  We do not eliminate any daily observations 

due to their level of moneyness. 

Arbitrage Violations.  In the process of setting up the database, we check for 

a number of errors, which might have been contained in the original minute-by-

minute transaction level data.  We eliminate a few obvious data-entry errors as well 

as a few quotes with excessive spreads—more than 200 cents for options and 20 

cents for futures.  General arbitrage violations are eliminated from the data set. We 
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also check for violations of vertical and butterfly spreads.  Within each minute we 

keep the largest set of option quotes which does not violate:  

 

(1 ) max[0, (1 ) ]i iS C S K Rδ δ+ ≥ ≥ + −    (A2) 

 

American early exercise is not an issue as the S&P 500 options are European 

in nature, and the discreteness of quotes and trades only introduces a stronger 

upward bias in the midpoint implied volatilities for deep-out-of-the-money puts 

(moneyness less than 0.6) which we do not use in our empirical work. 
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