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Abstract

In this paper we use a new approach to construct unconditionally efficient market-timing

strategies that optimally utilize the predictive information inherent in commonly used macro-

economic and term-structure variables. We also construct a statistical test to evaluate the

performance of our strategies. We find that in-sample, our strategies almost double the un-

conditional Sharpe ratio of our benchmark index. We also compare the performance of our

unconditionally efficient strategies with that of more traditional conditionally efficient portfo-

lios. We find that our strategies not only show clearly superior performance, but their portfolio

allocation weights respond much more conservatively to changes in the predictive informa-

tion, resulting in significantly lower transaction costs. The out-of-sample performance of our

strategies is broadly consistent with the in-sample estimates. For example, our market-timing

strategy achieves an out-of-sample alpha of 13.5% against the benchmark, suggesting that a

portfolio manager who followed this strategy could have made significant gains.
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1 Introduction

The purpose of this note is to investigate if optimal market timing can generate excess per-

formance and hence produce significant economic gains. To this end, we construct uncondi-

tionally efficient, dynamically managed trading strategies via the optimal use of conditioning

information in portfolio formation as developed in Ferson and Siegel (2001), and Abhyankar,

Basu, and Stremme (2005b). We evaluate the in-sample and out-of-sample performance of

these strategies using a statistical test developed in Abhyankar, Basu, and Stremme (2005a),

based on an idea first considered in Cochrane (1999). This statistical test initially allows us

to determine whether any market-timing strategy will work. Moreover, implicit in its con-

struction is the best-performing such strategy. This strategy optimally utilizes the predictive

information inherent in commonly used indicators in order to efficiently time the market.

We consider benchmark-timing with the CRSP value-weighted index as the risky asset, and

the 1-month Treasury bill rate as the risk-free asset. We employ a number of commonly

used macro-economic and term-structure variables as conditioning instruments. The former

include inflation, growth in aggregate consumption and unemployment. The latter include

the short rate, term spread and convexity, as well as the credit yield spread. Although in a

predictive regression, less than 5% of the time-variation of returns is explained by the pre-

dictive instruments, our framework allows us to use even these small levels of predictability

to obtain large economic gains. To this end, we construct efficiently managed market-timing

strategies, and assess their ex-post performance using a variety of standard performance

measures. In these strategies the investment-mix between the risky and risk-free assets is

optimally managed as a function of the predictive instruments. This is in contrast to the

simple switching strategies prevalent in much of the literature, which simply move in and

out of the market.

We find that in-sample Sharpe ratios more than double when all our predictive variables are

optimally utilized. The p-value associated with our test statistic is indistinguishable from

zero, indicating that the increase in Sharpe ratio is highly significant. The term-structure

3



and macro-economic variables used separately also lead to significant economic gains. Our

optimal market-timing strategies have considerably higher means than the corresponding

fixed-weight strategies. Constraining the portfolio weights to exclude short selling does not

lead to much reduction in performance. This is due in part to the ‘conservative response’

of the optimal portfolio weights, first noted in Ferson and Siegel (2001). A more detailed

analysis of the strategies reveals that the behavior of the optimal portfolio weights is largely

driven by time-variations in the conditional Sharpe ratio. In particular, we show that the

gain from predictability is higher the higher the volatility of the conditional Sharpe ratio, a

point also noted in Cochrane (1999).

Our strategies are designed to be unconditionally efficient and hence optimal with respect to

ex-post performance criteria, in contrast to traditional conditionally efficient portfolios that

are optimal with respect to the one-period-ahead conditional distribution of returns. While

unconditionally efficient strategies are necessarily also conditionally efficient, the converse

is generally not true. Our strategies not only show significantly better performance, but

also display much less variability in portfolio weights, both in and out-of-sample. The latter

is important in particular when considering transaction costs. Moreover, the conditionally

efficient strategies often require extreme long and short positions, which makes them much

more sensitive to the introduction of short-sale restrictions.

The out-of-sample performance of our strategies is broadly consistent with the in-sample

results. In particular, while the performance of a traditional efficient static portfolio de-

teriorates considerably out-of-sample (barely matching the benchmark performance), our

efficiently managed active strategies maintain their performance (achieving Sharpe ratios in

excess of 0.6 and alphas relative to the benchmark of more than 13%).

The remainder of this paper is organized as follows. In Section 2, we briefly review the

theoretical background, discuss the construction of our efficient strategies and define our

statistical test. In Section 3, we outline our empirical methodology and present the results

of our analysis. Section 4 concludes. For brevity, most mathematical proofs are omitted in

this note. Details are available from the authors upon request.
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2 Efficient Market Timing Strategies

The flow of information in the economy is described by a discrete-time filtration {Ft}t,

defined on some probability space (Ω,F , P ). There are two traded assets, a market index

portfolio M , and a risk-free asset (e.g. a Treasury bill). Denote by rM
t the gross return from

time t− 1 to time t on the index portfolio (i.e. the future value at time t of $1 invested at

time t− 1). Similarly, denote by rf
t−1 the (gross) return on the risk-free asset over the same

period. The difference in time indexing indicates that, while the return rf
t−1 on the risk-free

asset is known at the beginning of the period (i.e. at time t− 1), the return rM
t on the index

portfolio is uncertain ex-ante and only realized at the end of the period (i.e. at time t).

Note however that we do not assume rf
t−1 to be unconditionally constant. In other words,

while the return on the risk-free asset is known with certainty at the beginning of any one

investment period, it may (and in general will) vary over time from one period to the next.

In this sense, rf
t−1 is only conditionally risk-free but not unconditionally.

Conditioning Information

Denote by Gt−1 ⊆ Ft−1 the information set on which investors base their asset allocation

decisions at time t − 1. In our empirical applications, Gt−1 will be given by a set of lagged

instruments yt−1, variables observable at time t − 1 that contain information about the

conditional distribution of risky asset returns. Finally, we denote by Et−1( · ) the conditional

expectation with respect to Gt−1. A dynamically managed market timing strategy therefore

is a sequence of ‘weights’ {θt}t, where θt−1 denotes the fraction of the investor’s wealth that

is invested in the risky asset (i.e. the index portfolio) at time t − 1. The return on such a

strategy over the period from time t− 1 to t is hence given by,

rt(θ) = rf
t−1 + ( rM

t − rf
t−1 )θt−1. (1)

Our aim is to find strategies that optimally exploit the information contained in the in-

formation set Gt−1. However, instead of specifying θt−1 conditionally period-by-period, we

characterize the optimal strategy ex-ante as a function of the conditioning information.
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Efficient Strategies

Denote by µt−1 = Et−1( rM
t ) the conditional expected return on the index portfolio. Tra-

ditional market timing strategies would simply switch between the index portfolio and the

risk-free asset on the basis of the sign of µt−1− rf
t−1. In contrast, we consider here strategies

that are unconditionally efficient in the sense that they minimize the unconditional variance

of returns rt(θ) for given unconditional mean. In other words, our strategies are designed

to be optimal with respect to ex-post performance criteria. In particular, our strategies will

attain the maximal achievable unconditional Sharpe ratio.

Let σ2
t−1 = Et−1( ( rM

t − µt−1 )2 ) denote the conditional variance of the risky asset return.

Although in the empirical applications in this paper, we will assume σt−1 to be constant,

the theoretical results stated below hold also when the conditional variance is allowed to

be time-varying. Obviously, the conditional Sharpe ratio for the period from time t − 1 to

time t can thus be written as Ht−1 = ( µt−1 − rf
t−1 )/σt−1. It can now be shown1 that any

unconditionally efficient strategy can be written as,

θ∗t−1 =
w − rf

t−1

1 + H2
t−1

· µt−1 − rf
t−1

σ2
t−1

, (2)

where w ∈ IR is a constant, related to the unconditional expected return on the strategy. By

choosing w appropriately, one can now construct efficient strategies to track a given target

expected return or target variance.

2.1 Properties of Efficient Strategies

From (2), it is clear that the conditional Sharpe ratio Ht−1 plays a key role in the behavior

of the optimal strategy. Abhyankar, Basu, and Stremme (2005b) show that the maximum

(squared) unconditional Sharpe ratio, attainable by optimally managed efficient portfolio

1See Abhyankar, Basu, and Stremme (2005b), or Ferson and Siegel (2001).
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strategies, can be written as λ2
∗ = E( H2

t−1 ). In other words, the squared unconditional

Sharpe ratio is given by the unconditional second moment of the conditional Sharpe ratio2.

Consequently, time-variation in the conditional Sharpe ratio improves the ex-post risk-return

trade-off for the mean-variance investor, a point also noted by Cochrane (1999). See also

Section 3 and Figures 2 and 3 for an illustration.

For small values of µt−1−rf
t−1, the efficient weights in (2) respond almost linearly to changes

in µt−1, shifting more money into the index portfolio the higher its expected return relative

to the Treasury bill. However, for extreme values of µt−1, the behavior of the weights is

dominated by the denominator 1 + H2
t−1, forcing the asset allocation back towards the risk-

free asset. This creates a ‘conservative response’ to extreme signals, as observed also by

Ferson and Siegel (2001). Note that the corresponding conditionally efficient strategy is

missing the normalization factor 1 + H2
t−1 and thus tends to ‘over-react’ to extreme values

of the conditioning instrument.

To shed additional light on the behavior of the efficient weights, consider for the moment an

investor who chooses an optimal asset allocation such as to maximize conditional quadratic

utility. The unconditionally efficient allocation (2) then corresponds to a conditional risk

aversion coefficient that is proportional to 1 + H2
t−1. In other words, the unconditionally

efficient market timing strategy corresponds to a conditionally optimal strategy for an in-

vestor with time-varying risk aversion. In particular, the implied conditional risk aversion

co-efficient increases when the conditional expected return µt−1 takes on extreme values,

thus causing the strategy to respond more conservatively to extreme information. In con-

trast, the conditionally optimal strategy for constant risk aversion tends to ‘over-react’ to

extreme signals. In other words, the portfolio weights of a conditionally efficient strategy

tend to be more volatile than those of the corresponding unconditionally efficient strategy,

an important consideration in particular in view of transaction costs (see also Section 3).

2This result holds even in the case of multiple risky assets. In the case of a single risky asset, this was

shown by Jagannathan (1996).
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2.2 Modeling Return Predictability

Although the theoretical results presented in the preceding sections are valid also in much

more general settings, for our empirical analysis (see Section 3) we will restrict ourselves to

a simple linear specification. More specifically, we assume that the return on the market

index portfolio is described by a linear predictive model of the form,

rM
t = µ0 + Byt−1 + εt, (3)

where yt−1 is a (vector of) lagged predictive instruments, and εt is an iid sequence of distur-

bances. In this setting, the conditional expectation of rM
t is given by µt−1 = µ0 +Byt−1, and

the conditional variance is constant, σ2
t−1 = σ2(et) due to the iid assumption. For notational

convenience, we normalize the instruments yt−1 to have zero mean, so that the unconditional

expected return on the market index is E( rM
t ) = µ0.

To assess the economic value of optimal market timing, we measure the extent to which the

optimal use of return predictability extends the unconditionally efficient frontier and thus

the opportunity set available to the mean-variance investor. As a benchmark, denote by λ0

the maximum Sharpe ratio of a buy-and-hold strategy, i.e.

λ0 =
E( rM

t − rf
t−1 )

σ( rM
t )

(4)

As noted above, the maximum (squared) unconditional Sharpe ratio, attainable by opti-

mally managed strategies, is given by λ2
∗ = E( H2

t−1 ). Thus, the economic gain of optimal

market timing can be measured by the difference Ω := λ2
∗ − λ2

0 in squared Sharpe ratios

with and without the optimal use of conditioning information. Our null hypothesis is that

predictability has no effect, i.e. Ω = 0.

Abhyankar, Basu, and Stremme (2005a) show that under the null hypothesis, the test statis-

tic T · Ω (where T is the number of time series observations) has an F -distribution in finite

samples, and a χ2 distribution (with one degree of freedom in the case of a single risky

asset) asymptotically. This enables us to assess whether the increase in Sharpe ratio due
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to the optimal use of asset return predictability is statistically significant. Moreover, it is

straight-forward to show that under the null hypothesis, we have

Ω = λ2
∗ − λ2

0 =
R2

1−R2
, (5)

where R2 is the coefficient of determination in the predictive regression (3). In other words,

the measure Ω of the economic value of predictability is directly associated with the statistical

properties of the predictive regression.

3 Empirical Analysis

In this section, we briefly describe the empirical methodology and the data used, and discuss

the results of our empirical analysis.

3.1 Data and Methodology

For our empirical analysis, we use monthly return data covering the period from January

1960 to December 2003. As the single risky asset rM
t , we use the total return on the CRSP

value-weighted market index. As the (conditionally) risk-free asset rf
t−1, we use the return

on the corresponding 1-month US Treasury bill.

We categorize the predictive instruments used into two groups, capturing (a) changes in the

level and shape of the term structure of interest rates, and (b) macro-economic indicators.

The former group consists of the current short rate (we use the 1-month Treasury bill rate

as a proxy), the slope of the term structure (the yield spread between the 10-year bond and

the 1-month bill), and a proxy for the convexity of the yield curve (the difference between

twice the 5-year Treasury yield and the sum of the 1-month and 10-year rates). All data for

this group are obtained from the Economic Database (FRED) at the Federal Reserve Bank
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of St. Louis3. In addition, we include the credit yield spread, defined as the difference in

10-year yield between AAA-rated corporate and government bonds, which we obtained from

Datastream. The group of economic indicators includes inflation (the change in CPI over the

period), and the rate of growth in aggregate consumption and the level of unemployment.

All of these were constructed from data published by the Federal Reserve Bank of St. Louis.

For each group of instruments, we estimate the predictive regression (3), and compute the

implied maximum fixed-weight and optimally managed Sharpe ratios using the expressions

from Section 2. We then construct the corresponding conditionally and unconditionally

efficient market-timing strategies using (2), and assess their performance using a variety of

standard ex-post performance measures. For the out-of-sample analysis, we use the first 20

years of data to estimate (3), construct the weights of the efficient strategies based on the

model estimates, and then assess their performance on the basis of their realized returns in

the out-of-sample period.

3.2 In-Sample Results

We first analyze whether any market-timing strategy can work by estimating the model using

all predictive instruments and computing the test statistic Ω defined in the preceding section.

The results are summarized in the last column of Table 1. While the maximum Sharpe ratio

without conditioning information (‘fixed-weight’) is only 0.37, this almost doubles to 0.73

when all predictive variables are used. The p-value of our test statistic is indistinguishable

from zero, indicating that the result is significant at any level of confidence. Thus it is

clear that our market timing strategy performs well in-sample. Even when the two groups

of instruments are used separately (columns 2 and 3 in Table 1) the increase in Sharpe

ratio (to 0.57 and 0.59, respectively), though less dramatic, is still significant at the 1%

level. Interestingly, the economic gain from optimal market-timing is considerable (and

3http://research/stlouisfed.org
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significant), even though the joint R2 of the predictive regression is less than 5% in all cases.

Next we focus on the performance of the optimally managed market-timing strategy, designed

to maximize average returns while tracking a target volatility of 15% annually (which approx-

imately reflects the volatility of the benchmark index over the sample period). The results

are shown in Table 2. When all instruments are used, the optimally managed maximum-

return strategy achieves an (annualized) mean of 17.2%, while the corresponding efficient

static (fixed-weight) portfolio barely matches the benchmark return (11.7%). Because the

optimal strategy matches the target volatility quite closely, the Sharpe ratio approximately

doubles from about 0.36 to 0.70. Overall, the ex-post performance of the efficient strategies

comes very close to the (theoretical) Sharpe ratios implied by the model estimates (as shown

in Table 1).

We also computed the ex-post Jensen’s alphas, tracking errors and information ratios of

our strategies, relative to the market benchmark. Unsurprisingly, the fixed-weight strategy

tracks the benchmark very closely (with a tracking error of 1%), but also barely matches its

performance. In contrast, our optimal strategies deviate substantially from the benchmark

(with tracking errors of between 12 and 13.5%), but at the same time generate alphas of up to

8.5%. More importantly, our optimal market-timing strategies also provide a considerable

amount of portfolio insurance (without options): while the optimal fixed-weight strategy

actually performs less well in recessions, the unconditionally efficient strategy achieves re-

cession alphas in excess of 20%. This is illustrated in Figure 1, which shows the cumulative

return of the two types of strategies, relative to the benchmark: while the optimal strategy

participates in the up-swings of the benchmark, it hardly suffers when the benchmark takes

a dip (note that the scale of the graph is logarithmic).

When we constrain the strategy to have non-negative weights the mean drops to 12.07% but

the volatility is reduced to 8.48%. Overall, the Sharpe ratio drops only slightly to 0.69 (from

0.73). This suggests that the unconstrained strategy does not take extreme long or short

positions (this is also confirmed by Figure 4) and illustrates the conservative response of these

portfolio weights to extreme values of the predictive variables, a property first observed in
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Ferson and Siegel (2001).

Focusing on just the term-structure variables, our test statistic has a p-value of 0.38%,

showing that the increase in Sharpe ratio due to optimal market-timing using these variables

is highly significant, although the corresponding maximum-return strategy has a lower mean

(but also lower volatility) than that using all predictive variables. Similarly, the p-value when

only the macro-economic variables are used is 0.21%. In summary, both groups of indicators

clearly have significant predictive ability, and are thus clearly useful for optimal market-

timing.

3.3 How do the Strategies Work?

A closer analysis of the portfolio weights in (2) reveals that the conditional Sharpe ratio plays

a key role in the performance of these strategies. As the squared unconditional Sharpe ratio

λ2
∗ is the expectation of the squared conditional Sharpe ratio H2

t−1 = ( µt−1 − rf
t−1 )2/σ2

t−1,

time-variation in the conditional Sharpe ratio is good for a mean-variance investor. Figure

2 shows the response of the efficient market-timing weights to changes in the conditional

Sharpe ratio Ht−1 and the conditional expected return µt−1 of the market index. The graph

shows that the magnitude of the optimal position in the risky asset is driven by Ht−1, while

the direction of the position is determined by the expected return µt−1. This demonstrates

that the optimally managed strategy exhibits a more measured behavior than the ‘all-or-

nothing’ switching-strategies common in the market-timing literature. In other words, while

the conditional expected index return µt−1 tells the portfolios manager whether to move into

our out of the market, the conditional Sharpe ratio Ht−1 drives the optimal risk control for

the strategy. The importance of the conditional Sharpe ratio in optimal asset allocation was

also emphasized by Cochrane (1999).

Figure 3 compares the behavior of the optimal market-timing strategy in response to vari-
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ations in conditional Sharpe ratio, for ‘good’ and ‘bad’ predictive instruments4. Evidently,

a ‘good’ predictor generates more variability in the conditional Sharpe ratio, but the opti-

mal market-timing weights respond more conservatively to these variations. In other words,

when the instrument used does not possess significant predictive ability, the optimal strategy

tends to ‘over-react’ to spurious signals, thus unduly increasing both risk and transaction

costs. The choice of predictive instruments is therefore of great importance in the design of

successful market-timing strategies.

3.4 Comparison with Conditionally Efficient Strategies

As we discussed in Section 2.1, our unconditionally efficient strategies are by construction

also conditionally efficient, while the converse is not generally true. While our strategies are

thus theoretically optimal, it is nonetheless important to compare their performance with

that of the corresponding conditionally efficient strategies. The latter are constructed using

the conditional mean and covariance matrix of the assets, based on the realized values of

the predictive variables, so that their weights are not an ex-ante prescribed function of the

instrument. In other words, while the unconditionally efficient strategy is truly dynamic,

the conditionally efficient strategy is a concatenation of period-by-period static portfolios.

While the functional form of the weights of conditionally efficient strategies is similar to (2),

it lacks the dynamic normalization by the conditional Sharpe ratio Ht−1. As a consequence,

the conditionally efficient weights respond much more aggressively to changes in the predic-

tive instruments (see Figure 4 for an illustration). In particular, for small changes in the

instrument around its mean, the conditionally efficient weights tend to switch dramatically

between long and short positions. In our empirical study, conditionally efficient strategies

not only under-performed their unconditionally efficient counterparts, but also incurred sig-

4Based on our estimation results, we used the lagged market return as the ‘bad’ instrument, and the

family of term structure variables as ‘good’ predictors.
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nificantly higher transaction costs. Moreover, because of the extreme switching behavior,

the performance of conditionally efficient strategies is much more sensitive to the imposition

of short-sale constraints.

3.5 Out-of-Sample Analysis

Our analysis in the previous section focused on the statistical evidence for return predictabil-

ity and its implications for optimal market-timing. In this section we analyze whether an

investment manager could actually make money from this strategy. To that end we perform

an out-of-sample analysis, estimating the parameters of the data-generating process using

the first 20 years of data (1960-1980), constructing the optimal market-timing strategy on

the basis of these estimates, and then assessing its performance on the basis of the returns

realized in the out-of-sample period.

The results are reported in Table 3. While the optimal Sharpe ratios are slightly lower out-

of-sample, they are still more than 80% higher than the fixed-weight Sharpe ratio. While the

performance of the fixed-weight strategy barely matches the benchmark (with an alpha of

0.5%), our strategy beats the index by more than 13%, indicating that a portfolio manager

following this strategy could have made significant gains over this period.

4 Conclusion

This paper provides both a statistical test to determine whether any market timing strategy

using predictive variables will work as well as an optimal market timing strategy. Using the

CRSP value-weighted index and commonly used macro-economic and interest rate variables

we find that market timing over the 1960-2003 period could have lead to significant economic

gains. Our optimal market timing strategy out-performed the benchmark both in and out

of sample, suggesting that a portfolio manager following this strategy could have made
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considerable gains over this period.
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Fixed-Weight Optimally Managed

Interest Economic All
Rates Indicators Instruments

Sharpe Ratio 0.3719 0.5675 0.5908 0.7285
p-Value 0.0038∗∗ 0.0021∗∗ 0.0000∗∗

Instrument Coefficient (R2)

Short Rate 0.4223 1.1751
(0.0004) (0.0035)

Term Spread 1.4441 1.8806
(0.1159) (0.1848)

Convexity −0.0143 −0.0185
(0.0345) (0.0580)

Credit Yield Spread −0.2903 −0.5691
(0.0087) (0.0334)

Inflation −0.1282 −0.1437
(0.0123) (0.0157)

Consumption Growth 0.1804 0.1753
(0.0005) (0.0005)

Unemployment Growth 0.1417 0.1566
(0.0088) (0.0110)

Maximum R2 0.0165 0.0187 0.0355

Table 1: Model Estimation Results (In-Sample)
This table reports the in-sample estimation results for the efficient fixed-weight strategy (first column),
and the optimally managed market-timing strategies for 3 different sets of instruments. Annualized
Sharpe ratios are computed using the explicit expressions developed in Section 2, based on the parame-
ter of the predictive regression (3), estimated using the entire data sample. The corresponding p-values
are obtained from the χ2 distribution, as discussed in Section 2. The asterisks indicate significance
at 5% (∗) and 1% (∗∗) level. Also reported are the regression coefficients for each instrument (the
individual R2 are shown in parentheses beneath each coefficient), and the aggregate R2 of the entire
regression.
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Fixed-Weight Optimally Managed

Interest Economic All
Rates Indicators Instruments

In-Sample Estimates

Sharpe Ratio 0.4574 0.6168 0.5329 0.6221
p-Value 0.0160∗∗ 0.1113 0.0141∗∗

Out-of-Sample Portfolio Performance

Sharpe Ratio 0.3524 0.5902 0.4446 0.6039
Alpha 0.50% 12.48% 6.65% 13.53%

Table 3: Portfolio Performance (Out-of-Sample)
This table reports the out-of-sample performance of the efficient fixed-weight strategy (first column),
and the optimally managed market-timing strategies for 3 different sets of instruments. The strategies
were constructed using (2), based on the parameters of the predictive regression (3), estimated in-
sample (using the first 20 years of data). The performance of the strategies was evaluated on the
basis of their realized returns throughout the out-of-sample period. Means, volatilities and Sharpe
ratios are annualized. Jensen’s alpha, tracking error and information ratio are obtained from a CAPM-
style regression of portfolio returns on the benchmark returns. Recession and expansion alphas were
calculated by replacing the constant in this regression by two dummy variables indicating recession
and expansion periods, respectively.
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Figure 1: Cumulative Returns
This figure shows the cumulative return (future value of $1 invested at the beginning of the sample pe-
riod) of the unconditionally efficient market-timing strategy (solid line), compared with the benchmark
and the corresponding fixed-weight strategy (dashed lines). The top panel shows the returns over the
entire sample period, while the bottom panel is a magnification of the 1970 to 1975 period as indicated
in the top graph. Note that the scale is logarithmic.
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Figure 2: Efficient Weights
This figure shows the optimally managed weights θt−1 on the risky asset, as a function of the conditional
mean µt−1 and the conditional Sharpe ratio H2

t−1. The projections of the graph onto the ‘walls’ of the
diagram show the relation between any two of the variables, respectively. The weights were constructed
using (2), based on the parameters of the predictive regression (3), estimated using the entire data
sample. All predictive variables are used as instruments.
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Figure 3: Efficient Weights (‘Good’ and ‘Bad’ Predictor
This figure shows the optimally managed weights θt−1 on the risky asset, as a function of the conditional
Sharpe ratio H2

t−1, using either lagged market returns (‘o’), or the set of term structure variables (‘+’)
as predictive instruments. The weights were constructed using (2), based on the parameters of the
predictive regression (3), estimated using the entire data sample.
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Figure 4: Efficient Weights (Conditional and Unconditional)
This figure shows the weights θt−1 of the conditionally efficient (‘+’) and unconditionally efficient (‘o’)
strategies, as functions of the linear combination Byt−1 of the conditioning instruments. The weights
were constructed using standard mean-variance theory for the conditionally efficient strategies, and
(2) for the unconditionally efficient ones, based on the parameters of the predictive regression (3),
estimated using the entire data sample.
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