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Abstract

Stochastic discount factor bounds provide a useful diagnostic tool for testing asset pricing

models by specifying a lower bound on the variance of any admissible discount factor. In this

paper, we provide a unified derivation of such bounds in the presence of conditioning infor-

mation, which allows us to compare their theoretical and empirical properties. We find that,

while the location of the ‘unconditionally efficient (UE)’ bounds of Ferson and Siegel (2003)

is statistically indistinguishable from the (theoretically) optimal bounds of Gallant, Hansen,

and Tauchen (1990) (GHT), the former exhibit better sampling properties. We demonstrate

that the difference in sampling variability of the UE and GHT bounds is due to the different

behavior of the efficient return weights underlying their construction.
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1 Introduction

Stochastic discount factor (SDF) bounds define the feasible region in the mean-variance plane

by providing a lower bound on the variance of an admissible SDF, as a function of its mean.

Such bounds have found wide applications in several areas of asset pricing. The optimal

use of conditioning information to refine these bounds has been the focus of several recent

studies. This procedure incorporates time-variation in the conditional mean and variance of

returns and leads to more stringent tests of asset pricing models.

The contribution of this paper is two-fold: first, we develop a unified framework for the

construction of stochastic discount factor (SDF) bounds in the presence of conditioning in-

formation, and establish a one-to-one correspondence between these bounds and the uncon-

ditionally efficient frontier of dynamically managed portfolios. We thus provide two distinct

methods of implementing such bounds, either directly from the conditional moments of asset

returns, or as the unconditional variance of a dynamic portfolio. While both methods are

theoretically equivalent, they can have different empirical properties, with the latter being

particularly useful for the implementation of out-of-sample tests. Our second contribution is

a comprehensive comparative analysis of the statistical properties of different specifications

and implementations of discount factor bounds, using both theoretical arguments as well as

an extensive empirical analysis.

Hansen and Jagannathan (1991) show that there is a one-to-one correspondence between

variance bounds for pricing kernels and the efficient frontier, when there is no conditioning

information. However, extending this correspondence to the case with conditioning informa-

tion is not straight-forward. Gallant, Hansen, and Tauchen (1990) (GHT) and, in a slightly

more restrictive setting, also Ferson and Siegel (2003), derive variance bounds for pricing

kernels in the presence of conditioning information. On the other hand, Hansen and Richard

(1987) and later Ferson and Siegel (2001) study unconditional mean-variance efficiency in

this setting. Our unified approach allows us to extend the Hansen and Jagannathan (1991)

correspondence between discount factor bounds and mean-variance efficiency to the case

1



with conditioning information in the most general setting.

We provide a unified derivation of the different sets of discount factor bounds, which allows

us to compare their sampling properties, both from the theoretical and empirical viewpoint.

Our expressions enable us to characterize the dynamically managed portfolios that attain the

sharpest possible discount factor bounds for a given set of assets and conditioning variables.

Moreover, our formulation of the weights of these portfolios facilitates the analysis of their

behavior in response to changes in conditioning information.

We find that, while the location of Ferson and Siegel’s (2003) ‘unconditionally efficient (UE)’

bounds is statistically indistinguishable from that of the (theoretically optimal) bounds of

Gallant, Hansen, and Tauchen (1990), the former exhibit lower sampling variability. Thus,

tests based on the UE bounds are likely to have more power than those based on the GHT

bounds. Our unified derivation allows us to demonstrate that the difference in sampling

variability between the two sets of bounds is due to the different behavior of the portfolio

weights underlying their construction.

Bekaert and Liu (2004) provide an alternative implementation of the GHT bounds by find-

ing an optimal transformation of the conditioning instruments which maximizes the implied

hypothetical Sharpe ratio that attains the discount factor bound. We show that this con-

struction can be linked to the efficient frontier generated by a set of ‘generalized’ returns.

These are pay-offs whose price is normalized to one on average. Although these pay-offs

cannot be attained by forming portfolios of the traded assets, they must be priced correctly

by any admissible discount factor. In this sense, they may be regarded as returns on ‘pseudo’

portfolios. We explicitly characterize the efficient frontier in the space of such generalized

returns, thus providing an alternative derivation for the GHT bounds as well as the opti-

mally scaled bounds of Bekaert and Liu (2004). We find that the weights of these efficient

generalized returns are very similar to those from standard mean-variance analysis. Our

approach facilitates the direct comparison of the GHT bounds with the ‘unconditionally

efficient (UE)’ bounds of Ferson and Siegel (2003).
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Our work is also related to Ferson and Siegel (2001), who study the properties of uncondi-

tionally mean-variance efficient portfolios in the presence of conditioning information. They

demonstrate in the case of a single risky and risk-free asset that these portfolio weights are

not monotonic in the realization of conditioning information, but exhibit a ‘conservative’

response to extreme signals. We provide a theoretical explanation for this behavior even

for multiple risky assets. We also show that such a phenomenon occurs even when there is

no risk-free asset, and demonstrate how this behavior leads to the lower sampling variabil-

ity of the UE bounds based on these weights. In contrast, the portfolio weights on which

the GHT bounds are based require extreme long and short positions for large values of the

conditioning instrument, which accounts for their greater sampling variability.

Ferson and Siegel (2003) propose a bias-correction for bounds with conditioning information.

We implement this correction for both sets of bounds and find that it improves the location of

the bounds and also reduces sampling variability. In addition, we conduct an out-of-sample

analysis of the two sets of bounds and also study the effect of conditional heteroskedasticity

and measurement error on the bounds.

The remainder of this paper is organized as follows; In Section 2, we establish our notation

and give a brief overview of discount factor bounds. In Section 3, we provide a generic,

portfolio-based characterization of these bounds, and in the following Section 4 we derive

explicit formulas for their econometric implementation. The results of our empirical analysis

are reported in Section 5, and Section 6 concludes. All mathematical proofs are given in the

appendix.

2 Asset Pricing with Conditioning Information

In this section, we provide a brief outline of the underlying asset pricing theory, and establish

our notation. We first construct the space of state-contingent pay-offs, and within it the space

of traded pay-offs, augmented by the use of conditioning information.
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2.1 Traded Assets and Managed Portfolios

Trading takes place in discrete time. For any given period beginning at time t−1 and ending

at time t, denote by Gt−1 the information set available to the investor at the beginning of

the period. For notational convenience, we write Et( · ) for the conditional expectation with

respect to Gt−1.

There are n risky assets, indexed k = 1 . . . n. We denote the gross return (per dollar

invested) of the k-th asset by rk
t , and by R̃t := ( r1

t . . . rn
t )

′
the n-vector of risky asset

returns. Unless stated otherwise, we assume that no risk-free asset is traded. We define

Xt as the space of all pay-offs xt that can be written in the form, xt = R̃′
t θt−1, with

θt−1 = ( θ1
t−1 . . . θn

t−1 )′, where θk
t−1 are Gt−1-measurable functions. We interpret Xt as the

space of ‘managed’ pay-offs, obtained by forming combinations of the base assets with weights

θk
t−1 that are functions of the conditioning information1. By construction, the price of such

a pay-off is given by e′θt−1, where e = ( 1 . . . 1 )′ is an n-vector of ‘ones’.

2.2 Stochastic Discount Factors and Bounds

Stochastic discount factors (SDFs) are a convenient way of describing an asset pricing model.

They are characterized in terms of a fundamental valuation equation.

Definition 2.1 An admissible stochastic discount factor is an element mt such that

Et−1

(
mtR̃t

)
= e. (1)

In other words, an SDF assigns unit price to the traded asset returns. Note that (1) implies

that mt also prices all managed pay-offs (conditionally) correctly, that is Et−1( mtxt ) = e′θt−1

1Note that, in contrast to the fixed-weight case, the space of managed pay-offs is infinite-dimensional

even when there is only a finite number of base assets.
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for all xt ∈ Xt. Taking unconditional expectations,

E( mtxt ) = E( e′θt−1 ) =: Π( xt ) (2)

In other words, any SDF that prices the base assets (conditionally) correctly must necessarily

be consistent with the ‘generalized’ pricing function Π( xt ) = E( e′θt−1 ). For different choices

of θt−1 (and hence different xt ∈ Xt), we thus obtain a family of testable ‘moment conditions’

that the SDF must satisfy.

A Generic Expression for Discount Factor Bounds:

While (2) can be used in many different ways (e.g. GMM) to estimate or test asset pricing

models, most of these tests yield necessary but not sufficient conditions2. Discount factor

bounds, first introduced by Hansen and Jagannathan (1991), are one class of such necessary

conditions. They are lower bounds on the variance of an SDF, as a function of its mean.

Such bounds are a useful diagnostic in that if a candidate does not satisfy the bounds, then

it cannot be an admissible SDF. In the extended case with conditioning information, the

bounds in their most general form can be formulated as,

Lemma 2.2 Necessary for a candidate mt with E( mt ) = ν to be an admissible SDF is,

σ( mt )

ν
≥ sup

rt∈Rt

E( rt )− 1/ν

σ( rt )
=: λ∗( ν ; Rt ), (3)

where Rt ⊂ Xt is any arbitrary subspace of Xt such that Π( rt ) = 1 for all rt ∈ Rt.

Note that, if an (unconditionally) risk-free asset was traded with gross return rf , then any

admissible SDF would have to satisfy rf = 1/ν. Therefore, we refer to 1/ν as the ‘shadow’

risk-free rate implied by the mean ν = E( mt ) of the candidate SDF mt. The right-hand

side of the above inequality can hence be interpreted as the maximum generalized Sharpe

ratio on Rt, relative to the shadow risk-free rate 1/ν.

2This is because the space Xt on which the SDF must be tested is infinite-dimensional.
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A Classification of Different Specifications of Bounds:

While Lemma 2.2 provides a generic characterization, the different classes of SDF bounds

considered in the literature are obtained by choosing different ‘return’ spaces Rt in (3):

(i) HJ Bounds: The Hansen and Jagannathan (1991) (HJ) bounds without conditioning

information are obtained from (3) by choosing Rt as the space of fixed-weight returns,

R0
t =

{
xt = R̃′

t θ, where θ ∈ IRn with e′ θ = 1
}

(4)

(ii) UE Bounds: The ‘Unconditionally Efficient’ (UE) bounds of Ferson and Siegel (2003)

are obtained from (3) by choosing Rt as the space of ‘conditional returns’,

RC
t =

{
xt = R̃′

t θt−1, where θt−1 is Gt−1-measurable with e′ θt−1 ≡ 1
}

(5)

(iii) GHT Bounds: The Gallant, Hansen, and Tauchen (1990) (GHT) bounds, and hence

also their implementation as the ‘optimally scaled’ bounds by Bekaert and Liu (2004)

are obtained from (3) by choosing Rt as the space of ‘generalized returns’,

RG
t =

{
xt = R̃′

t θt−1, where θt−1 is Gt−1-measurable with E( e′ θt−1 ) = 1
}

(6)

The term conditional returns in (ii) is used to reflect the fact that the portfolio constraint

e′ θt−1 ≡ 1 is required to hold conditionally, i.e. for all realizations of the condition-

ing information. Conversely, the term ‘generalized return’ in (iii) reflects the fact that

E( e′ θt−1 ) = Π(xt) does not reflect a ‘true’ price for the pay-off xt but rather its expected

cost. Note however that, by (2), any admissible SDF must also price all generalized returns

correctly to one. Finally note that, since RG
t ⊂ Xt is the largest possible subspace of Xt on

which Π ≡ 1, the GHT bounds are by construction the sharpest possible bounds for given

set of conditioning variables.
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3 Stochastic Discount Factor Bounds

To construct the bound for a given mean E( mt ) of the discount factor, we need to find the

portfolio that maximizes the hypothetical Sharpe ratio in (3). In this section, we provide a

generic construction of this portfolio and hence the bounds, which is valid for any space of

returns. For what follows, we denote by Rt ⊂ Xt any subspace on which Π ≡ 1, including

in particular the three spaces R0
t , RC

t , or RG
t defined in the preceding section.

3.1 Discount Factor Bounds and Efficient Portfolios

It follows from Hansen and Richard (1987) that every unconditionally efficient rt ∈ Rt can

be written in the form rt = r∗t + w · z∗t for some w ∈ IR, where r∗t ∈ Rt is the unique return

orthogonal3 to the space of excess (i.e. zero cost) returns Zt = Π−1{ 0 } ⊂ Rt, and z∗t ∈ Zt

is a canonically chosen excess return. In other words, the unconditionally efficient frontier

in Rt is spanned by r∗t and z∗t .

Extending this construction, we consider instead the unique return r0
t that is orthogonal to Zt

with respect to the covariance inner product4, i.e. cov ( r0
t , zt ) = 0 for all zt ∈ Zt. Note that

r0
t is nothing other than the global minimum variance (GMV) return5. In analogy with the

Hansen and Richard (1987) construction, we choose z0
t ∈ Zt so that E ( zt ) = cov ( z0

t , zt ) for

all zt ∈ Zt. It is easy to show that r0
t and z0

t also span the unconditionally efficient frontier.

In this parametrization, the GMV r0
t may be regarded as a measure of location, while z0

t

determines the shape of the frontier. While both these parameterizations are theoretically

equivalent, the robustness of either with respect to estimation error is quite different, see

also Section 5.1.2. We are now ready to state our main result, on which most of the empirical

3One can also define r∗t as the return with minimum unconditional second moment.
4In the absence of a risk-free asset, the covariance functional is indeed a well-defined inner product.
5This follows directly from the first-order condition of the unconstrained variance minimization problem.
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analysis in later sections is based:

Theorem 3.1 The maximum λ∗( ν ) in (3) admits a decomposition of the form,

λ2
∗( ν ) = λ2

0( ν ) + γ3 with λ0( ν ) =
γ1 − 1/ν

γ2

, (7)

Moreover, necessary for any candidate mt with ν = E ( mt ) to be an admissible SDF is,

σ2( mt ) ≥ ( γ2
1 + γ2γ3 ) · ν2 − 2γ1 · ν + 1

γ2

. (8)

Here, γ1 and γ2 are the unconditional mean and variance of r0
t , respectively, and γ3 = E( z0

t ).

Proof of Theorem 3.1: Equation (7) follows from the first-order condition of the maxi-

mization problem for λ2
∗( ν ) (details are available from the authors upon request). Inequality

(8) then follows trivially by Lemma 2.2.

Lemma 3.2 The maximum λ∗( ν ) in (3) is attained by the return

rν
t = r0

t + κ∗( ν ) · z0
t , with κ∗( ν ) =

γ2

γ1 − 1/ν
. (9)

Moreover, necessary for any candidate mt with E ( mt ) = ν to be an admissible SDF is,

σ2( mt ) ≥ σ2(
ν

κ∗( ν )
· rν

t ), (10)

Here, γ1, γ2 and γ3 are the moments of r0
t and z0

t as defined in Theorem 3.1.

Bekaert and Liu (2004) provide an alternative derivation of the GHT bound when the first

and second conditional moments are estimated correctly. The bounds are obtained as the

squared Sharpe ratio of an ‘optimally scaled’ payoff, given in Equation (22) of their paper.

Their derivation is closely related to ours. Specifically, Lemma 3.2 shows that the optimally

scaled payoff that attains the discount factor bound is given by ( ν/κ∗( ν ) ) · rν
t . In the case

when mt is indeed an admissible SDF, the optimally scaled payoff can in fact be identified

as the unconditional projection of mt onto the space of managed payoffs Xt, as

ν

κ∗( ν )
· rν

t =
νγ1 − 1

γ2

· r0
t + ν · z0

t = − proj
(
mt |Xt

)
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When moments are correctly specified, the GHT bounds are obtained as the variance of this

payoff, as in (10). Moreover, even when the conditional moments are incorrectly estimated,

the variance of the optimally scaled return still provides a valid lower bound to the variance

of pricing kernels, a property that carries over to our setting. Our analysis shows that the

same holds for the UE bounds; when conditional moments are misspecified, the variance of

the conditional return in (9) can be used to provide a valid lower bound on the variance of

SDFs. This fact is also particularly useful in out-of-sample estimations of the bounds (the

results of our out-of-sample analysis are discussed in Section 5.1.4).

4 Implementing Discount Factor Bounds

In the preceding section, we derived generic expressions for discount factor bounds in the

presence of conditioning information. For these expression to be of any practical use, we

need to derive explicit formulae for the returns that attain the bounds, and compute their

conditional moments. We define,

µt−1 = Et−1

(
R̃t

)
, and Λt−1 = Et−1

(
R̃t · R̃′

t

)
. (11)

In other words, returns can be written as R̃t = µt−1 + εt, where µt−1 is the conditional

expectation of returns given conditioning information, and εt is the residual disturbance

with variance-covariance matrix Σt−1 = Λt−1 − µt−1µ
′
t−1. This is the formulation of the

model with conditioning information used in Ferson and Siegel (2001)6. Finally, we set

At−1 = e′Λ−1
t−1e, Bt−1 = µ′t−1Λ

−1
t−1e, Dt−1 = µ′t−1Λ

−1
t−1µt−1 (12)

These are the conditional versions of the ‘efficient set’ constants a, b and d from classic mean-

variance theory. We choose this notation in order to highlight the structural similarities

between the UE and GHT bounds, and to facilitate a direct comparison.

6Note however that our notation differs slightly from that used in Ferson and Siegel (2001), who define

Λt−1 to be the inverse of the conditional second-moment matrix.
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4.1 Ferson and Siegel’s UE Bounds:

The ‘unconditionally efficient’ (UE) bounds of Ferson and Siegel (2003) are obtained from

the generic formulation in Theorem 3.1 by using the space RC
t of conditional returns in

(3). To facilitate comparison, we follow Ferson and Siegel (2003) and formulate the bounds

in terms of their ‘efficient set’ constants α1 = E( 1/At−1 ), α2 = E( Bt−1/At−1 ) and α3 =

E( Dt−1 −B2
t−1/At−1 ).

Proposition 4.1 The UE bounds for a candidate mt with E( mt ) = ν can be written as,

σ2( mt ) ≥ (α1α3 + α2
2) · ν2 − 2α2 · ν + (1− α3)

α1(1− α3)− α2
2

, (13)

Moreover, the conditional return rν
t ∈ RC

t from (9) that attains the maximum generalized

Sharpe ratio in (3) and hence the UE bounds can be written as rν
t = R̃′

t θt−1, where

θt−1 = Λ−1
t−1

( 1− w(ν)Bt−1

At−1

e + w(ν) µt−1

)
and w(ν) =

α1ν − α2

α2ν − (1− α3)
(14)

Proof of Proposition 4.1: We show in Appendix A.1 that α1 and α2 are the second

and first moments of r∗t ∈ RC
t , and α3 = E( z∗t ). Expression (13) then follows from Theorem

3.1 and the fact that γ1 = α2/(1 − α3), γ2 = α1 − α2
2/(1 − α3) and γ3 = α3/(1 − α3). The

proof of the second assertion is given in Appendix A.1.

We can identify (14) as the weights of the efficient conditional return with unconditional

mean α2 + w(ν) α3 (see also Ferson and Siegel 2001). This portfolio has zero-beta rate 1/ν.

The behavior of these weights as functions of the return moments and the conditioning

information determines the sampling properties of the bounds.

4.2 GHT Bounds

The GHT bounds of Gallant, Hansen, and Tauchen (1990) are obtained from the generic

formulation in Theorem 3.1 by using the space Rt of generalized returns in (3). Following the
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notation of Bekaert and Liu (2004), we denote by a, b, and d the unconditional expectations

of the efficient set constants At−1, Bt−1, and Dt−1 introduced above. In analogy with the

preceding section, we furthermore define α̂1 = 1/a, α̂2 = b/a and α̂3 = d− b2/a.

Proposition 4.2 The GHT bounds for a candidate mt with E( mt ) = ν can be written as,

σ2( mt ) ≥ (α̂1α̂3 + α̂2
2) · ν2 − 2α̂2 · ν + (1− α̂3)

α̂1(1− α̂3)− α̂2
2

, (15)

Moreover, the generalized return rν
t ∈ RG

t from (9) that attains the maximum Sharpe ratio

in (3) and hence the GHT bounds can be written as rν
t = R̃′

t θt−1 with

θt−1 = Λ−1
t−1

( 1− w(ν)b

a
e + w(ν) µt−1

)
, where w(ν) =

α̂1ν − α̂2

α̂2ν − (1− α̂3)
(16)

Proof of Proposition 4.2: We show in Appendix A.2 that α̂1 and α̂2 are the second

and first moments of r∗t ∈ RG
t , and α̂3 = E( z∗t ). Expression (15) then follows from Theorem

3.1 in the same way as in the proof of Proposition 4.1. The proof of the second assertion is

given in Appendix A.2.

Note that, using the relationship between a, b, d and the α̂i, it is easy to show that (15) can

be re-arranged to give Equation (25) in Bekaert and Liu (2004). Moreover, one can show

that the ‘optimally scaled’ pay-off defined in Equation (22) of their paper can be normalized

to give the efficient return defined in (16) in the above proposition.

Our approach thus demonstrates that both sets (UE and GHT) bounds can be obtained in

very much the same fashion. Moreover, our results show that both sets of bounds admit two

different characterizations; either in terms of the efficient set constants αi and α̂i respectively,

or directly as the variance of the optimally managed pay-off rν
t . While both approaches yield

the same result in population, they may have rather different properties in finite samples.

Moreover, the portfolio-based implementation is particularly useful to assess the out-of-

sample performance of the bounds. The difference in behavior (see also the following section)

of the efficient weights in (14) and (16) is largely responsible for the different sampling

properties of the UE and GHT bounds, respectively.
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4.3 Properties of Efficient Portfolio Weights

In this section, we examine the behavior of the weights of the (generalized) portfolios that

attain the two sets of bounds. In particular, we are interested in the response of the weights

to extreme values of the conditioning instruments. While both sets of weights can be shown

to converge to finite limits (see below), the speed of convergence is quite different. The

conditional return weights (14) that generate the UE bounds converge much faster, due to the

conditional normalization constant. Conversely, the weights (16) of the generalized return

that attain the GHT bounds exhibit an almost linear response to values of the instrument

within a reasonable range. This difference in behavior is largely responsible for the different

sampling properties of the two sets of bounds. An empirical analysis of this phenomenon is

provided in Section 5.1.2.

Throughout this section, we will assume that the conditional mean is a linear function of a

single conditioning instrument, µt−1 = µ( yt−1 ) = µ0 + βyt−1 for some Gt−1-measurable yt−1.

Moreover, we assume that the conditional variance-covariance matrix Σ of the base asset

return innovations does not depend on yt−1 (i.e. a linear regression setting). To investigate

the asymptotic properties of these weights for large values of the conditioning instrument,

we use the Sherman-Morrison formula (see Appendix A.3). Using this identity and the

definition of the efficient set constants, it is easy to see that Λ−1
t−1µt−1 and hence also Bt−1

tend to zero as yt−1−→ ±∞, while both Λ−1
t−1e and At−1 converge to finite limits. Hence,

for extreme values of the instrument, the weights (14) of the conditional return that attains

the UE bounds converge to

θt−1 −→ ( β′Σ−1β )Σ−1e− ( β′Σ−1e )Σ−1β

( e′Σ−1e )( β′Σ−1β )− ( β′Σ−1e )2
as yt−1−→ ±∞. (17)

These are in fact the asymptotic weights of the minimum second moment return r∗t as it can

be shown that z∗t −→ 0 as yt−1−→ ±∞ in the Hansen and Richard (1987) decomposition of

the efficient frontier. Moreover, it is easy to see that the conditional mean of the uncondi-

tionally efficient return defined by (14) converges to w(ν) as yt−1−→±∞, similar to the case

with risk-free asset. In contrast, just as in the case with risk-free asset, the conditional mean
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of the corresponding conditionally efficient strategy can be shown to diverge for extreme

values of the instrument.

An argument similar to that made above shows that the weights (16) of the generalized

return that attains the GHT bounds converges to

θt−1 −→ 1− w(m)b

a

[
Σ−1e− β′Σ−1e

β′Σ−1β
Σ−1β

]
as yt−1−→ ±∞. (18)

From this analysis we see that the major difference in the speed of convergence is determined

by the presence of the conditional normalization constant Bt−1 in (14), which is missing from

the corresponding generalized return weights.

5 Empirical Analysis

In this section, we report the results of our empirical analysis. We estimate two differ-

ent models, a simple linear predictive regression, and a model displaying conditional het-

eroscedasticity following Ferson and Siegel (2003). We use monthly returns on the five

Fama-French industry portfolios as base assets, and consumption-wealth ratio (CAY) as

predictive variable. To analyze the sampling properties of the discount factor bounds, we

conduct an extensive simulation analysis based on the estimated models.

5.1 Constant Volatility Model

We specialize the set-up of Section 2 to the case of a single instrument with a predictive

regression as in Equation (1) of Ferson and Siegel (2001). Specifically, let yt−1 denote a

(univariate) conditioning instrument, and Gt−1 = σ( yt−1 ). For notational convenience, we

set y0
t−1 = yt−1 − E ( yt−1 ). Throughout this first section, we assume that the instrument

only affects the conditional mean of the base asset returns;
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Assumption 5.1 Throughout this section, we assume that returns can be described as,

R̃t = µ0 + β · y0
t−1 + εt. (19)

where the vector of residuals εt is independent of yt−1, has zero conditional mean and con-

stant variance-covariance matrix Σ.

In the notation of Section 4, this means µt−1 = µ0 + β · y0
t−1. In the following section, we

estimate this regression and calculate the implied unconditionally efficient portfolio frontier

and corresponding discount factor bounds for both conditional (UE bounds) and generalized

(GHT bounds) returns.

5.1.1 Estimation Results

As base assets, we use 510 monthly returns on the five Fama-French industry portfolios7,

observed over the period from 1959:01 to 2001:07. As conditioning instrument, we use

the lagged, de-meaned, monthly consumption-wealth ratio (CAY) for the same period, as

constructed in Lettau and Ludvigson (2001). The summary statistics of the data are reported

in Table 3. Note that in that table we also report data on the S&P 500 index which we will use

later as factor in the estimation of the conditional heteroscedasticity model. The results of

the predictive regression are reported in Table 1. We use the estimated µt−1 = µ̂0+ β̂ ·y0
t−1 to

form the efficient set constants defined in Section 4, which allows us to construct the efficient

frontier for conditional and generalized returns, and the implied discount factor bounds.

In Figure 1, we plot the efficient frontiers in the fixed-weight setting (dashed line) together

with the frontiers for conditional and generalized returns. It is clear that the frontiers with

conditioning information are wider than the fixed-weight frontier, which indicates that the

efficient use of conditioning information indeed expands the opportunity set available to

7These data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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µ̂ β̂ Σ̂ (Conditional VCV Matrix) R2

Manuf Utils Shops Money Other

Manuf 1.0100 0.5001 0.0020 0.0010 0.0022 0.0018 0.0018 0.0259

Utils 1.0087 0.3763 0.0010 0.0015 0.0010 0.0014 0.0010 0.0189

Shops 1.0114 0.6274 0.0022 0.0010 0.0031 0.0022 0.0020 0.0260

Money 1.0110 0.5721 0.0018 0.0014 0.0022 0.0025 0.0018 0.0269

Other 1.0089 0.5181 0.0018 0.0010 0.0020 0.0018 0.0020 0.0272

maximum R2 = 0.0321

Table 1: Estimation Results

This table displays the estimated coefficients µ̂ and β̂ of the predictive regression (19) of
monthly gross returns on the five Fama-French industry portfolios on the conditioning variable
CAY, as well as the conditional variance-covariance matrix Σ̂ of the residuals in this regression.

The maximum R2 is obtained by finding the convex combination of the dependent variables
which maximizes the R2 of the corresponding univariate regression.

the investor. The frontiers for conditional (bold-faced line) and generalized (light-weight

line) returns are virtually indistinguishable. Interestingly, the efficient use of conditioning

information does not seem to affect the location of the global minimum variance (GMV)

portfolio (the standard deviation of the GMV falls from 0.0359 in the fixed-weight case

to 0.0358 and 0.0355 for conditional and generalized returns, respectively). However, the

maximum monthly Sharpe ratio (assuming a risk-free rate of approximately 4% annually),

rises from 0.153 to 0.178 and 0.180, respectively. Note also that the base assets (shown as

circles in the figure) plot well inside even the fixed-weight frontier. This property is however

not specific to the choice of assets or conditioning instruments. In further experiments using

other data sets (not reported here), we found the same pattern of behavior.

Figure 2 compares and contrasts the behavior of the weights (as functions of the predictive
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variable) of the GMV r0
t and the minimum second moment return r∗t . While the weights of

the GMV are comparatively stable in both cases and converge quickly to their asymptotic

values, the weights of r∗t highlight the difference between the UE and GHT bounds: for

small values of the conditioning variables, both sets of weights show very similar behavior.

However, for larger values of the instruments, the UE weights converge quickly, displaying

the ‘conservative response’ discussed in Section 4, while the GHT weights display an almost

linear response to the signal, requiring extreme long and short positions in the corresponding

portfolio. From theory we know that the GHT weights would also converge eventually, but

this is for extreme values of the instrument, far beyond the range observed in the data.

The asymptotic weights of the efficient conditional return, as well as the corresponding

fixed-weight return, are reported in Table 2.

Note however that the range of values of CAY shown in the graph is wider than that covered

by the actual time series. For the values typically observed in the data, the two sets of

weights are almost identical, which explains the fact that the frontiers for conditional and

generalized returns in Figure 1 are virtually indistinguishable.

5.1.2 Sampling Properties of the Bounds

We first compare the bounds with and without conditioning information. Figure 3 shows

that both the UE and GHT bounds plot above the fixed weight bounds and are statistically

different from them for most values of E(mt). This shows that the optimal use of conditioning

information raises the discount factor bounds significantly.

Since the distribution of the discount factor bound estimator is not known explicitly, we use

simulation analysis to obtain its empirical distribution. To this end, we fit an AR(1) process

to the observed time series of CAY,

y0
t = α y0

t−1 + ηt

The parameters we obtain are α = 0.874, with ση = 0.0070. Using this specification and
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Efficient Portfolio Weights

Fixed-Weight Conditional Return

(asymptotic)

Manuf 0.4536 1.9764

Utils 0.7097 1.8982

Shops −0.0873 −1.1951

Money −0.3224 −1.6668

Others 0.2464 −0.0374

Table 2: Asymptotic Portfolio Weights

This table reports the weights of a typical efficient portfolio in the fixed-weight case (ignoring
conditioning information), and the asymptotic weights (for extreme values of the predictor

variable) of the corresponding efficient conditional return.

the estimates from the predictive regression, we simulate 100,000 time series of the condi-

tioning instrument and the base asset returns, each equal in length to the original series

(510 observations). Along each series, regression (19) is estimated. For each estimation,

we calculate the corresponding efficient set constants At−1, Bt−1 and Dt−1, from which the

discount factor bounds are computed using (13) and (15). This procedure yields 100,000

simulated estimates of the bounds, the empirical distribution of which is used to quantify

the sampling variability. As a benchmark we estimate the bounds along a simulated time

series of one million observations. In what follows, these latter estimates will be referred to

as the ‘true’ bounds.

In order to further emphasize the different sampling properties of the bounds, we repeat

the above procedure with a hypothetical predictor variable, for which the residual standard
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deviation in the AR(1) specification is ση = 0.0176, instead of ση = 0.0070 as estimated8.

For the simulation, we adjust the variance of the residual in (19), so that the unconditional

variance of the base asset returns is unchanged.

Figure 4 plots the mean of the discount factor bound estimator (solid line), together with

the 95% confidence interval (vertical error bars). The dashed line indicates the location of

the respective “other” bound to facilitate comparison. The left hand panels (x.1) plot the

UE bounds, while the GHT bounds are shown in the right hand panels (x.2). The top row

of panels (1.x) correspond to the original instrument (CAY), while the bottom row (2.x)

correspond to the hypothetical predictor instrument with higher variance.

Increasing the R2 of the predictive regression shifts both sets of bounds upwards and increases

their sampling variability. While the minima of the two bounds shift by similar amounts,

the increase in curvature of the GHT bounds is more pronounced. The mean of a candidate

SDF is likely to be near the minima of the bounds (about .997, assuming a risk-free of 4%).

Figure 4 clearly indicates that in this region the two bounds are statistically indistinguishable

while the UE bounds have lower sampling variability than the GHT bounds. This is further

illustrated in Figure 5, which shows the empirical distribution of the estimators at E(mt) =

.998 (see also column (a) in Table 5).

It is evident that the difference in sampling error becomes much more pronounced as the

variance of the predictor variable increases. This is because of the differing response of the

efficient weights for extreme values of the signal (see also Section 4 and Figure 2).

The standard deviation for the UE bounds is consistently lower than that of the GHT

bounds. However, the standard deviation of either bound is quite high. Column (a) of Table

5. reports location, sampling variability and 95% confidence intervals for E( mt ) = 0.998.

In the case of the hypothetical instrument, the mean of the GHT bound is only 13.6% higher

8This specification leads to a total standard deviation for the predictor variable of 0.0362, which is similar

to the standard deviation of the short rate.
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while the 95% confidence interval is more then 21% wider for the UE bound.

Our portfolio-based approach helps us understand this differing behavior of the two sets of

bounds. The moments of r0
t for UE and GHT are robust to sampling and measurement

error. The difference in the behavior of the bounds is driven entirely by the difference in the

sampling variability of z0
t (see Table 5).

The overall conclusion to be drawn from this analysis is that, while the UE bounds are

theoretically sub-optimal, they are statistically indistinguishable from the optimal GHT

bounds while having lower sampling variability. Our results and analysis extend those in

Ferson and Siegel (2003) in that our portfolio-based approach allows us to directly compare

the sampling properties of the GHT and UE bounds.

5.1.3 Small Sample Bias Correction

Ferson and Siegel (2003) propose a small sample correction for bounds with conditioning

information. They show that incorporating the bias-correction improves both accuracy and

sampling variability of the bound, particularly when the number of time series observations

is small. Figure 6 plots the mean of the discount factor bound estimator with and without

bias corrections for a sample of 60 observations (5 years), together with the 95 % confidence

interval (vertical error bars). The dashed line indicates the location of the ‘true’ discount

factor bounds. The left hand panels (x.1) plot the UE bounds, while the GHT bounds are

shown in the right hand panels (x.2). The top row of panels (1.x) correspond to bounds

without bias corrections while the bottom row (2.x) correspond to those with. In both cases

there is a clear upward bias in the bounds estimator. In fact for a wide range of discount

factor means, the true bounds falls outside the confidence intervals around the un-adjusted

estimates. Incorporating the bias correction dramatically improves the accuracy and lowers

the sampling variability of the bounds; the size of the confidence interval shrinks by about

12% in both cases. Note that the difference in sampling variability between the UE and GHT

bounds persists after the small sample correction. All our subsequent analysis incorporates
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the bias correction.

5.1.4 Out-of-Sample Analysis

To study the out-of-sample performance of the bounds estimators, we split each simulated

sample of length 510 into an in-sample period of 270 observations and an out-of-sample

period of 240 observations. We estimate the predictive regression in-sample and use the

in-sample conditional moments to construct the weights of the returns in Propositions 4.1

and 4.2 that attain the bounds. We then estimate the unconditional moments of these

returns out-of-sample using (8), to obtain the out-of-sample bounds. Figure 7 plots the

in-sample and out-of-sample estimates of the discount factor bound, together with the 95%

confidence interval around the in-sample estimates. The dashed lines indicates the out-of-

sample estimates. The out-of-sample bounds are consistently lower (by about 10%) than

the in-sample bounds, with the GHT bounds performing marginally better. However, this

difference is not statistically significant for most values of E(mt). While the in-sample

bounds are always statistically different from zero, we cannot reject that the hypothesis that

the out-of-sample bounds are statistically different from zero, for a range of E(mt). The

sampling variability of the out-of-sample bounds is of the same order of magnitude as the

in-sample bounds, and is in fact lower around the minimum of the bounds. The confidence

bounds are slightly narrower near the minimum and wider at the extremes. The UE bounds

continue to have lower sampling variability than the GHT bounds, out-of-sample.

To further assess the out-of-sample performance of the estimation, we regress the uncondi-

tional moments of the returns obtained out-of-sample on the in-sample estimates. We find

that the means are very similar, but the sampling variability of the in-sample estimates does

not explain very much of the out-of-sample variability. The in-sample and out-of-sample

GMVs are almost uncorrelated, while the regression of out-of-sample on in-sample z0
t has an

R2 of 13%.

20



5.1.5 Measurement Error

We now study the effects of measurement error in the predictive regression on the bounds. We

work with the original sample size of 510 observations. We run four simulation experiments

identical to the one described above, except that we assume that some or all the parameters

are estimated without measurement error. This is done by replacing the respective estimated

parameter in each simulation by the ‘true’ value that was used for data-generation. We

consider four cases: (a) both parameters, µ0 and β are estimated, (b) µ0 estimated and

β assumed known, (c) β estimated and µ0 assumed to be known, and (d) both parameter

known. Table 5 reports the results of this exercise for the first three cases. Note that

removing estimation risk in µ leads to a greater reduction in sampling variability than

removing estimation risk in β. This is because µ affects the mean of both the location and

shape returns, r0
t and z0

t , while the GMV is largely unaffected by β. In terms of location,

both UE and GHT bounds have the same accuracy when measurement error is removed.

Measurement error introduces an upwards bias which is greater for the GHT bounds. The

sampling variability of the GHT bounds is higher than that of the UE bounds, even when

measurement error is removed. Overall, the UE bounds seem more robust to estimation risk

than the GHT bounds.

5.2 The Conditional Heteroskedasticity (CH) Model

We now modify our setup to incorporate conditional heteroscedasticity (CH) following Ferson

and Siegel (2003). Overall, conditional heteroscedasticity has little or no effect on the results

obtained in the preceding section. The R2 of the variance regression is less than 1.5%. Both

location and variability of the bound estimator change very little, as does the comparison

between the UE and GHT bounds. For low E(mt) the bounds with CH are marginally lower

than the bounds obtained from the linear model, whereas for high E(mt) the opposite is

true. The same pattern holds for sampling variability and error bounds. However, none of

these differences are statistically significant. In particular, the CH model does not perform
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any better out-of sample than the linear model.

6 Conclusion

The main contribution of this paper is to provide a detailed comparison between various

stochastic discount factor bounds with conditioning information. We do this by exploiting

the explicit link between the stochastic discount factor approach and portfolio efficiency in

the presence of conditioning information. We find that the ‘unconditionally efficient (UE)’

bounds of Ferson and Siegel (2003) are statistically indistinguishable from the (theoretically)

optimal bounds of Gallant, Hansen, and Tauchen (1990), while having smaller sampling

variability. We demonstrate that the difference in sampling variability of the UE and GHT

bounds is due to the different behavior of the portfolio weights underlying their construction.
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A Mathematical Appendix

A.1 Proof of Proposition 4.1:

In Lemmas A.1 and A.2 below we characterize the weights for the conditional returns r∗t and

z∗t that span the unconditionally efficient frontier in RC
t . From this follows,

E( r∗t ) = E( Bt−1/At−1 ) = α2, and E( z∗t ) = E( Dt−1 −B2
t−1/At−1 ) = α3.

The desired result (14) then follows from Lemma 3.2.

Lemma A.1 The conditional return r∗t with minimum second moment is given by,

r∗t = R̃′
tθt−1 with θt−1 =

1

At−1

Λ−1
t−1e

Proof: Throughout the proof, we will omit the time subscript to simplify notation. By

Lemma 3.3 of Hansen and Richard (1987), the second moment minimization problem for

conditional returns can be solved conditionally. We set up the (conditional) Lagrangean,

L( θ ) =
1

2

(
θ′Λθ

)− α
(
e′θ − 1

)

where α is the Lagrangean multiplier for the conditional portfolio constraint. The first-order

condition with respect to θ for the minimization problem is,

Λθ = αe which implies θ = αΛ−1e

To determine the Lagrangean multiplier α, we use the portfolio constraint,

1 = e′θ = α( e′Λ−1e ) = αA which implies θ =
1

A
Λ−1e

This completes the proof of Lemma A.1.

Lemma A.2 The projection z∗t of 1 onto the space of conditional excess returns is,

z∗t = R̃′
tθt−1 with θt−1 = Λ−1

t−1

(
µt−1 − Bt−1

At−1

e
)
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Proof: Throughout the proof, we will omit the time subscript. We use the fact that z∗t is

the Riesz representation of the conditional expectation on the space of excess returns. Since

any excess return can be written as z = ( z + r∗t )− r∗t =: r − r∗t , this implies

Et−1

(
( r − r∗t )( z∗t − 1 )

)
= 0 for all r ∈ RC

t

Write z∗t = R̃′
tθ and r = R̃′

tφ/(e′φ) for some arbitrary vector of weights φ. Using the

conditional moments and the fact that z∗t is conditionally orthogonal to r∗t , we obtain,

0 = Et−1

(
rz∗t − ( r − r∗t )

)
=

θ′Λφ

e′φ
− µ′

( φ

e′φ
− 1

A
Λ−1e

)

which implies
[
Λθ − ( µ− B

A
e )

]′
φ = 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− B

A
e
)

This completes the proof of Lemma A.2.

A.2 Proof of Proposition 4.2:

In Lemmas A.3 and A.4 below we characterize the weights for the generalized returns r∗t and

z∗t that span the unconditionally efficient frontier in RG
t . From this, we obtain,

E( r∗t ) = b/a = α̂2, and E( z∗t ) = d− b2/a = α̂3.

The desired result (16) then follows from Lemma 3.2.

Lemma A.3 The generalized return r∗t with minimum second moment is given by,

r∗t = R̃′
tθt−1 with θt−1 =

1

a
Λ−1

t−1e
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Proof: Throughout the proof, we will omit the time subscript. We use calculus of variation.

Suppose θ is a solution, and φ is an arbitrary vector of (managed) weights. Define,

θε = ( 1− ε )θ + ε
φ

E ( e′φ )

By normalization, θε is an admissible perturbation in the sense that it generates a one-

parameter family of generalized returns. Since θ solves the minimization problem, the fol-

lowing first-order condition must hold,

d

dε

∣∣∣∣
ε=0

E
(
θ′εΛθε

)
= 0

which implies 0 = E
(
θ′Λ

[
E ( e′φ ) θ − φ

] )
= E

( [
E ( θ′Λθ ) e′ − θ′Λ

]
φ

)

Since this equation must hold for every φ, it implies,

θ = E ( θ′Λθ ) Λ−1e =: αΛ−1e

To determine the normalization constant α, we use the portfolio constraint,

1 = E ( e′θ ) = αE
(
e′Λ−1e

)
= αa which implies θ =

1

a
Λ−1e

This completes the proof of Lemma A.3.

Lemma A.4 The projection z∗t of 1 onto the space of generalized excess returns is,

r∗t = R̃′
tθt−1 with θt−1 = Λ−1

t−1

(
µt−1 − b

a
e

)

Proof: Throughout the proof, we will omit the time subscript. For unconditional returns,

z∗t is the Riesz representation of the unconditional expectation. Hence,

E ( ( r − r∗t )( z∗t − 1 ) ) = 0 for all r ∈ RG
t

As before, we write z∗t = R̃′
tθ and r = R̃′

tφ/E ( e′φ ) for some arbitrary φ. Using the law of

iterated expectations and the fact that z∗t is orthogonal to r∗t , we obtain,

0 = E ( rz∗t − ( r − r∗t ) ) = E
( θ′Λφ

E ( e′φ )
− µ′

( φ

E ( e′φ )
− 1

a
Λ−1e

) )
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which implies E
( [

θ − ( µ− b

a
e )

]′
φ

)
= 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− b

a
e
)

This completes the proof of Lemma A.4.

A.3 Sherman-Morrison formula used in Section Section 4.3:

Suppose Σ ∈ IRn×n is symmetric and µ ∈ IRn. If both Σ and (Σ− µµ′) are invertible, then

( Σ− µµ′ )−1 = Σ−1 − Σ−1µµ′Σ−1

1 + µ′Σ−1µ
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Base Assets Factor Instr

Variable Manuf Utils Shops Money Other Index CAY

Mean 1.01001 1.00871 1.01138 1.01096 1.00886 1.00968 0.00000

Std 0.04505 0.03967 0.05646 0.05055 0.04551 0.04370 0.01448

Correlations

Manuf 1.00000 0.57355 0.87834 0.82756 0.88197 0.98477 0.16079

Utils 1.00000 0.47703 0.70224 0.57722 0.62514 0.13743

Shops 1.00000 0.78144 0.81622 0.90795 0.16097

Money 1.00000 0.80349 0.87786 0.16394

Other 1.00000 0.92649 0.16489

Index 1.00000 0.17260

CAY 1.00000

Table 3: Summary Statistics

This table shows the summary statistics (sample mean, standard deviation, and correlations) for
monthly gross returns on the five Fama-French industry portfolios, the S&P 500 inndex (which
is used as factor in the estimation of the conditional heteroscedasticity model), as well as the
consumption-wealth ratio CAY (which is used as conditioning variable), for the sample period

from January 1959 to July 2001. Note that CAY was normalized to have zero mean.
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Figure 1: Efficient Frontier

This figure shows the estimated efficient frontier for the fixed-weight case (dashed line), and for
conditional (bold-faced line) and generalized (light-weight line) returns. The base assets are monthly
returns on the five industry portfolios of Fama and French (shown as circles), and the conditioning

variable is CAY.
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Figure 2: Efficient Portfolio Weights

This graph shows the weights of two efficient returns as functions of conditioning information. The
left-hand panels shows the weights for conditional returns while the right-hand panels show the

weights of generalized returns. The top row of panels shows the weights of the GMV for the two sets
of returns, while the bottom row are the weights of r∗t , the minimum second moment return. The

base assets are the five Fama-French industry portfolios and the conditioning variable is CAY.
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UE GHT

Panel (1) E(r∗) E((r∗)2) E(z∗) E(r∗) E((r∗)2) E(z∗)

α2 α1 α3 α2 α1 α3

Mean 0.9766 0.9861 0.0315 0.9775 0.9853 0.0322

(0.9397) (0.9487) (0.0680) (0.9337) (0.9426) (0.0741)

Standard Deviation 0.0129 0.0134 0.0127 0.0135 0.0139 0.0133

(0.0181) (0.0184) (0.0178) (0.0211) (0.0214) (0.0209)

Lower 95% Conf. 0.9532 0.9620 0.0131 0.9512 0.9601 0.0133

(0.9084) (0.9167) (0.0403) (0.8966) (0.9050) (0.0423)

Upper 95% Conf. 0.9953 1.0055 0.0546 0.9952 1.0053 0.0566

(0.9679) (0.9776) (0.0987) (0.9658) (0.9753) (0.1107)

Panel (2) E(r0) σ2(r0) E(z0) E(r0) σ2(r0) E(z0)

γ1 γ2 γ3 γ1 γ2 γ3

Mean 1.0084 0.0013 0.0327 1.0084 0.0012 0.0355

(1.0082) (0.0013) (0.0733) (1.0084) (0.0011) (0.0806)

Standard Deviation 0.0016 0.0001 0.0137 0.0016 0.0001 0.0144

(0.0015) (0.0001) (0.0206) (0.0015) (0.0001) (0.0246)

Lower 95% Conf. 1.0057 0.0011 0.0133 1.0058 0.0011 0.0134

(1.0058) (0.0011) (0.0420) (1.0060) (0.0010) (0.0442)

Upper 95% Conf. 1.0110 0.0014 0.0577 1.0110 0.0014 0.0600

(1.0107) (0.0014) (0.1095) (1.0108) (0.0012) (0.1245)

Table 4: Sampling Properties of Unconditional Moments

This table compares the sampling properties of the simulated estimates of the unconditional
moments of the efficient returns that span the frontier and are used to compute the bounds.

Panel (1) shows the sampling properties of the unconditional moments of r∗t and z∗t , while Panel
(2) does the same thing for the moments of r0

t and z0
t . The figures in brackets are obtained

using a hypothetical predictor variable with higher variance.
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Figure 3: Comparison with Fixed-Weight Bounds

This graph plots the UE (bold-faced line) and GHT (light-weight line) bounds in relation to the
fixed-weight (dashed line) bounds, together with the 95% percent confidence intervals (error bars) of

the fixed-weight bounds.
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Figure 4: Comparison of UE and GHT Bounds

This graph compares the sampling variability of the GHT and UE bounds, estimated from simulated
time series. The left-hand panels plot the UE bounds (solid line) and the GHT bounds (dashed line),
together with the 95% confidence intervals (error bars) around the UE bounds. The right-hand panel
does the same thing with the roles of UE and GHT bounds reversed. The top row of panels use CAY

as the predictor variable while the bottom panels use the hypothetical conditioning variable with
higher variance.
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Figure 5: Empirical Distribution

This graph plots the empirical distribution of the simulated estimates of the discount factor bound at
E(mt) = .998. The bold-faced lines represent the UE bounds and the lighter ones the GHT bounds.

The top panel uses CAY as the predictive variable while the bottom panel uses the hypothetical
conditioning variable with higher variance.
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Figure 6: Small Sample Bias Correction

This graph shows the effect of the small-sample bias correction due to Ferson and Siegel (2003) on the
bounds. The top row of panels shows the bounds without bias correction (solid lines), estimated on
simulated samples of 60 observations only, while the bottom row shows the bias-adjusted bounds
estimated from the same samples. The left-hand panel plots the UE bounds, while the right hand

panel shows the GHT bounds. The dashed lines indicate the location of the ‘true’ bounds, obtained
from a simulated sample of 1 million observations.

35



0.97 0.98 0.99 1.00 1.01
0.0

0.1

0.2

0.3

0.4

0.5

E(m)

σ2 (m
)

Panel (1.1): UE Bound

0.97 0.98 0.99 1.00 1.01
0.0

0.1

0.2

0.3

0.4

0.5

E(m)
σ2 (m

)

Panel (1.2): GHT Bound

0.97 0.98 0.99 1.00 1.01
0.0

0.1

0.2

0.3

0.4

0.5

E(m)

σ2 (m
)

Panel (2.1): UE Bound (high R2)

0.97 0.98 0.99 1.00 1.01
0.0

0.1

0.2

0.3

0.4

0.5

E(m)

σ2 (m
)

Panel (2.2): GHT Bound (high R2)

Figure 7: Out-of-Sample Analysis

This figure plots the in-sample and out-of-sample estimated of the UE and GHT bounds. The
left-hand panels plot the simulated in-sample estimates of the UE bounds (solid lines), together with

their 95% confidence intervals (error bars), while the GHT bounds are shown in the right-hand
panels. The dashed lines indicate the location of the corresponding out-of-sample estimates. The top

row of panels use CAY as the conditioning variable while the bottom panels use the hypothetical
variable with higher variance.
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UE GHT

(a) (b) (c) (a) (b) (c)

True Value 0.0477 0.0486 0.0474 0.0489 0.0499 0.0486

(0.0890) (0.1010)

Simulation Mean 0.0554 0.0457 0.0481 0.0574 0.0475 0.0495

(0.0946) (0.1088)

Standard Deviation 0.0207 0.0092 0.0187 0.0216 0.0102 0.0193

(0.0246) (0.0299)

Lower 95% Conf. 0.0248 0.0333 0.0209 0.0255 0.0342 0.0215

(0.0568) (0.0634)

Upper 95% Conf. 0.0924 0.0629 0.0820 0.0961 0.0666 0.0844

(0.1374) (0.1613)

Table 5: Effect of Measurement Error

This table reports the simulation results for the (bias adjusted) UE and GHT bounds at
E(mt) = 0.998. Column (a) shows the benchmark results from the simulated estimation.

Column (b) reports the results in the case where the unconditional mean µ0 is assumed to be
estimated without error, and column (c) reports the corresponding values assuming that β is
correctly estimated. The ‘true values’ are obtained from an estimation along a simulated time

series of 1 million observations. The figures in brackets indicate the corresponding values for the
hypothetical conditioning variable with higher variance.
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