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Abstract

In this paper we focus on the optimal use of a variety of predictive variables to construct

actively managed strategies using the components of the Dow Jones Industrial Average, and

analyze whether these outperform the index itself. Our strategies are unconditionally efficient

with the portfolio weights being pre-specified functions of the predictive variables, and are thus

both theoretically optimal and also relatively simple to implement. Our strategies significantly

outperform not only the DJIA but also the corresponding ‘fixed-weight’ strategies derived

from classic mean-variance theory. For example, an optimal stock-picking strategy using term

spread and convexity as predictive variables has an alpha of 11.8%, while the corresponding

fixed-weight strategy barely matches the index. Similarly, an optimal market-timing strategy

again using the same predictor variables achieves an alpha of 10.9%, whereas the corresponding

fixed-weight strategy under-performs the index by 3.4%.

JEL Classification: C31, C32, G11

Keywords: Return Predictability, Active Portfolio Management
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In recent years there has been a renewed focus on active portfolio management and in

particular tactical asset allocation, with the search for “alpha” having taken center stage as

discussed in Grinold and Kahn (1998), and Litterman (2004). This paper sets out to apply

state-of-the art tools, developed in the recent academic literature, to the problem of active

portfolio management. An important ingredient in this exercise is the use of predictive

variables to determine portfolio allocation. In this paper we focus on the optimal use of a

variety of predictive variables to construct strategies that actively manage the constituents

of the Dow Jones Industrial Average, in an attempt to consistently out-perform the index.

Our perspective is thus that of an active index fund manager, who is constrained to invest

only in the 30 largest stocks, and does not have access to other assets (for example small firm,

growth or ‘glamour’ stocks). Surprisingly, while this restrictive setting would seem to make

it very hard to beat the index, we find that our strategies in most cases show significantly

superior performance, as measured by a variety of industry-standard performance measures.

We consider eight different types of strategies which we broadly classify into optimal stock-

picking strategies, and optimal market-timing strategies. While the former are constrained

to invest only in the DJIA constituent stocks, strategies in the latter group are allowed to also

allocate a fraction of funds to a (conditionally) risk-free Treasury bill. Within each group, we

compare the performance of our actively managed strategies with that of corresponding static

strategies derived from traditional portfolio theory. While all strategies are constructed to be

ex-post mean-variance efficient within their class, for the actively managed ones the portfolio

weights are optimal functions of the lagged predictive variables. Our strategies are both

theoretically optimal and also relatively simple to implement. The strategies’ performance

is evaluated strictly out-of-sample, in the sense that we estimate the parameters required

for their construction using only data prior to the evaluation period. Our strategies could,

thus, have been implemented by a real-world portfolio manager over the time period under

consideration.

To achieve optimal active management, we use a variety of predictive instruments which

we broadly classify into variables reflecting market activity and liquidity, and variables cap-
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turing changes in the macro-economic environment. We examine the performance of our

strategies using a variety of industry-standard performance measures, including information

and Sharpe ratios, tracking errors, and Jensen’s alpha relative to the index as a benchmark.

To better understand the characteristics of the strategies, we also analyze their conditional

performance in different regimes, for example during recessions versus periods of expansion,

or periods of high versus low volatility. Finally, we also examine the cumulative returns of our

strategies, compared with those of the index or a corresponding traditional mean-variance

strategy, for a range of realistic investment horizons. Because the predictive variables that

drive the asset allocation weights are aggregate variables like inflation or term spread, there

is no obvious a priori reason to expect these variables to contain any valuable information as

to the precise allocation among different stocks or industry sectors. Surprisingly, however,

the empirical results unequivocally suggest that they do. While an in-depth analysis of the

precise nature of the impact of such predictive variables on individual portfolio weights goes

beyond the scope of this paper, research on this issue is underway by the authors and will

be presented elsewhere.

It may seem that out-performing a simple static portfolio such as the Dow Jones average

should be easy. However, we find that most static strategies based on classic portfolio theory

in fact significantly under-perform the benchmark, particularly during recession periods. In

contrast, our strategies not only out-perform the DJIA on average, but also do particularly

well in recessions, thus providing a form of portfolio insurance without options. For example,

in about 70% of the months in which the DJIA under-performed the return on a one-month

T-bill, our strategies out-performed not only the index but also the return on the bill.

Of all the predictive instruments we consider, we find that those capturing changes in the

shape of the Treasury yield curve have the most predictive power. For example, an optimal

stock-picking strategy using term spread (measuring the slope of the yield curve) and con-

vexity (measuring its curvature) achieves an overall alpha of 11.8%, while the corresponding

fixed-weight strategy barely matches the index. Our strategies have information and Sharpe

ratios in excess of 0.6 (almost three times that of the DJIA).

4



Similarly, the optimal market-timing strategy using the same variables achieves an alpha of

10.9%, whereas the corresponding fixed-weight strategy under-performs the index by 3.4%.

While the performance of the market-timing strategy falls slightly short of the corresponding

stock-picking strategy, the former provides a considerable amount of portfolio insurance, with

an alpha of 23.1% during recessions. Moreover, while our strategy maintains its performance

in periods of expansion (with an alpha of 9.5%), the corresponding fixed-weight strategy

under-performs the index by 5.5% in such periods.

By construction, our strategies are designed for investors with medium-term investment hori-

zon; their true potential becomes apparent in time-aggregation. At the monthly frequency,

there are still some periods in which our strategies under-perform the benchmark. However,

when we consider the cumulative returns over any five-year sub-period, we find only one (out

of 23) instance in which our strategy significantly under-performs the index. Moreover, while

the DJIA under-performs the return on risk-free T-bills in 8 of the 23 five-year periods, our

optimal strategy yields a positive excess return in every one of these periods. Our results

thus provide evidence that return predictability used optimally can produce considerable

economic gains, even when the asset universe is severely constrained.

In order to better understand how our strategies achieve their superior performance, we ana-

lyze their investment style using the Fama-French three-factor model. While both the fixed-

weight as well as the optimal strategies deviate substantially from tracking the benchmark,

only the optimal active management turns this disassociation into superior performance.

In fact, although the asset universe consists predominantly of large value stocks (the DJIA

constituents), the active management moves the behavior of our strategies closer towards

that of growth stocks, particularly for the market-timing strategies. Analyzing the portfolio

weights, we find that the market-timing strategies move funds out of the stock market and

into the risk-free T-bill in times when the index is expected to perform poorly and vice versa,

as should be expected.

Other predictive instruments we consider include realized index volatility, aggregate turnover

in the DJIA constituents, and other macro-economic indicators such as unexpected shocks
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to inflation, changes in unemployment and aggregate consumer spending, as well as average

credit yield spreads. We find that, while each of these variables on their own improves the

performance of our strategies marginally, none comes even close to matching term spread and

convexity. In fact, adding any of these variables to the latter slightly reduces performance. In

other words, in the context of portfolio formation most of the information conveyed by these

additional instruments is subsumed by changes in the shape of the yield curve, which could

be interpreted as describing changes in monetary policy. Interestingly, it is not the most

recent changes that matter most; instead the maximum level of predictive power is achieved

at a three-month lag. This seems to indicate that it takes on average several months for

changes in monetary policy to take effect in the economy.

The remainder of this paper is organized as follows. We first briefly describe our methodology,

and then summarize the results of our empirical analysis. A detailed description of the

construction of our optimal strategies and the data used can be found in the appendix.

Data and Methodology

For our study, we consider monthly returns on the DJIA and its constituent stocks, covering

the sample period from August 1976 to October 2004. The start date was chosen to coincide

with one of the dates at which the index composition changed. During our sample period,

there were 8 structural changes to the index, with some of its components being removed

and replaced by others. This leaves us with 9 sub-sample periods between the re-balancing

dates. The average length of the sub-sample periods is about 40 months, with the shortest

(from April to October 2004) spanning only 7 months and the longest (from May 1991 to

March 1997) extending to almost 6 years. A detailed description of the index composition

and the re-balancing events can be found in Appendix B.

For each of the 9 sub-sample periods, we estimate our predictive model (see Appendix

A for details), using return data on the 30 stocks that made up the index during that
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period, and the chosen predictive variables. Based on the estimated model parameters, we

then construct the portfolio weights of our optimally managed strategies as functions of

the predictive instruments. To avoid any look-ahead bias, we use for the estimation only

data preceding the beginning of the respective period. We then ‘run’ the strategies using

stock return and lagged instrument values within the period, and compute their returns.

This procedure guarantees that the strategies could have been implemented by a real-world

portfolio manager, as the portfolio allocations are based only on information available at

the time they are chosen. For each strategy, we then concatenate the return series for all

sub-sample periods, to obtain a time series of returns that spans the entire sample period

from 1976 to 2004. These time series are the basis for our ex-post performance analysis.

In addition to the simple in-sample/out-of-sample estimation, we also implement a rolling-

window method. In this case, we begin as before by estimating the model using data that

predates the first sub-period. However, we then construct the strategies only for the next

month ahead. We then re-estimate the model using the additional data point, extend the

strategy another month ahead, and so on.

Strategies

For each (set of) predictive instrument(s), we construct eight different strategies which we

broadly classify into (a) optimal stock-picking strategies, and (b) optimal market-timing

strategies. Strategies in group (a) are constrained to invest only in the DJIA constituent

stocks, while those in group (b) are allowed to also allocate a fraction of funds to a (con-

ditionally) risk-free Treasury bill. Within each group, we consider two types of efficient

strategies, (a) those that are designed to minimize volatility for a given target average re-

turn, and (b) those that maximize return for a given target volatility. For comparison, the

target return and volatility are chosen to match those of the DJIA over the sample period

under consideration. For each type, we compare the performance of (i) the static strategy

derived from traditional mean-variance theory, and (ii) the corresponding actively managed

strategy that exploits return predictability optimally. While all strategies are constructed

to be ex-post mean-variance efficient within their class, for those in group (ii) the portfo-
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lio weights are functions of the lagged predictive variables. A detailed description of their

construction can be found in Appendix A.

Instruments

We group the predictive instruments used into two broad categories, (a) variables that cap-

ture market activity and liquidity, and (b) those that describe the state of the overall econ-

omy. Our choice of instruments is motivated by recent empirical evidence which documents

the significant ability of certain variables to predict the distribution of asset returns. More

specifically, in group (a) we include (de-trended) turnover ratio1 as a measure of market

liquidity, and the monthly realized variance of the index, computed as the sum of squared

daily returns throughout the month. In group (b) we include term spread (measuring the

slope of the Treasury yield curve), convexity (measuring its curvature), average credit yield

spread, as well as macro-economic indicators such as unexpected shocks to inflation, changes

in unemployment and aggregate consumer spending2. A detailed description of the variables

used and the way in which they are constructed is given in Appendix B.

Performance

To assess the performance of the strategies, we compute several ex-post performance statis-

tics, including Sharpe and information ratios. As the main focus of this study is the out-

performance of the market benchmark, we place particular emphasis on Jensen’s alpha, both

relative to the index itself, as well as relative to the Fama-French three-factor model. In or-

der to better understand how these strategies perform in different regimes, we also construct

regime-dependent alphas. Specifically, we consider recession versus expansion, high versus

low volatility, as well as high and low trading activity (see Appendix B for details).

1Measures of liquidity have been the focus of recent research, and this study is the first to use such a

measure as a predictive instrument.
2In recent work, Abhyankar, Basu, and Stremme (2005a) find that some of these variables have consid-

erable predictive power for asset returns.
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Results

We first report the results for the stock-picking strategies (in the absence of a risk-free asset),

and then move on to the market-timing strategies.

Stock-Picking Strategies

We first focus on strategies that are constrained to invest only in the 30 component stocks

of the index. The results for this case, for two different sets of instruments, are reported in

Panel A of Tables 2, 3 and 4, respectively.

Volatility and Turnover

Table 2 reports the results in the case where the predictive instruments are realized index

variance (RV), and the (de-trended) turnover ratio (TO). Our actively managed maximum-

return strategy not only out-performs the DJIA (with an overall alpha of 4.98%), but also

beats the corresponding fixed-weight strategy which just barely matches the index perfor-

mance (with an alpha of less than 1%). In fact, the optimal strategy has slightly lower risk

(21.8%) than the fixed-weight portfolio (22.0%), but a considerably higher average return

(13.7% versus 9.0%). Conversely, while the average return of the fixed-weight portfolio is al-

most identical to that of the DJIA, its variance is about 50% higher. Our optimally managed

strategy has a Sharpe ratio of 0.31, compared to only 0.22 for the Dow Jones.

Breaking down the performance according to the business cycle, we find that the active

strategy shows consistent out-performance in both recession and expansion (with an alpha

in recession periods of 7.5%, and 4.7% in expansion periods), while the fixed-weight strategy

in fact slightly under-performs the index in expansion periods. Also interesting is the ‘style’

analysis: while both fixed-weight and active strategy are clearly (and unsurprisingly) biased

towards large stock (with similar coefficients of about −0.39 and −0.37 for the SMB factor),

the active portfolio behaves much more like a ‘value’ strategy (with an HML coefficient of
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0.23, compared to 0.16 for the DJIA itself) than the fixed-weight strategy, which does not

have a clear bias towards either growth or value stocks. Finally, our active strategy out-

performs even when size and book-to-market effects have been corrected for (with an alpha

of 2.38% in the Fama-French model), while the fixed-weight strategy in fact under-performs

slightly.

The overall alpha of the minimum-variance strategy (results not reported in the table) is

4.9%, almost identical to the maximum return strategy. However it under-performs during

recessions with a recession alpha of −4.8% and outperforms during expansion periods with

an alpha of 6.9%.

Term Spread

Tables 3 and 4 report the results in the case where the predictive instruments are the term

spread (TSPR), and term spread plus convexity (CONV), respectively. We first focus on

the performance of term spread as a predictive variable (Table 3). The actively managed

maximum-return strategy outperforms both the DJIA as well as the corresponding fixed-

weight strategy along all the dimensions considered. The overall alpha is 9.97% with virtually

the same level of risk as the fixed weight strategy (21.9% compared to 22.0%) but more than

double the return (19.2% compared to 9.0%). Our actively managed strategy has a Sharpe

ratio of 0.53, more than twice that of the Dow (0.22), and its information ratio is 0.51.

This strategy seems to perform better in recession periods with a recession alpha of 13.0%

but, unlike the corresponding fixed-weight strategy, also outperforms the index in expan-

sions with an expansion alpha of 9.6%. Another interesting feature of this strategy is that it

performs better in high volatility and high activity periods (with alphas of 10.5 and 13.8% re-

spectively) than low volatility and low activity periods (alphas of 8.8 and 6.1% respectively),

which is an indication that our strategy responds actively to information arrival.

The minimum-variance strategy (results not reported in the table) also beats the DJIA with

an overall alpha of 4.1% but its performance over the business cycle is very different to the

maximum-return strategy, as it under-performs during recession (with a recession alpha of
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−5.4%). It also performs better during low volatility periods (alpha of 9.7%) than high

volatility periods (alpha of 1.8%), in contrast to the maximum-return strategy that does the

opposite. This strategy achieves Sharpe and information ratios of 0.37 and 0.31, which are

considerably lower than the maximum return strategy.

Convexity

Next, we investigate the predictive ability of convexity (CONV), which measures the cur-

vature of the Treasury yield curve (see Appendix B for details). While this variable on its

own does not achieve the performance of the term spread, using both variables together

considerably improves the performance of our strategies (Table 4).

Again, the actively managed maximum-return strategy outperforms both the DJIA as well

as the corresponding fixed-weight strategy. The overall alpha is 11.8% with a slightly lower

level of risk as the fixed weight strategy (21.6% compared to 22.0%), but more than double

the return (21.4% compared to 9.0%). Our actively managed strategy has a Sharpe ratio of

0.63, almost triple that of the Dow (0.22), and its information ratio is 0.63.

All other aspects are qualitatively similar to the case with only term spread as predictive

instrument, with a slight improvement of performance across all measures considered. The

only difference is that the optimal strategy now shows a slight bias towards value stocks (with

an HML coefficient of 0.13 in the Fama-French model). The results for the corresponding

minimum-variance strategy are also very similar.

Other Instruments

We also examined the performance of our strategies using average credit yield spread (CSPR),

unexpected shocks to inflation (INF), and changes in unemployment (UEGR) and aggregate

consumer spending (CGR). We find that, while each of these variables on their own improves

the performance of our strategies marginally, none comes even close to matching term spread

and convexity. In fact, adding any of these variables to the latter slightly reduces perfor-

mance. In other words, most of the information conveyed by these additional instruments is
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subsumed by changes in the shape of the yield curve, which could be interpreted as describ-

ing changes in monetary policy. Interestingly, it is not the most recent changes that matter

most; instead the maximum level of predictive power is achieved at a three-month lag. This

seems to indicate that it takes on average several months for changes in monetary policy to

take effect in the economy.

Thus, our optimal stock-picking strategies significantly outperform not only the DJIA, but

also the corresponding fixed-weight strategies. The term structure variables (TSPR and

CONV) perform best as predictors, and strategies using these variables perform particularly

well during periods of recession. The active management manifests itself in the fact that our

strategies show better performance in periods of high volatility and high trading activity.

Market-Timing Strategies

We now consider the case in which the strategies are allowed to allocate funds between the

30 Dow Jones component stocks and a 1-month Treasury bill. Note that, while the returns

on T-bills of course vary over time and hence are risky ex-post, the 1-month-return at the

time when portfolio decisions are made is known and thus (conditionally) risk-free. We use

this fact in the construction of our optimal strategies (see Appendix A).

Volatility and Turnover

Panel B of Table 2 reports the results for the case where the predictive instruments are

realized variance (RV), and the (de-trended) turnover ratio (TO). In the presence of a

(conditionally) risk-free asset, our actively managed maximum-return strategy marginally

out-performs the DJIA (with an overall alpha of 1.46%), while the fixed-weight strategy

under-performs by 3.39%. This is largely driven by the fact that, while both strategies show

good performance in recessions (with recession alphas of 12.12% and 14.52%, respectively),

our strategy tracks the index almost perfectly in boom periods (with an alpha of 0.17%),

whereas the fixed-weight strategy under-performs considerably (with an alpha of −5.47%) in
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these periods. In other words, our optimally managed market-timing strategy provides de-

facto portfolio insurance in the sense that it matches market performance when the economy

is growing, while significantly out-performing the market in recessions. In fact, while the

DJIA earned on average 2% less than T-bills in recessions, our strategy achieves an average

excess return of 11% over T-bills.

Term Spread and Convexity

The results for the case of term spread (TSPR) and convexity (CONV) as predictive instru-

ment are reported in Panel B of Tables 3 and 4.

Using term spread alone, the maximum-return strategy has an overall alpha of 8.6%, achiev-

ing Sharpe and information ratios of 0.43 and 0.41, respectively. The performance over the

business cycle, while qualitatively similar to the corresponding stock-picking strategy, seems

to provide greater portfolio insurance (with a recession alpha of 18.1%). The difference in

performance between high and low volatility and activity regimes is not as pronounced as

that for the respective stock-picking strategy.

Note that, in the presence of a risk-free asset, this optimal strategy behaves more like a

‘growth’ than a value strategy (with an HML coefficient of −0.24). The minimum-variance

strategy behaves much more like an index-tracking strategy, with the overall as well as the

regime-dependent alphas all virtually zero, and a negligible tracking error.

The effect of including convexity in the set of predictive instruments is very similar to

the stock-picking strategies, with the overall alpha increasing to 10.9%, and Sharpe and

information ratios of 0.56 and 0.54, respectively. However, the difference in performance

between the recession and boom, and high and low volatility or activity regimes is much

more pronounced.

Figure 1 shows the cumulative returns over the entire sample period from 1976 to 2004.

While the Dow Jones itself under-performs the performance of Treasury bills (depicted as

the smooth solid line) for the first 20 years, our optimally managed strategies shows superior
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performance from the start. While an investment in the DJIA would have earned a total of

only $10 for each $1 invested in 1976, the same amount invested in the optimal market-timing

strategy would have grown to almost $100.

Figure 2 shows the (annualized) cumulative returns of our strategy (vertical axis), graphed

against those of the DJIA (horizontal axis), over any of the 23 five-year sub-periods in the

sample period. While there is only one instance in which our strategy significantly under-

performs the index, there are 8 periods in which the Dow not even matches the performance

of an investment in Treasury bills. On the other hand, there is not a single period in which

our strategy under-performs the T-bill, but there are 10 periods in which our strategy out-

performs the index by 10% or more.

Our findings are similar in spirit to those in Cochrane (1999), where it is shown that an

optimal market-timing strategy that utilizes return predictability can achieve Sharpe ratios

that are almost double that of a buy-and-hold investor, and also confirms the findings in

Wagner (1997). Our results are also consistent with Ferson and Schadt (1996), who find

that mutual funds, while unable to time the market in a traditional fixed-weight setting, are

able to do so when the parameters of the model are allowed to be time-varying.

Summary

This paper sets out to illustrate in a realistic setting the value optimally using return pre-

dictability in active portfolio management. To this end, we construct a variety of ex-post

efficient dynamic trading strategies, with portfolio weights that are optimally chosen func-

tions of one or more (lagged) predictor variables. We assess the out-of-sample performance

of these strategies by computing a range of commonly used performance measures, both in

absolute terms as well as relative to the benchmark itself.

Overall, both the optimal stock-picking as well as market-timing strategies significantly out-

perform not only the benchmark, but also the corresponding fixed-weight strategies. While
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stock-picking strategies show slightly higher overall performance, market-timing strategies

provide better portfolio insurance in recessions. Of all the predictive instruments we tested,

term spread and convexity perform best by a wide margin. Other variables, while achieving

marginal performance gains on their own, in fact reduce performance slightly when used

in connection with the former. This effect may be due to noisy data, with our estimation

procedure picking up spurious predictive relationships to which our strategies respond, thus

generating additional volatility that is not offset by corresponding gains in return.

Interestingly, the term structure variables achieve their maximal predictive potential at the

3-month lag, indicating that changes in monetary policy take a few months to take effect in

the economy. Both the fixed-weight as well as optimal strategies deviate substantially from

tracking the benchmark, unsurprisingly more so for market-timing strategies. However,

only the optimal active management turns this disassociation into superior performance.

In fact, although the asset universe consists predominantly of large value stocks (the DJIA

constituents), the active management moves the behavior of the market-timing strategy

closer towards that of growth stocks.
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Appendix A: Optimally Managed Strategies

The optimal use of conditioning information in the formation of portfolios was first studied,

in a very theoretical framework, by Hansen and Richard (1987). More recently, their re-

sults were operationalized by Ferson and Siegel (2001), and Abhyankar, Basu, and Stremme

(2005b). The objective is to characterize the weights, as functions of the conditioning in-

struments, of managed portfolio strategies that are unconditionally mean-variance efficient.

We consider any one given investment period (i.e. month). Denote by time t−1 the beginning

of the period, and the end by t. At time t − 1, the investor allocates funds across the 30

component stocks of the DJIA. We denote the gross return (per dollar invested) of the k-th

stock by rk
t , and by R̃t := ( r1

t . . . r30
t )

′
the vector of stock returns. For the moment, we

assume that no risk-free asset is traded.

While returns are realized at time t, the portfolio allocation will depend on the information

available at time t− 1. We assume that this information is summarized entirely by a vector

yt−1 =
(
y1

t−1 . . . ym
t−1

)′
of lagged conditioning instruments, variables observable at time

t− 1 that contain information about the distribution of stock returns over the next period3.

Finally, we denote by Et−1( · ) the conditional expectation with respect to yt−1.

An actively managed portfolio can then be described by a vector θt−1 = ( θ1
t−1 . . . θ30

t−1 )′ of

weights, where the θk
t−1 are functions of the conditioning information, yt−1. Because the

weights represent the fraction of the investor’s wealth invested in each of the stocks, we

require that the weights add up to 100%, i.e. e′ θt−1 ≡ 1, where e is a vector of ‘ones’. The

return on such a portfolio is then given by R̃′
t θt−1. We denote by Rt the set of all returns

that can are attainable by such managed strategies4.

3These variables include indicators of market activity such as realized variance (RV) and turnover ratio

(TO), and economic indicators such as term-spreads (TSPR) or inflation shocks (INF). See [REF] for a

detailed description of the instruments used in this study.
4Note that, in contrast to the fixed-weight case without conditioning information, the space of managed
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Efficient Portfolio Weights

For given unconditional expected return m, the objective is to construct the dynamically

managed portfolio r∗t (m) that has minimal variance among all portfolios with mean m. To

begin with, we define the conditional moments of the base asset returns as,

µt−1 = Et−1

(
R̃t

)
, and Λt−1 = Et−1

(
R̃t · R̃′

t

)
. (1)

In other words, returns can be written as R̃t = µt−1 + εt, where µt−1 is the conditional

expectation of returns given conditioning information, and εt is the residual disturbance

with variance-covariance matrix Σt−1 = Λt−1 − µt−1µ
′
t−1. This is the formulation of the

model with conditioning information used in Ferson and Siegel (2001)5. Finally, we set

At−1 = e′Λ−1
t−1e, Bt−1 = µ′t−1Λ

−1
t−1e, Dt−1 = µ′t−1Λ

−1
t−1µt−1 (2)

These are the conditional versions of the ‘efficient set’ constants from classic mean-variance

theory. We choose this notation in order to highlight the structural similarities between the

UE and GHT bounds, and to facilitate a direct comparison.

Abhyankar, Basu, and Stremme (2005b) show that the unconditionally efficient portfolio

r∗t (m) ∈ Rt for given unconditional mean m can be written as r∗t (m) = R̃′
tθt−1, where

θt−1 = Λ−1
t−1

( 1− wBt−1

At−1

e + w µt−1

)
, (3)

where w is a constant, given by w = ( m−E( Bt−1/At−1 ) )/E( Dt−1−B2
t−1/At−1 ). It is now

easy to show that the variance of the efficient return is given by,

σ2( r∗t (m) ) = E( 1/At−1 ) +
( m− E( Bt−1/At−1 ) )2

E( Dt−1 −B2
t−1/At−1 )

−m2. (4)

Hence, to find the portfolio with maximal return for given target variance σ̄2, one simply

needs to find the larger root m of the quadratic equation σ2( r∗t (m) ) = σ̄2.

pay-offs is infinite-dimensional even when there is only a finite number of base assets.
5Note however that our notation differs slightly from that used in Ferson and Siegel (2001), who define

Λt−1 to be the inverse of the conditional second-moment matrix.
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Modeling Return Predictability

To construct the optimal portfolio strategies derived in the preceding section, we need to

estimate the conditional moments µt−1 and Λt−1 as functions of the conditioning information.

Although the results in Abhyankar, Basu, and Stremme (2005b) are not restricted to a linear

specification, for the purpose of this paper we will assume that the relation between returns

and conditioning instruments is given by a linear predictive model of the form,

R̃t = µ0 + B · yt−1 + εt, (5)

where yt−1 is the vector of (lagged) conditioning variables. To estimate this model by OLS,

we assume furthermore that the residuals εt are independent of yt−1, serially independently

and identically distributed with Et−1( εt ) = 0. The vector of conditional expected returns

in this case becomes, µt−1 = µ0 + B · yt−1. The independence assumption implies that the

conditional variance-covariance matrix does not depend on yt−1, and we write Σ instead of

Σt−1. Finally, the matrix of second moments can then be written as Λt−1 = Σ + µt−1µ
′
t−1.

Incorporating a Risk-Free Asset

Incorporating a risk-free asset is not as straight-forward as it may seem. Traditional mean-

variance theory assumes that the risk-free rate is constant and known in advance for all

periods. In reality however, this is not the case. Instead, we consider here a conditionally

risk-free rate.

More specifically, denote by rF
t the return on a T-bill over the period from time t−1 to time t.

While rF
t may change over time, its value is known with certainty at time t−1. To incorporate

this information, we first estimate the predictive model as in (5). Then, we augment the

vector of asset returns and instruments to include the risk-free asset, R̃+
t = ( rF

t , R̃t )′, and

y+
t−1 = ( rF

t , yt−1 )′. Note that we did not lag the risk-free rate, as it is known at time t− 1.

The predictive equation, taking into account the fact that the risk-free rate is known at the

beginning of the month, can now be written as

R̃+
t = µ+

0 + B+ · y+
t−1 + ε+

t , (6)
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where µ+
0 = ( 0, µ0 )′, ε+

t = ( 0, εt )′, and the coefficient matrix becomes

B+ =


 1 0

0 B


 (7)

This way, the model incorporates the information about the one-period ahead risk-free re-

turn, without assuming an unconditionally constant risk-free rate. The efficient portfolio

weights can then be computed as in (3), replacing all variables by their respective augmented

versions. Note that, as a consequence of the above construction, the variance-covariance ma-

trix Σ+ of the augmented residuals ε+
t is now singular, as the first row and column are zero.

However, this does not pose a problem as the efficient weights are formulated in terms of

the matrix Λ+
t−1 of second moments which is, in contrast to Σ+, invertible.

Data Description

Daily data for all the DJIA constituents over the period July 2, 1962 through December 31,

2004 are taken from the CRSP dataset. The following variables are selected: (a) holding

period return, i.e. return adjusted for dividend payments and stock splits, (b) volume, i.e.

the total number of shares of a stock sold on a given day, and (c) shares outstanding, i.e. the

total number of publicly held shares. Table 1 shows the re-balancing events for the index.

Instruments

We construct two groups of predictive instruments, one containing market-based variables

derived from the DJIA data, and a second containing economic indicators. The market-based

instruments are (a) monthly realized variance (RV), the sum of squared daily holding period

returns on the index, and (b) turnover ratio (TO), defined as the daily volume divided by

number of shares outstanding, averaged across stocks and over the month. We found a clear

linear trend in log turnover, with a regime break around October 1987. We thus estimated

the linear trend in the log instrument for the two periods before and after the break point,

and used the residual deviation from the trend as our predictive instrument.
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For the second group of variables we choose (a) term spread (TSPR), defined as the differ-

ence between the yield of 10-year Treasury bonds and the 1-year T-bill rate, (b) convexity

(CONV), defined as twice the 5-year yield minus the 10-year and 1-year yields. Both vari-

ables were constructed from data published by the Federal Reserve Bank of St. Louis6.

We also consider (c) credit yield spread, defined as the difference in 10-year yield between

AAA-rates corporate and government bonds, which we obtained from Datastream. Finally,

we include macro-economic indicators measuring (d) unexpected shocks to inflation, and

changes in (e) unemployment and (f) aggregate consumer spending, all constructed from

data published by the Federal Reserve Bank of St. Louis.

Performance Measures

We compute a variety of ex-post performance measures from the time series of returns on the

strategies and the benchmark. In particular, (a) Jensen’s alpha is obtained as the intercept

of the regression of excess (over T-bill) returns on the strategy on the excess returns on the

DJIA benchmark, where the (b) tracking error is defined as the residual volatility in this

regression. The (c) information ratio is calculated as the strategy’s alpha (a), divided by the

tracking error (b). Finally, the style indicators are computed by regressing the strategy’s

excess returns on the excess return on a market index, and the two Fama-French factors SMB

(‘small minus big’) and HML (‘high minus low’). The coefficients on the latter two factors

capture the ex-post investment style of the strategy: a positive coefficient on SMB indicates

that the strategy’s behavior is biased towards small stocks, while a positive coefficient on

HML indicates a bias towards value stocks (those with high book-to-market ratios).

Regimes

To further analyze the performance of our strategies in different regimes, we construct in-

dicator variables separating (a) periods of recession and expansion, (b) periods of low and

high volatility, and (c) periods of low and high market turnover, respectively. For (a), we

6http://research.stlouisfed.org/fred2/.

20



use the recession index constructed ex-post from the macro-economic indicators published

by the the National Bureau of Economic Research (NBER)7. The market activity variables

(b) and (c) were constructed from the respective instruments (RV and TO), using a high-low

switching band around their respective mean. In other words, the indicator is set to ‘high’

when the respective instrument value passes through the upper limit, and set to ‘low’ when

it falls below the lower limit. This procedure was chosen to avoid the indicator switching

between regimes even for very small changes in the instrument. All regime indicators take on

the values 1 and 0 to indicate recession and boom, or high versus low volatility and turnover.

To obtain conditional performance alphas, the constant in the regression of portfolio returns

on the benchmark is replaced by the regime indicator and a second dummy variable which

takes on the value 1 when the indicator is zero and vice versa.

7http://www.nber.org.
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Date Added to DJIA Removed from DJIA

1. < 1 Jun 1959 Alcoa Inc.
2. Du Pont
3. Exxon Mobil
4. General Electric Company
5. General Motors Corporation
6. Honeywell International
7. Procter & Gamble Company
8. United Technologies Corp
9. 9 Aug 1976 3M Company Anaconda Copper

10. 29 Jun 1979 International Business Machines Chrysler
11. Merck Esmark
12. 30 Aug 1982 American Express Company Johns-Manville
13. 30 Oct 1985 Altria Group American Tobacco B
14. McDonalds Corporation General Foods
15. 12 Mar 1987 Coca-Cola Owens-Illinois Glass
16. Boeing Company Inco
17. 6 May 1991 Caterpillar Incorporated Navistar International Corp.
18. Walt Disney Company USX Corporation
19. J.P. Morgan Chase Primerica Corporation
20. 17 Mar 1997 Citigroup Incorporated Westinghouse Electric
21. Hewlett-Packard Company Texaco Incorporated
22. Johnson & Johnson Bethlehem Steel
23. Wal-Mart Stores Incorporated Woolworth
24. 1 Nov 1999 Microsoft Corporation Chevron
25. Intel Corporation Goodyear
26. SBC Communications Union Carbide
27. Home Depot Incorporated Sears Roebuck & Company
28. 8 Apr 2004 American Intl. Group Inc AT&T Corporation
29. Pfizer Incorporated Eastman Kodak Company
30. Verizon Communications Inc International Paper Company

Table 1: DJIA Constituents 1959–2005
This table lists the changes in composition of the Dow Jones Industrial Average (DJIA) throughout
the sample period under consideration. Note that there were also several name changes and mergers
in this period, which we do not list here.
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Panel A: Panel B:
Stock Picking Strategies Market Timing Strategies

(no risk-free asset) (with risk-free asset)

fixed-weight optimal fixed-weight optimal

Expected Return 9.00% 13.68% 3.78% 8.43%
Return Volatility 22.04% 21.87% 22.70% 20.01%
Sharpe Ratio 0.1174 0.3141 −0.1029 0.1038

Performance Relative to Benchmark

Benchmark Beta 0.5886 0.5862 0.3282 0.1864
Jensen’s Alpha 0.60% 4.98% −3.39% 1.46%
Tracking Error 20.11% 19.87% 22.13% 19.79%
Information Ratio 0.0299 0.2507 −0.1531 0.0735

Regime-Dependent Performance (Conditional Alpha)

Recession 13.08% 7.54% 14.52% 12.12%
Expansion −0.89% 4.66% −5.47% 0.17%
High Volatility 0.53% 3.07% −2.57% −1.09%
Low Volatility 0.77% 9.68% −5.32% 7.78%
High Activity 4.22% 6.68% −0.98% 1.79%
Low Activity −3.08% 3.23% −5.86% 1.10%

Performance Relative to Fama-French 3-Factor Model

Beta (Market Return) 0.5759 0.6558 0.2522 0.1695
Beta (SMB) −0.3902 −0.3737 −0.2774 −0.2103
Beta (HML) −0.0315 0.2250 −0.2765 −0.0716
Alpha −0.08% 2.38% −1.91% 1.90%

Table 2: Maximum-Return Strategies (Market Indicators)
This table reports various ex-post performance measures for the optimal and fixed-weight maximum
return strategies. The predictive variables are realized variance (RV) and de-trended turnover ratio
(TO), both of which are described in Appendix B. The maximum return strategy has target volatility
equal to that of the DJIA over the 1976-2004 period. The weights of the optimal strategy are given in
Appendix A, while the fixed-weight strategy is constructed using standard mean-variance theory. The
regime-indicators used to compute conditional alphas are constructed as described in Appendix B.
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Panel A: Panel B:
Stock Picking Strategies Market Timing Strategies

(no risk-free asset) (with risk-free asset)

fixed-weight optimal fixed-weight optimal

Expected Return 9.00% 19.22% 3.78% 16.54%
Return Volatility 22.04% 21.93% 22.70% 21.68%
Sharpe Ratio 0.1174 0.5330 −0.1029 0.4329

Performance Relative to Benchmark

Benchmark Beta 0.5886 0.6281 0.3282 0.3151
Jensen’s Alpha 0.60% 9.97% −3.39% 8.62%
Tracking Error 20.11% 21.88% 22.13% 21.08%
Information Ratio 0.0299 0.5074 −0.1531 0.4090

Regime-Dependent Performance (Conditional Alpha)

Recession 13.08% 13.04% 14.52% 18.14%
Expansion −0.89% 9.59% −5.47% 7.46%
High Volatility 0.53% 10.46% −2.57% 8.88%
Low Volatility 0.77% 8.82% −5.32% 8.01%
High Activity 4.22% 13.76% −0.98% 10.58%
Low Activity −3.08% 6.11% −5.86% 6.60%

Performance Relative to Fama-French 3-Factor Model

Beta (Market Return) 0.5759 0.6421 0.2522 0.2485
Beta (SMB) −0.3902 −0.2400 −0.2774 −0.1370
Beta (HML) −0.0315 0.0611 −0.2765 −0.2393
Alpha −0.08% 7.91% −1.91% 9.59%

Table 3: Maximum-Return Strategies (Term Spread)
This table show the ex-post performance of the optimal and fixed-weight maximum return strategies
in the case where the predictive instrument is the term spread (TSPR). The maximum-return strategy
has target volatility equal to that of the DJIA over the 1976-2004 period. The weights of the optimal
strategy are given in Appendix A, while the fixed-weight strategy is constructed using standard mean-
variance theory. The regime-indicators are constructed as described in Appendix B.
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Panel A: Panel B:
Stock Picking Strategies Market Timing Strategies

(no risk-free asset) (with risk-free asset)

fixed-weight optimal fixed-weight optimal

Expected Return 9.00% 21.35% 3.78% 19.04%
Return Volatility 22.04% 21.55% 22.70% 20.82%
Sharpe Ratio 0.1174 0.6262 −0.1029 0.5546

Performance Relative to Benchmark

Benchmark Beta 0.5886 0.6804 0.3282 0.3225
Jensen’s Alpha 0.60% 11.76% −3.39% 10.94%
Tracking Error 20.11% 18.81% 22.13% 20.17%
Information Ratio 0.0299 0.6251 −0.1531 0.5424

Regime-Dependent Performance (Conditional Alpha)

Recession 13.08% 16.37% 14.52% 23.11%
Expansion −0.89% 11.19% −5.47% 9.48%
High Volatility 0.53% 12.78% −2.57% 12.14%
Low Volatility 0.77% 9.35% −5.32% 8.12%
High Activity 4.22% 16.52% −0.98% 13.87%
Low Activity −3.08% 6.95% −5.86% 7.95%

Performance Relative to Fama-French 3-Factor Model

Beta (Market Return) 0.5759 0.6836 0.2522 0.2695
Beta (SMB) −0.3902 −0.1997 −0.2774 −0.0463
Beta (HML) −0.0315 0.1305 −0.2765 −0.0979
Alpha −0.08% 9.05% −1.91% 10.74%

Table 4: Maximum-Return Strategies (Term Spread and Convexity)
This table show the ex-post performance of the optimal and fixed-weight maximum return strategies
in the case where the predictive instruments are the term spread (TSPR) and convexity (CONV).
The maximum-return strategy has target volatility equal to that of the Dow Jones Industrial Average
(DJIA) over the 1976-2004 period. The weights of the optimal strategy are given in Appendix A, while
the fixed-weight strategy is constructed using standard mean-variance theory. The regime-indicators
are constructed as described in Appendix B.
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Figure 1: Cumulative Returns
This graph shows the cumulative returns from investing one dollar each in the optimally managed
maximum-return strategy (solid line), the fixed-weight strategy (dashed line), and the Dow Jones
Industrial Average (black line) over the 1976-2004 period. The maximum return strategy has target
volatility equal to that of the DJIA over the 1976-2004 period. The weights of the optimal strategy
are given in Appendix A, while the fixed-weight strategy is constructed using standard mean-variance
theory. The predictive variables used for the optimally managed strategy in this case are term spread
(YSPR) and convexity (CONV).
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Figure 2: Five-Year Performance
This graph plots the five-year performance of the optimally managed strategy against the corresponding
performance of the DJIA. Each dot represents the annualized cumulative excess (over T-bill) return
over a given five-year period. The return on the DJIA is measured on the horizontal axis, while the
return on the optimal strategy is plotted on the vertical axis. The dotted lines correspond to zero
excess return (i.e. the strategy returns equal the T-bill return). The cross (‘+’) marks the average
excess returns. The maximum return strategy has target volatility equal to that of the DJIA over
the 1976-2004 period. The weights of the optimal strategy are given in Appendix A. The predictive
variables used for the optimally managed strategy in this case are term spread (YSPR) and convexity
(CONV).
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