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Abstract 
We investigate whether the evolution of the term structure of petroleum futures can be 
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and the International Petroleum Exchange (IPE) crude oil futures are used. We find that 

the retained principal components have small forecasting power. Similar results are also 

obtained from standard univariate and vector autoregression models. Spillover effects 

between the four petroleum futures markets are also detected. 

 

Keywords: Petroleum futures, Principal Components Analysis, Spillovers, Term Structure 

of futures prices. 

 

JEL Classification: G10, G13, G14. 

                                                      
* We would like to thank Stefano Fiorenzani, Jeff Fleming, Daniel Giamouridis, Costas Milas, Leonardo 
Nogueira, and the participants at the 2nd Advances in Financial Forecasting Conference (Loutraki) and 
especially the discussant Orestis Soldatos for helpful discussions and comments. Any remaining errors are 
our responsibility alone. 
a New York University, chantziara@hotmail.com 
b Corresponding author. University of Piraeus, Department of Banking and Financial Management, and 
Financial Options Research Centre, Warwick Business School, University of Warwick, gskiado@unipi.gr 



 2

 

1. Introduction 
Since their introduction, futures on petroleum products (crude oil and its by-products 

heating oil and gasoline) are gaining in importance because they have been designed to 

serve the oil industry’s needs. In particular, the whole term structure of petroleum futures 

prices is of importance to practitioners. Petroleum futures are traded across a wide range 

of maturities; different maturities may be used for different purposes by investors (see 

Lautier, 2005, and the references therein). Furthermore, the petroleum term structure of 

futures prices evolves stochastically over time. It is typically characterised by alternating 

backwardation and contango states and high volatility. This attracts speculators and makes 

the hedging of these contracts a challenging task. Therefore, forecasting the evolution of 

the whole term-structure of futures is of great interest to the market participants. The 

previous literature has explored the predictive power of petroleum futures prices (see e.g., 

Chinn et al., 2005, and the references therein), the formation of the shape of the petroleum 

futures term structure (see e.g., Litzenberger and Rabinovitz, 1995), and its dynamics in 

the context of pricing petroleum derivatives1. Surprisingly, to the best of our knowledge, 

the question of whether the evolution of the petroleum futures term structure can be 

forecasted has received little attention. This paper fills this void. 

In any context where forecasting needs to be performed, the primary question is 

what variables should be used as predictors in the forecasting regression equation. One 

approach would be to specify specific variables that have some clear economic 

interpretation. For the purposes of forecasting the dynamics of commodity futures prices, 

possible choices could be the underlying spot price, the interest rate, and the convenience 

yield. Alternatively, the previous day futures term structure could be employed. The 

former and latter choice of variables sets up tests of semi-strong and weak form market 

                                                      
1 Two approaches have been developed to model the dynamics of the term structure of futures prices and 
price commodity derivatives that depend on the futures price (see Lautier, 2005, for an extensive survey). 
The first approach assumes that a number of factors (e.g., the underlying spot price, the convenience yield, 
the interest rate, the long term futures price) affect the futures price. An assumption is made about the 
process that governs their dynamics. Then, Itô’s lemma is used to derive the dynamics of the futures price 
and the pricing model is built (see e.g., Gibson and Schwartz, 1990, Schwartz, 1997, Schwartz and Smith, 
2000, Ribeiro and Hodges, 2004, 2005). However, most of the assumed factors are not observable. The 
second approach takes the current term structure as given and prices derivatives consistently with it (see e.g., 
Reisman, 1991, Cortazar and Schwartz, 1994, Clewlow and Strickland, 1999a, 1999b, Tolmasky and 
Hindanov, 2002). The latter approach is analogous to the Heath et al. (1992) methodology in the interest rate 
literature. 



 3

efficiency (Fama, 1970, 1991). However, in the case where one would not want to restrict 

himself by making a priori assumptions about the forecasting variables, an alternative and 

more general approach would be to let the data decide on the forecasting variables to be 

used. Stock and Watson (2002a) have shown that Principal Components Analysis (PCA) 

can be employed to this end. The principal components can be used as predictors in a 

linear regression equation since they are proven to be consistent estimators of the true 

latent factors under quite general conditions (see also Stock and Watson, 2002b, and Artis 

et al., 2005, among others, for empirical applications of this idea to macroeconomic 

variables). Moreover, the forecast constructed from the principal components is shown to 

converge to the forecast that would be obtained in the case where the latent factors were 

known. In our context, PCA can describe the dynamics of the term structure of futures 

prices parsimoniously by means of a small number of factors. Despite the fact that these 

factors may not have a clear economic interpretation, they contain all the information 

about the “hidden” variables that drive the dynamics of the futures term structure and 

hence they can be used as predictors. 

Up to date, PCA has not been used in the finance literature in a forecasting 

context, as far as we are concerned. In particular, in the commodity futures literature, PCA 

has been used in most of the studies to investigate the dynamics of the term structures of 

commodity futures empirically for the purposes of pricing commodity derivatives2. 

Among others, Cortazar and Schwartz (1994) performed PCA on the term structure of 

copper futures over the period 1978-1990. Clewlow and Strickland (1999b) applied PCA 

to oil and gas futures traded in NYMEX over the period 1995-1997. Tolmasky and 

Hindanov (2002) applied PCA to crude oil and heating oil over the period 1983-2000. 

Järvinen (2003) has also applied PCA to Brent crude oil and pulp over the periods 1997-

2002 and 1998-2001, respectively; the forward curve is estimated from the par swap 

quotes rather than taken directly from the futures market. All these studies have found that 

                                                      
2 In general, PCA has been used in the option pricing and risk management literature, extensively, to model 
the dynamics of the variable under consideration. For instance, it has been used in the interest rate literature 
to explore the dynamics of the yield curve and to provide alternative hedging schemes to the traditional 
duration hedge (see among others, Litterman and Scheinkman, 1991, Knez et al., 1994). Kamal and Derman 
(1997), Skiadopoulos et al. (1999), Alexander (2001a), Ané and Labidi (2001), Fengler et al. (2003), and 
Cont and da Fonseca (2002) have applied PCA to investigate the dynamics of implied volatilities. 
Panigirtzoglou and Skiadopoulos (2004) have applied PCA to characterize the dynamics of implied 
distributions. Lambadiaris et al. (2003) have employed PCA to calculate the Value-at-Risk of fixed income 
portfolios (see also Alexander, 2001b, for an extensive description of the applications of PCA in Finance). 
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three factors govern the dynamics of the term structure of commodity futures. Following 

the terminology introduced by Litterman and Scheinkman (1991), the first three factors 

are interpreted as level, steepness, and curvature, respectively; the second and third factor 

change the term structure from backwardation to contango and vice versa (regime 

changes). The authors have suggested that in principle the PCA results can be used in 

option pricing and risk management applications. On the other hand, little attention has 

been paid to whether the proposed PCA models can be used to forecast the next day’s 

futures term structure. To the best of our knowledge, the study by Cabibbo and Fiorenzani 

(2004) is the only one that has explored whether a PCA model can forecast the evolution 

of the Brent futures term structure in the International Petroleum Exchange (IPE) over the 

period 15/04/94 to 04/08/03. They approximated the term structure in terms of its level, 

steepness and curvature factors and they checked whether these characteristics can be 

forecasted by the retained factors. They found that the dynamics of the IPE futures term 

structure cannot be forecasted. However, they accept that their approach studies only “the 

macromovements (regime changes) without considering all those micro movements that 

can affect the string in the short run without inducing necessarily a regime switch”. 

This paper extends the study of Cabibo and Fiorenzani (2004) by investigating the 

predictability of the dynamics of the petroleum term structure of futures prices per se 

rather than forecasting its driving factors. To this end, four major futures markets are 

examined over the period 1993-2003: the New York Mercantile Exchange (NYMEX) 

futures traded on the WTI crude oil, heating oil and unleaded gasoline, and the IPE Brent 

crude oil futures. First, we apply PCA to each one of the four commodities separately, as 

well as jointly. The joint application of PCA allows incorporating any additional 

information stemming from any interactions between the four markets (see Tolamsky and 

Hindanov, 2002, for a similar approach). Then, for each commodity, forecasting 

regressions are performed. The term structure of futures prices is regressed on the retained 

from each commodity principal components that are used as explanatory variables; the 

factors are measured on the previous day and they can be regarded as the shocks that 

move the term structure of petroleum futures prices over time. In addition, the way that 

the forecasting regressions are set up allows detecting any possible spillover effects 

between the four petroleum markets. Tamvakis and Lin (2001) had examined the presence 

of spillover effects between the NYMEX and IPE crude oil futures markets over the 
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period 1994-1997. Finally, the PCA results are compared with those obtained from 

standard vector and univariate autoregressions. 

The paper is structured as follows. Section 2 describes the data set. Section 3 

describes the PCA and discusses the results from the separate and joint PCA. A check of 

the robustness of the results is also carried out. Section 4 examines the forecasting power 

of principal components across commodities. Section 5 reports indicative results on the 

forecasting power of univariate and vector autoregressions. Section 6 concludes and 

presents the implications of this study. 

 

2. The Data Set 
We have obtained daily settlement futures prices on the West Texas Intermediate (WTI) 

crude oil, heating oil, and gasoline futures trading on NYMEX and the Brent crude oil 

futures trading on the IPE from Bloomberg (ticker names CL, HO, HU, and CO, 

respectively).  

The NYMEX light sweet (low sulfur) crude oil futures contract is the world’s most 

heavily traded commodity futures contract. It has been trading since 1983. Each futures 

contract is written on 1,000 barrels of crude oil. On any given day, there are contracts 

trading for the next 30 consecutive months as well as contracts for delivery in 36, 48, 60, 

72, and 84 months (35 futures contracts in total). The delivery period is a full month, 

meaning that deliveries must be initiated on or after the first calendar day and completed 

on or before the last calendar day of the delivery month. Trading terminates at the close of 

the third business day prior to the 25th calendar day of the month preceding the delivery 

month. Settlement is done with physical delivery, even though most of the contracts are 

closed before expiration. The underlying asset can be thought to be the WTI that serves as 

the reference for most crude oil transactions. However, a number of other grades of crude 

are also deliverable3. The delivery point is Cushing, Oklahoma.  

                                                      
3 Deliverable US crudes are crudes with a sulfur content of 0.42% by weight (or less) and an American 
Petroleum Institute (API) gravity between 37o and 42o. Deliverable streams are the WTI, Low Sweet Mix, 
New Mexico Sweet, North Texas Sweet, Oklahoma Sweet, and South Texas Sweet. Deliverable non-US 
crudes are crudes with an API gravity between 34o and 42o. Deliverable streams are the UK’s Brent and 
Forties and Norway’s Oseberg Blend at a discount of $0.30 per barrel, Nigeria’s Bonny Light and 
Colombia’s Cusiana at a premium of $0.15 per barrel, and Nigerian Qua Iboe at a premium of $0.05 per 
barrel. 
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The IPE in London is the second most liquid crude oil market in the world. The 

Brent Crude futures contract has been trading on the IPE since 1988. It is part of the Brent 

blend complex (that also consists of the physical and forward Brent) that is used as a basis 

for pricing the two thirds of the world’s traded crude oil. Each futures contract is 1,000 

barrels of Brent crude oil. There are contracts trading for the next twelve consecutive 

months, then quarterly out to a maximum 24 months, and then half-yearly out to a 

maximum 36 months (eighteen futures contracts in total). Trading terminates at the close 

of the business day immediately preceding the 15th day prior to the first day of the 

delivery month. Settlement is done with physical delivery or alternatively there is the 

option to settle in cash against the IPE Brent Index price of the day following the last 

trading day of the futures contract4. The underlying asset is the pipeline-exported Brent 

blend supplied at the Sullom Voe terminal in the North Sea. The prices of the NYMEX 

and IPE contracts are quoted in US dollars and cents per barrel and are used as 

benchmarks for pricing crude oil and its refined products on an international basis. 

Gasoline and heating oil (also known as No. 2 fuel oil) are two most important 

refined products, accounting for approximately 40% and 25% of the yield of a crude oil 

barrel respectively. Both heating oil and gasoline futures trade in NYMEX in contracts of 

42,000 US gallons (equivalent to 1,000 barrels). Prices are quoted in US dollars and cents 

per gallon. There exist contracts for the next 18 consecutive months for heating oil and the 

next 12 consecutive months for gasoline. The delivery period begins on the day after the 

fifth business day of the delivery month and ends on the last business day of the delivery 

month. Trading terminates at the close of business on the last business day of the month 

preceding the delivery month. Settlement is done with physical delivery. The grade and 

quality of the deliverable heating oil and gasoline conform to industry standards for 

fungible No. 2 heating oil, and for Phase II Complex Model Reformulated Gasoline in 

accordance with Colonial Pipeline Co. specifications for fungible A grade, 87 octane 

index gasoline, respectively. The three NYMEX petroleum futures contracts are traded by 

open outcry from 10:05am until 2:30pm New York time. The IPE contract is traded by 

open outcry from 10:02am until 7:30pm London time (5:02am until 2:30pm New York 

time). 
                                                      
4 The IPE Brent Index is the weighted average of the prices of all confirmed 21-day Brent/Forties/Oseberg 
(BFO) deals throughout the previous trading day for the appropriate delivery months. The IPE Index is 
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Bloomberg provides daily data on the above petroleum futures contracts for any 

maturity. It also rolls over contracts to construct generic series that contain the contracts 

that fall within a certain range of days-to-maturity. For example, the first generic CL1 is 

the shortest maturity futures contract traded on NYMEX at any point in time, the second 

generic CL2 is the second shortest maturity futures contract traded on NYMEX at any 

point in time, etc. In particular, there are 35 generics for crude oil futures traded on 

NYMEX (labeled CL1-CL35), 18 generics for crude oil futures traded on the IPE (labeled 

CO1-CO18), 18 generics for heating oil futures traded on NYMEX (labeled HO1-HO18), 

and twelve generics for gasoline futures traded on NYMEX (labeled HU1-HU12). For the 

purposes of this study, we have used the Bloomberg’s generic contracts. We have chosen 

the generics to roll to the next contract month seven days prior to expiration so as to avoid 

noise in prices due to increased trading activity. Trading in petroleum futures increases 

significantly a few days prior to maturity; this results in increased volatility and price 

spikes. 

However, liquidity considerations make possible the use of only a subset of the 

original data set in terms of the number of generic contracts and the time period. 

Therefore, we have only used CL1-CL9, CO1-CO7, HO1-HO9, and HU1-HU7 that have 

satisfactory liquidity and hence their prices are likely to reflect the market dynamics; long-

dated contracts are relatively illiquid. Furthermore, despite the fact that crude oil futures 

have been trading on NYMEX since 1983, data are limited; there is no open interest or 

volume data from May 30, 1983 to June 30, 1986 and from January 1, 1987 to July 31, 

1989. In addition, trading in longer maturity futures did not become available until several 

years later. Similarly, the data were scarce in the case of Brent contracts on the IPE as 

well as for heating oil and gasoline contracts on NYMEX until the early ‘90s. Therefore, 

we have decided to use data from 1/1/1993 to 31/12/2003. To eliminate further problems 

arising from thin trading, we have excluded quotes for contracts that have daily volume 

less than ten contracts. 

Table 1 shows the summary statistics of the daily changes of futures prices for 

each maturity; the results are reported for each one of the four commodity futures under 

scrutiny. Excluded data correspond either to days where data was unavailable (e.g., public 

holidays) or to days that were omitted because of the ten-contract volume constraint. 
                                                                                                                                                               
issued by the IPE on a daily basis at 12:00 noon London time. 
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Notice that excluded data account for only about 7-10% of total for the nearest contracts 

but as much as 14% for ∆CL9, 32% for ∆CO7, 27% for ∆HO9, and 42% for ∆HU7. 

Application of the Jarque-Bera test showed that the series are not normally distributed. 

We can see that for each commodity, the volatility of the daily changes of futures prices 

decreases as we move to longer maturities; this has been termed “Samuelson effect” 

(Samuelson, 1965). 

(INSERT TABLE 1 HERE) 

 

3. Principal Components Analysis 
In this Section, first we describe the Principal Components Analysis (PCA). Then, we 

apply PCA to the daily change of the term structure of futures prices for each commodity 

separately (separate PCA). Next, PCA is applied to the daily change of the term structure 

of futures prices by grouping all four commodities (joint PCA). 

3.1 Description 

PCA is used to explain the systematic behavior of observed variables, by means of a 

smaller set of unobserved latent random variables. Its purpose is to transform p correlated 

variables to an orthogonal set which reproduces the original variance-covariance structure 

(or correlation matrix). In this paper, we apply PCA to decompose the correlation 

structure of the first differences of petroleum futures prices. To achieve this, for any given 

underlying commodity, we measure the daily differences of petroleum futures prices 

across different times-to-maturity. For example, within the IPE crude oil contract, ∆CO1 

provides a time series of the first differences of the futures prices that correspond to the 

nearest maturity contract. 

In general, denote time by t=1,…,T and let p be the number of variables. Such a 

variable is a (T×1) vector x. The purpose of the PCA is to construct p artificial variables 

(Principal Components - PCs hereafter) as linear combinations of the x vectors orthogonal 

to each other, which reproduce the original variance-covariance structure. The first PC is 

constructed to explain as much of the variance of the original p variables, as possible 

(maximization problem). The second PC is constructed to explain as much of the 

remaining variance as possible, under the additional condition that it is uncorrelated with 

the first one, and so on. The coefficients with which these linear combinations are formed 

are called the loadings. In matrix notation 
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 Z XA=  (1) 

 

where X is a (T×p) matrix, Z is a (T×p) matrix of PCs, and A is a (p×p) matrix of loadings. 

The first order condition of this maximization problem results to 

 '( ) 0X X lI A− =  (2) 
 

where li are the Lagrange multipliers and I is a (p×p) identity matrix. Equation (2) shows 

that the PCA is simply the calculation of the eigenvalues li, and the eigenvectors A of the 

variance-covariance matrix S=X'X. Furthermore, the variance of the ith PC is given by the 

ith eigenvalue, and the sum of the variances of the PCs equals the sum of the variances of 

the X variables.  

In the case that the p variables are measured in different units, or they have 

unequal variances, PCA should be performed on standardized variables. This is equivalent 

to using the correlation matrix (instead of the variance-covariance matrix). When both 

variables and components are standardized to unit length, the elements of A' are 

correlations between the variables and PCs; they are called correlation loadings 

(Basilevsky, 1994). 

It is often the case that a few principal components account for a large part of the 

total variance of the original variables. In such a case one may omit the remaining 

components. The result is a substantial reduction of the dimension of the problem. If we 

retain r<p PCs then 

 '
( ) ( ) ( )r r rX Z A ε= +  (3) 

 

where )r(ε  is a (T×p) matrix of residuals and the other matrices are defined as before 

having r rather than p columns. The percentage of variance of x that is explained by the 

retained PCs (communality of x) is calculated from the correlation loadings. The concept 

of “communality” is analogous to that of determination coefficient in a linear regression 

set-up. After retaining r<p components, we use equation (3) to examine the size of the 

communalities, and the meaning of the retained components. The interpretation of the PCs 

is revealed by the correlation loadings that show how each component affects (“loads on”) 

each variable. 
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There is not a unanimous way on deciding on the number of components to retain. 

It is common practice to use a variety of rules of thumb, e.g. keep the components that 

explain 90% of the total variance. However, these are ad-hoc rules with no statistical 

theory underlying them. There are statistical tests to determine the number of PCs to be 

retained. Their limitation is that they are parametric being based on the assumption that 

the original x variables follow a multivariate normal distribution. However, multivariate 

normality does not hold in our case. Some non-parametric criteria have also been 

suggested (e.g. Velicer’s criterion, bootstrapping), but their accuracy is questionable (see 

e.g., Jackson, 1991, Basilevsky, 1994). The final decision for the number of components 

to retain is a result of considering the employed formal/informal rule, the interpretation of 

the components, and the explained communalities.  

 

3.2 Separate PCA: Results and Discussion 

We perform PCA on the block of futures series for each of the four commodities under 

examination. Frachot et al. (1992) have shown that PCA yields reliable results in the case 

where it is applied to stationary series. Hence, we tested for stationarity by applying the 

Augmented Dickey-Fuller (ADF) test (four lagged terms were employed) to the daily 

settlement prices of the generic series CL1-CL9, CO1-CO7, HO1-HO9, and HU1-HU7. 

We found that the series were non-stationary while their first differences were stationary. 

Therefore, PCA will be applied to the first differences ∆CL1-∆CL9, ∆CO1-∆CO7, ∆HO1-

∆HO9, and ∆HU1-∆HU7 of the original series. In the case where there were missing 

values for any one variable at any one date, the data were excluded listwise. 

Table 2 (Panel A) shows the cumulative percentage of variance explained by all 

PCs for each one of the four commodities. We can see that the first three PCs explain 

96%-99% of the variance of the changes in futures prices across the four commodities; the 

percentage of variance explained by the first three PCs is smallest in the case of gasoline 

since the pairwise correlations (not reported) between the futures expiries is slightly 

smaller compared to those for the other three commodities. The fourth PC increases the 

amount of explained variance marginally.  

(INSERT TABLE 2 HERE) 

Table 3 (Panel A) shows the descriptive statistics of the first three standardized 

PCs for each one of the four commodities. Application of the Jarque-Bera test shows that 
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they are non-normally distributed; this implies that the stochastic process that drives the 

term structure of commodity futures is not normally distributed. The number of 

observations is sufficient in order to obtain reliable results from the PCA; it ranges from 

1,451 - 2,353 depending on the commodity. 

(INSERT TABLE 3 HERE) 

Figure 1 plots the correlation loadings of the first three PCs for each one of the 

four commodities. The interpretation of the PCs is the same across commodities. We can 

see that the first PC affects the term structure of futures prices by the same amount. 

Hence, it can be interpreted as a parallel shift. The second PC moves the shortest expiries 

to a different direction from the longer expiries and hence it can be interpreted as a slope 

factor. The third PC can be interpreted as a curvature factor: it causes prices of short-

maturity and long-maturity futures to move in the same direction and prices of mid-

maturity futures to move in the opposite direction. The third PC is steeper for the short 

expiries than for the long ones (see also Tolmasky and Hindanov, 2002, for a similar 

finding). The second and third PCs change the term structure from contango to 

backwardation and vice versa. The communalities of the first three PCs range from 93%-

99% depending on the commodity and the futures series. The fourth PC does not have a 

clear interpretation and it can be regarded as noise; hence it is not shown here. The 

correlation loadings of the first three PCs have similar values across commodities. Our 

results on the number of retained PCs, the amount of the variance that they explain, and 

their interpretation is in general in line with the previous related literature on the dynamics 

of the term structures of commodity futures (see e.g., Cortazar and Schwartz, 1994, 

Clewlow and Strickland, 1999b, and Tolmasky and Hindanov, 2002)5. 

(INSERT FIGURE 1 HERE) 

 

                                                      
5 The study by Järvinen (2003) provides different results in the PCA of the term structure of the IPE crude 
oil futures contracts. He used Brent crude oil swap quotes from 1997 to 2002 to derive the futures curve. He 
concluded that the first three principal components explain 89% of total variance. The interpretation of the 
first two PCs was also different. The first factor sloped upwards for maturities of up to 21 months before 
flattening out and even had an opposite sign for three-month and six-month maturities. The second factor 
showed a more complex behavior, representing shocks that move contracts with maturities of up to 21 
months in one direction and then contracts with longer maturities in the other direction, albeit with a 
curvature in the middle. 
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3.3 Joint PCA: Results and Discussion 

We perform PCA on the changes of futures prices across maturities for all four 

commodities simultaneously (joint PCA, see also Tolmasky and Hindanov, 2002, for a 

similar approach). Hence, the derived PCs explain the joint evolution of the term structure 

of all four commodities (∆CL1-∆CL9, ∆CO1-∆CO7, ∆HO1-∆HO9, and ∆HU1-∆HU7). 

Table 2 (Panel B) shows the cumulative percentage of variance explained by the first three 

joint principal components. The first three joint PCs explain a slightly smaller amount of 

the total variance compared to the one explained by the PCs obtained from the separate 

PCA (93% compared to 96%-99%). Table 3 (Panel B) shows the summary statistics of the 

first three joint standardized PCs. We can see that they are non-normally distributed, as 

was the case with the PCs obtained from the separate PCA.  

Figure 2 plots the loadings of the first three components. The first PC can be 

interpreted as a parallel shift (this is not that clear in the case of gasoline though) as in the 

case of the first PC obtained from the separate PCA. However, the interpretation of the 

second and third PC has changed now. The second PC cannot be interpreted as slope any 

longer. Instead, it has a level characterization for the NYMEX and IPE contracts. This is 

less evident for the heating oil contracts while it is downward sloping for the gasoline 

ones. Interestingly, the second joint PC moves the term structure of the crude oil 

(NYMEX and IPE) contracts to different direction from the heating oil and gasoline ones. 

The third PC does not have the curvature interpretation any longer that was attributed to it 

in the separate PCA. It moves the crude oil contracts to the opposite direction of the 

heating oil contracts while it slopes upwards in the case of gasoline. The fourth PC had a 

noisy behavior and hence it is not reported here. Tolmasky and Hindanov (2002) had also 

found that the joint PCA might yield PCs that do not have the same interpretation with the 

ones obtained from the PCA applied to each commodity, separately. 

(INSERT FIGURE 2 HERE) 

 

3.4 Stability of the PCA results 

For the purposes of our subsequent analysis we need to check whether the PCA results are 

stable over time. Figure 3 shows the evolution of the WTI crude oil price over the period 

1/1/1993 to 31/12/2003. We can see that the crude oil prices (and hence the futures prices) 

have fluctuated widely over the period under examination depending on supply and 
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demand conditions as well as on global political and economic events (similar graphs are 

obtained for the other three commodities). Therefore, we performed PCA on the four 

commodities by breaking up the period in two sub-periods: 1/1/1993 to 13/5/1997 and 

14/5/1997 to 31/12/2003, the cutoff point being the day we can identify as the beginning 

of the Asian crisis.6 The Asian crisis led to stagnant oil demand. This in conjunction with 

the increased production in the Middle East caused oil prices to plummet. It may be the 

case that the Asian crisis has created a structural break in the data generating process. To 

check this, PCA was performed on each commodity separately, as well as jointly on the 

four commodities, within each sub-period. 

(INSERT FIGURE 3 HERE) 

We find that the results obtained from PCA for each of the two sub-periods are not 

significantly different than the results we obtained from the analysis on the full sample. 

This makes us confident about the stability of the PCA results. Therefore, in the remaining 

of the paper we will use the PCA results obtained in the full period from 1/1/1993 to 

31/12/2003. 

 

4. PCA and Forecasting Power 
In this Section, we use the PCA results to examine whether the movements of the term 

structure of futures prices can be forecasted. To this end, a multiple regression setup is 

employed. For any given commodity and maturity, two alternative approaches are taken. 

First, the changes of the futures prices are regressed on the twelve retained PCs (three for 

each commodity) obtained from the separate PCA in Section 3.1. Next, the changes of the 

futures prices are regressed on the three retained PCs obtained from the joint PCA in 

Section 3.2. 
 
4.1 Separate PCA: The regression setup & Results 

Let j
tF∆  be the daily changes of futures prices measured at time t for any generic contract 

(maturity) j = CL1,…, CL9, CO1,…, CO7, HO1,…, HO9, HU1,…, HU7. We regress 

                                                      
6 On May 14, 1997, the Thai bhat depreciated dramatically. This was due to the fact that the country’s 
economic slowdown and political instability urged speculators to proceed to massive sell orders. 
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j
tF∆  on the three retained principal components PCk (k=1,2,3) measured at time t-17. To 

fix ideas, the following regression is estimated 

 
3 3 3 3

, 1 , 1 , 1 , 1
1 1 1 1

j
t k k t k k t k k t k k t t

k k k k

F c a CLPC b COPC c HOPC d HUPC u− − − −
= = = =

∆ = + + + + +∑ ∑ ∑ ∑ (4) 

 

where , 1 , 1 , 1 , 1, , ,k t k t k t k tCLPC COPC HOPC HUPC− − − −  are the time series of the k retained PCs 

extracted from the PCA on the NYMEX crude oil, IPE crude oil, heating oil, and gasoline 

futures contracts, respectively. 

There are two advantages of using the PCs rather than alternative ad hoc variables 

for the purposes of forecasting. The first is that the PCs summarize the dynamics of the 

term structure of futures prices. Hence, the forecasting information in any alternative 

variables would be a subset of the information contained in the PCs. The second 

advantage is that the use of the PCs allows checking for spillover effects across 

commodities. A general-to-specific approach is used. We start off with all 12 principal 

components (three per commodity) as regressors and we drop the ones that are not 

statistically significant at the 5% significance level.  

Table 4 shows the results of the regressions for each one of the four commodities. 

The first column shows the dependent variable in equation (4). The next 13 columns show 

the estimated constant term and the estimated coefficients of the regressors along with 

their t-statistics in parentheses. The t-statistics are calculated by the Newey-West standard 

errors so as to correct for the detected heteroscedasticity and autocorrelation. The 

following column shows the R2 statistic. Finally, the last column shows the F-statistic that 

tests the null hypothesis that all coefficients (excluding the constant term) are zero. The F-

statistic’s p-values are shown in parentheses. 

(INSERT TABLE 4 HERE) 

We can see that in the case of the NYMEX crude oil contract, the changes of the 

futures prices can be forecasted only for the three intermediate maturities (CL3, CL4 and 

CL5) by the third PC of the IPE crude oil futures; the PCs of the NYMEX crude oil have 

no forecasting power themselves. The estimated parameters and the R2 value are very 

small though (0.004). In the case of the IPE crude oil, the pattern is different. The first PC 

                                                      
7 Application of the Augmented Dickey-Fuller to each one of the three retained PCs (individual and 
common PCs) revealed that these are stationary. 
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of the NYMEX crude oil and the IPE crude oil can forecast the changes of futures prices; 

this holds for all maturities. The sign of the estimated coefficients of the NYMEX PC is 

positive while that of the IPE PC is negative. This implies that good news in the NYMEX 

(IPE) market would increase (decrease) the daily change in the IPE futures prices; this 

holds across the whole spectrum of maturities. This is important for speculators who form 

spreads with different underlying assets. Moreover, our findings imply that the NYMEX 

crude oil market leads the IPE market given that the latter opens before the former. This is 

in accordance with the results of Lin and Tamvakis (2001). The third PC of the IPE crude 

oil can also forecast two maturities (CO2 and CO3). The estimated parameters as well as 

the R2 values are greater now.  

In the case of the heating oil, the third PC of the IPE crude oil can forecast the 

changes of the futures prices for all maturities. Finally, in the case of the gasoline 

contracts, there is not a clear pattern since only a few maturities can be forecasted 

(shortest and the two longest) by the PCs of different commodities; the first PC of the 

NYMEX crude oil and the gasoline contracts forecast the changes of the longest gasoline 

series.  

In general, the R2 values are small for all regressions despite the fact that certain 

PCs are statistically significant; the greatest values are obtained in the case of the IPE 

contract (1%-3%)8. The magnitude of the estimated regression coefficients is also small. 

These results suggest that the obtained PCs have limited power in order to forecast the 

subsequent changes in the futures prices. Interestingly, for any given commodity with the 

exception of IPE, the variables that can be used for forecasting purposes are not the PCs of 

the same commodity; the IPE and NYMEX PCs can forecast the changes of the futures 

prices of the other commodities. This indicates that there is a spillover effect between the 

various markets. 

 

4.2 Joint PCA: The Regression Setup and Results 

We test whether the PCs that were derived from the joint PCA on all four commodities 

can be used to predict the futures prices. The same multiple regression setup is employed 

                                                      
8 One could argue that the small R2

 is expected in the cases where only the second and third PCs are found to 
be significant since these explain a small amount of the variance of the changes of the term structure. 
However, the small R2

 appears also in the cases where the first PC (explaining more than 90% of the total 
variance) is also significant. 
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as in Section 4.1. j
tF∆  is regressed on the three joint PCs PCi,t-1 (i=1,2,3) measured at 

time t-1. Hence, the regression equations are formed as follows 

 1 1, 1 2 2, 1 3 3, 1
j

t t t t tF c a PC a PC a PC u− − −∆ = + + + +  (5) 
 

j = CL1,…, CL9, CO1,…, CO7, HO1,…, HO9, HU1,…, HU7. Again, a general to 

specific approach has been used to estimate equation (5). 

Table 5 shows the results of the regressions per commodity. The first column 

shows the dependent variable of Equation (5). The next four columns show the constant 

term and the coefficient values of the regressors along with their t-statistics in parentheses 

(corrected for autocorrelation and heteroscedasticity). The following column shows the R2 

statistic. Finally, the last column shows the F-statistic that tests the null hypothesis that all 

coefficients (excluding the constant term) are zero. The F-statistic’s p-values are shown in 

parentheses. 

(INSERT TABLE 5 HERE) 

We can see that in the case of NYMEX and IPE crude oil futures, the joint 

principal components have no predictive power. On the other hand, the second joint PC 

can forecast the changes of the heating oil and gasoline futures prices of all maturities but 

the shortest. The coefficients of the second PC are consistently negative of a relatively 

high magnitude. However, the R2 statistics are again small (1%-2.2%) as in the case of the 

regressions with the PCs obtained from the separate PCA. The small R2 suggests that the 

joint PCs cannot forecast the changes of the prices of petroleum futures, just as in the case 

of the PCs obtained from the separate PCA.  

 

5. Univariate and Vector Autoregressions 
In this Section, we check whether the dynamics of the term structure of petroleum futures 

can be forecasted by running univariate and vector autoregressions as alternative models 

to the PCA approach. The univariate autoregressions are of the form  

 1 1
j j

t t tF c a F u−∆ = + ∆ +  (6) 

 

j = CL1,…, CL9, CO1,…, CO7, HO1,…, HO9, HU1,…, HU7. 

The vector autoregressions (VAR) are of the form  
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 -1
l l l l l

t t tF c F u∆ = +Φ ∆ +  (7) 
 

where ∆Ft
l is the (J×1) vector that consists of the changes of the j=1,…,J maturity futures 

prices for each commodity l=CL, CO, HO, HU,, Φl is the (J×J) matrix of coefficients of 

the l commodity to be estimated and cl, ut
l are the l-commodity (J×1) vectors of constants 

and error terms respectively; the error terms of the j maturities may be correlated. 

Equations (6) and (7) can be viewed as a test of the weak form of market efficiency 

(Fama, 1970, 1991). 

 The results obtained from the regressions given by equations (6) and (7) are 

evaluated on the grounds of the R2. Table 6 shows the results from the univariate and 

VAR autoregressions (Panel A and B, respectively). We can see that almost all the 

regression coefficients are statistically insignificant and the R2’s are zero for all 

commodities. The results are similar for the other three commodities, as well, and hence 

they are not reported due to space limitations. Overall, they are in accordance with the 

PCA results and they confirm that they dynamics of the petroleum term structures cannot 

be forecasted. 

(INSERT TABLE 6 HERE) 

 

6. Conclusions 
The prediction of the evolution of the term structure of petroleum futures is of paramount 

importance for the participants in the energy derivatives markets. In this paper, we have 

investigated whether the dynamics of the petroleum futures prices can be forecasted in 

four major petroleum markets: the NYMEX crude oil, heating oil, gasoline and the IPE 

crude oil. Following Stock and Watson (2002), we have used the Principal Components 

Analysis (PCA) to let the data decide on the variables to be used as predictors rather than 

assuming ourselves ad hoc forecasting variables. PCA was first applied to the time series 

of daily changes of petroleum futures prices across the whole spectrum of maturities. This 

enabled us to model the dynamics of the term structure of petroleum futures prices 

parsimoniously by means of a few retained principal components (PCs). PCA was 

performed on each commodity market separately (separate PCA), as well as on the four 

markets jointly (joint PCA). Both the separate and the joint PCA have shown that three 

components drive the dynamics of the term structure of futures prices. The retained 
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components summarise the dynamics of the whole term structure of futures prices. Their 

number (three) and interpretation (level, slope, curvature, in the separate PCA) are in line 

with the results from the previous literature. Then, the retained PCs of all commodities 

were used in a multiple regression setup to forecast the subsequent daily changes of 

futures prices.  

The forecasting regressions for all commodities under scrutiny yield low R2’s 

despite that fact that some PCs are statistically significant. In particular, some of the 

NYMEX and IPE crude oil factors affect the next days’ dynamics of all four commodities. 

Interestingly, the joint PCA that takes into account the interactions in the dynamics of the 

four markets does not increase the forecasting power of the retained components. Low 

R2’s also occur in the case where we run standard univariate and vector autoregression 

models as alternatives to the PCA approach to forecasting. 

This study has at least three implications. First, the evidence on the R2 suggests 

that the dynamics of the term structure of petroleum futures cannot be forecasted. This is 

in accordance with the results in Cabibo and Fiorenzani (2004) who had used a different 

methodology and a single petroleum market to study whether the dynamics of the IPE 

Brent futures term structure can be forecasted. Second, the dynamics of the term structure 

of petroleum futures are stable over time in terms of the number and interpretation of 

factors that drive them; the PCA results obtained from our updated and rich data set are in 

line with those reported in the previous related literature. Finally, spillover effects are 

detected between the four markets. This complements the study by Lin and Tamvakis 

(2001) who had found that there are substantial spillover effects between the NYMEX and 

IPE crude oil futures prices. Future research should investigate whether non-linear models 

can forecast the evolution of petroleum futures prices; the linear autoregressive models 

that have been employed in the current study can be considered as a first-order 

approximation of the true model. 
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Figure 1: NYMEX IPE crude oil, Heating Oil and Gasoline futures: Correlation Loadings 

of the first three principal components. 
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Figure 2: Correlation loadings of the first three joint principal components. Principal 

Components Analysis has been applied to all four commodities (NYMEX IPE crude oil, 

Heating Oil and Gasoline futures) jointly for the period from 1/1/1993 to 31/12/2003. 

 

 

Figure 3: Spot WTI crude oil prices for the period from 1/1/1993 to 31/12/2003. 
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Panel A: NYMEX Crude Oil generic contracts 
 ∆CL1 ∆CL2 ∆CL3 ∆CL4 ∆CL5 ∆CL6 ∆CL7 ∆CL8 ∆CL9

Retained observ. 2645 2641 2637 2633 2634 2615 2606 2576 2476 

Excluded observ. 224 228 232 236 235 254 263 293 393 

Mean 0 0 0 0 0 0 0 0 0 

Std. Deviation 0.50 0.45 0.41 0.37 0.35 0.33 0.32 0.30 0.30 

Skewness -0.57 -0.58 -0.46 -0.48 -0.52 -0.46 -0.43 -0.43 -0.42 

Kurtosis 5.14 5.51 4.26 4.54 4.94 4.94 4.57 4.33 4.14 

Panel B: IPE Crude Oil generic contracts 
  ∆CO1 ∆CO2 ∆CO3 ∆CO4 ∆CO5 ∆CO6 ∆CO7  

Retained observ. 2590 2667 2666 2649 2589 2325 1954  

Excluded observ. 279 202 203 220 280 544 915  

Mean 0 0 0 0 0 0 0  

Std. Deviation 0.47 0.42 0.39 0.36 0.34 0.33 0.33  

Skewness -0.56 -0.52 -0.44 -0.47 -0.49 -0.44 -0.50  

Kurtosis 5.33 4.99 4.71 4.68 4.72 4.71 4.89  

Panel C: Heating Oil generic contracts 
  ∆HO1 ∆HO2 ∆HO3 ∆HO4 ∆HO5 ∆HO6 ∆HO7 ∆HO8 ∆HO9 

Retained observ. 2606 2580 2581 2576 2551 2547 2477 2272 2100 

Excluded observ. 263 289 288 293 318 322 392 597 769 

Mean 0 0 0 0 0 0 0 0 0 

Std. Deviation 1.47 1.27 1.16 1.07 1.02 0.98 0.94 0.91 0.88 

Skewness -0.48 -0.24 -0.20 -0.25 -0.41 -0.53 -0.46 -0.41 -0.41 

Kurtosis 5.23 3.35 3.13 3.21 4.07 4.54 4.26 3.48 3.35 

Panel D: Gasoline generic contracts  
 ∆HU1 ∆HU2 ∆HU3 ∆HU4 ∆HU5 ∆HU6 ∆HU7   

Retained observ. 2645 2633 2619 2597 2507 2188 1656   

Excluded observ. 224 236 250 272 362 681 1213   

Mean 0 0 0 0 0 0 0   

Std. Deviation 1.64 1.38 1.21 1.12 1.07 1.04 1.03   

Skewness -0.85 -0.36 -0.46 -0.26 -0.23 0.05 -0.13   

Kurtosis 10.03 4.56 4.69 4.43 3.77 5.34 4.45   

Table 1: Summary Statistics of the first differences of the futures prices. The results are 
reported for each expiry (generic contract, i.e., shortest, second shortest, etc), and for each 
one of the four underlying commodities (NYMEX & IPE crude oil, Heating Oil and 
Gasoline). The sample corresponds to the period from 1/1/1993-31/12/2003. 
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Principal component NYMEX crude oil IPE crude oil Heating oil Gasoline 

Panel A: Separate PCA 

1 97.21 96.66 93.56 88.11 

2 99.58 99.23 97.74 95.08 

3 99.90 99.73 99.31 96.90 

4 99.96 99.88 99.81 98.18 

 

Panel B: Joint PCA 

1 87.12 

2 90.79 

3 93.60 

4 95.23 

Table 2: Cumulative percentage of variance explained by the principal components (up to 

four components) obtained from the separate and joint PCA. Results are reported for each 

one of the four underlying commodities (NYMEX & IPE Crude Oil, Heating Oil and 

Gasoline). The sample corresponds to the period from 1/1/1993-31/12/2003. 
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Panel A: Separate PCA - Standardised PCs 

 PC1 PC2 PC3 

NYMEX crude oil 

Retained observations 2353 2353 2353 

Missing observations 516 516 516 

Skewness -0.44 -0.73 0.15 

Kurtosis 4.54 10.77 13.79 

IPE crude oil 

Retained observations 1651 1651 1651 

Missing observations 1218 1218 1218 

Skewness -0.45 -0.14 0.44 

Kurtosis 4.51 6.26 6.96 

Heating oil 

Retained observations 1624 1624 1624 

Missing observations 1245 1245 1245 

Skewness -0.37 0.75 0.19 

Kurtosis 2.96 18.57 33.24 

Gasoline 

Retained observations 1451 1451 1451 

Missing observations 1418 1418 1418 

Skewness -0.34 -3.24 -3.32 

Kurtosis 2.97 54.58 100.31 

Panel B: Joint PCA - Standardised PCs 

 PC1 PC2 PC3 

Retained observations 563 563 563 

Excluded observations 2306 2306 2306 

Skewness -0.52 -1.30 -0.08 

Kurtosis 3.26 11.49 4.60 

Table 3: Separate & Joint PCA PCs: Summary statistics of the first three standardized 

principal components obtained from the separate and joint PCA. The results from the 

separate PCA are reported by commodity (NYMEX & IPE Crude Oil, Heating Oil and 

Gasoline). 
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Table 4: Results from regressing ∆Ft
j (j = CL1,…, CL9, CO1,…, CO7, HO1,…, HO9, HU1,…, HU7) on the twelve retained principal 

components obtained from the separate PCA on the four commodities. 
j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

b1 

(t-stat) 

b2 

(t-stat) 

b3 

(t-stat) 

c1 

(t-stat) 

c2 

(t-stat) 

c3 

(t-stat) 

d1 

(t-stat) 

d2 

(t-stat) 

d3 

(t-stat) 

R2  F-stat (prob) 

                 

Panel A: Dependent variables are the NYMEX Crude Oil generic futures 

                 

CL1 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

CL2 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

CL3 - - - - - - 0.029 - - - - - - 0.004  6.629 

 - - - - - - (2.2) - - - - - -   (0.01) 

CL4 - - - - - - 0.026 - - - - - - 0.004  6.285 

 - - - - - - (2.2) - - - - - -   (0.01) 

CL5 - - - - - - 0.024 - - - - - - 0.004  6.052 

 - - - - - - (2.2) - - - - - -   (0.01) 

CL6 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

CL7 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

CL8 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

CL9 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 
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j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

b1 

(t-stat) 

b2 

(t-stat) 

b3 

(t-stat) 

c1 

(t-stat) 

c2 

(t-stat) 

c3 

(t-stat) 

d1 

(t-stat) 

d2 

(t-stat) 

d3 

(t-stat) 

R2  F-stat (prob) 

                 

Panel B: Dependent variables are the IPE Crude Oil generic futures 

CO1 - 0.176 - - -0.203 - - - - - - - - 0.019  13.293 

 - (3.7) - - (-3.7) - - - - - - - -   (0.00) 

CO2 - 0.145 - - -0.178 - 0.041 - - - - - - 0.025  12.145 

 - (3.5) - - (-3.8) - (2.7) - - - - - -   (0.00) 

CO3 - 0.143 - - -0.169 - 0.036 - - - - - - 0.026  12.721 

 - (3.9) - - (-4.2) - (2.8) - - - - - -   (0.00) 

CO4 - 0.133 - - -0.164 - - - - - - - - 0.022  15.666 

 - (4.1) - - (-4.6) - - - - - - - -   (0.00) 

CO5 - 0.125 - - -0.162 - - - - - - - - 0.025  18.108 

 - (4.2) - - (-4.9) - - - - - - - -   (0.00) 

CO6 - 0.114 - - -0.155 - - - - - - - - 0.027  18.859 

 - (4.0) - - (-4.8) - - - - - - - -   (0.00) 

CO7 - 0.105 - - -0.149 - - - - - - - - 0.030  19.581 

 - (3.7) - - (-4.7) - - - - - - - -   (0.00) 
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j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

b1 

(t-stat) 

b2 

(t-stat) 

b3 

(t-stat) 

c1 

(t-stat) 

c2 

(t-stat) 

c3 

(t-stat) 

d1 

(t-stat) 

d2 

(t-stat) 

d3 

(t-stat) 

R2  F-stat (prob) 

                 

Panel C: Dependent variables are the Heating Oil generic futures 

                 

HO1 - - - - - - 0.091 - - - - - - 0.003  4.796 

 - - - - - - (2.3) - - - - - -   (0.03) 

HO2 - - - - - - 0.095 - - - - - - 0.005  7.039 

 - - - - - - (2.5) - - - - - -   (0.01) 

HO3 - - - - - - 0.096 - - - - - - 0.006  8.697 

 - - - - - - (2.8) - - - - - -   (0.00) 

HO4 - - - - - - 0.088 - - - - - - 0.006  8.563 

 - - - - - - (2.5) - - - - - -   (0.00) 

HO5 - - - - - - 0.087 - - - - - - 0.006  9.315 

 - - - - - - (2.7) - - - - - -   (0.00) 

HO6 - - - - - - 0.094 - - - - - - 0.008  11.852 

 - - - - - - (3.0) - - - - - -   (0.00) 

HO7 - - - - - - 0.086 - - - - - - 0.007  10.821 

 - - - - - - (2.8) - - - - - -   (0.00) 

HO8 - - - - - - 0.075 - - - - - - 0.006  8.843 

 - - - - - - (2.5) - - - - - -   (0.00) 

HO9  - - - - - - - - - - -0.084 - 0.008  8.941 

 - - - - - - - - - - - (-3.0) -   (0.00) 
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j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

b1 

(t-stat) 

b2 

(t-stat) 

b3 

(t-stat) 

c1 

(t-stat) 

c2 

(t-stat) 

c3 

(t-stat) 

d1 

(t-stat) 

d2 

(t-stat) 

d3 

(t-stat) 

R2  F-stat (prob) 

                 

Panel D: Dependent variables are the Gasoline generic futures 

                 

HU1 - - - - - - - - -0.087 - - - - 0.002  3.817 

 - - - - - - - - (-2.0) - - - -   (0.05) 

HU2 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

HU3 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

HU4 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

HU5 - - - - - - - - - - - - - -  - 

 - - - - - - - - - - - - -   - 

HU6 - - - - - - 0.083 - - - -0.131 - - 0.021  8.852 

 - - - - - - (2.1) - - - (-2.6) - -   (0.00) 

HU7 - 0.283 - - - - - - - - -0.353 - - 0.025  14.033 

 - (3.9) - - - - - - - - (-5.1) - -   (0.00) 
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Table 5: Results from regressing ∆Ft
j (where (j = CL1,…, CL9, CO1,…, CO7, HO1,…, 

HO9, HU1,…, HU7)) on the three retained common principal components obtained from 

the joint PCA on the four commodities. 

j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

R2  F-stat (prob) 

        

Panel A: Dependent variables are the NYMEX crude oil generic futures  

        

No significant results found for any maturity. 

        

        

Panel B: Dependent variables are the IPE crude oil generic futures 

        

No significant results found for any maturity. 
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j c 

(t-stat) 

a1 

(t-stat) 

a2 

(t-stat) 

a3 

(t-stat) 

R2  F-stat (prob) 

Panel C: Dependent variables are the Heating Oil generic futures 

HO1 - - - - -  - 

 - - - -   - 

HO2 - - -0.172 - 0.012  6.621 

 - - (-2.4) -   (0.01) 

HO3 - - -0.177 - 0.015  8.596 

 - - (-2.7) -   (0.00) 

HO4 - - -0.179 - 0.018  9.845 

 - - (-3.0) -   (0.00) 

HO5 - - -0.167 - 0.016  9.101 

 - - (-2.9) -   (0.00) 

HO6 - - -0.164 - 0.016  9.003 

 - - (-2.9) -   (0.00) 

HO7 - - -0.148 - 0.015  8.102 

 - - (-2.6) -   (0.00) 

HO8 - - -0.133 - 0.014  7.276 

 - - (-2.5) -   (0.01) 

HO9 - - -0.122 - 0.012  6.331 

 - - (-2.2) -   (0.01) 

Panel D: Dependent variables are the Gasoline generic futures 

HU1 - - - - -  - 

 - - - -   - 

HU2 - - - - -  - 

 - - - -   - 

HU3 - - -0.150 - 0.009  5.160 

 - - (-2.3) -   (0.02) 

HU4 - - -0.172 - 0.013  7.004 

 - - (-2.7) -   (0.01) 

HU5 - - -0.167 - 0.013  7.336 

 - - (-2.7) -   (0.01) 

HU6 - - -0.236 - 0.030  15.924 

 - - (-3.8) -   (0.00) 

HU7 - - -0.214 - 0.027  13.046 

 - - (-3.6) -   (0.00) 
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Panel A: NYMEX Crude Oil Futures - Univariate Autoregressions 
 ∆CL01 ∆CL02 ∆CL03 ∆CL04 ∆CL05 ∆CL06 ∆CL07 ∆CL08 ∆CL09 
c 0.002 0.000 0.001 0.001 0.001 0.002 0.002 0.001 0.002 
 (0.2) (0.0) (0.1) (0.1) (0.2) (0.2) (0.4) (0.2) (0.3) 

∆CL01(-1) -0.113 -0.112 -0.166 -0.164 -0.161 -0.140 -0.132 -0.136 -0.118 
 (-0.6) (-0.7) (-1.1) (-1.2) (-1.3) (-1.2) (-1.2) (-1.3) (-1.2) 

∆CL02(-1) 0.401 0.466 0.614 0.486 0.413 0.267 0.249 0.307 0.232 
 (0.9) (1.2) (1.7) (1.5) (1.4) (0.9) (0.8) (1.2) (0.8) 

∆CL03(-1) -0.272 -0.266 -0.455 -0.136 -0.077 0.166 0.183 0.055 0.236 
 (-0.3) (-0.4) (-0.7) (-0.2) (-0.1) (0.3) (0.4) (0.1) (0.5) 

∆CL04(-1) -0.133 -0.348 -0.428 -0.684 -0.500 -0.628 -0.640 -0.632 -0.801 
 (-0.1) (-0.3) (-0.4) (-0.7) (-0.5) (-0.7) (-0.8) (-0.8) (-1.0) 

∆CL05(-1) -0.324 -0.097 0.090 0.125 -0.068 -0.060 -0.156 -0.122 -0.057 
 (-0.2) (-0.1) (0.1) (0.1) (-0.1) (-0.1) (-0.1) (-0.1) (-0.1) 

∆CL06(-1) 0.874 0.891 0.841 0.754 0.674 0.732 0.946 0.962 0.956 
 (0.5) (0.6) (0.6) (0.6) (0.5) (0.6) (0.9) (0.9) (0.9) 

∆CL07(-1) -0.743 -1.143 -0.827 -0.714 -0.698 -0.557 -0.703 -0.429 -0.617 
 (-0.4) (-0.8) (-0.6) (-0.6) (-0.7) (-0.6) (-0.7) (-0.4) (-0.7) 

∆CL08(-1) -1.271 -0.895 -0.865 -0.782 -0.687 -0.917 -0.895 -1.344 -1.063 
 (-1.0) (-0.7) (-0.8) (-0.8) (-0.8) (-1.1) (-1.1) (-1.2) (-1.4) 

∆CL09(-1) 1.656 1.583 1.250 1.146 1.110 1.123 1.124 1.302 1.183 
 (1.8) (2.0) (1.7) (1.7) (1.8) (1.9) (1.9) (1.9) (2.2) 

R2 0.004 0.005 0.006 0.007 0.009 0.009 0.012 0.016 0.019 

Panel B: NYMEX Crude Oil Futures - Vector Autoregressions 
 ∆CL01 ∆CL02 ∆CL03 ∆CL04 ∆CL05 ∆CL06 ∆CL07 ∆CL08 ∆CL09 
c 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 (0.04) (0.00) (0.09) (0.12) (0.16) (0.16) (0.17) (0.15) (0.18) 

∆CL01(-1) -0.013 -0.039 -0.107 -0.112 -0.110 -0.110 -0.111 -0.111 -0.111 
 (-0.1) (-0.3) (-1.0) (-1.1) (-1.2) (-1.3) (-1.3) (-1.4) (-1.5) 

∆CL02(-1) 0.111 0.254 0.482 0.343 0.258 0.224 0.224 0.229 0.228 
 (0.3) (0.8) (1.6) (1.2) (1.0) (0.9) (1.0) (1.0) (1.1) 

∆CL03(-1) -0.057 -0.051 -0.310 0.070 0.157 0.213 0.210 0.204 0.229 
 (-0.1) (-0.1) (-0.5) (0.1) (0.3) (0.4) (0.4) (0.4) (0.5) 

∆CL04(-1) -0.192 -0.562 -0.684 -0.979 -0.786 -0.781 -0.799 -0.786 -0.851 
 (-0.1) (-0.5) (-0.6) (-1.0) (-0.8) (-0.9) (-0.9) (-1.0) (-1.1) 

∆CL05(-1) -0.239 0.006 0.188 0.240 0.026 0.036 -0.017 -0.082 -0.039 
 (-0.1) (0.0) (0.1) (0.2) (0.0) (0.0) (0.0) (-0.1) (0.0) 

∆CL06(-1) 0.954 1.203 1.262 1.108 1.006 0.848 1.060 1.062 1.039 
 (0.5) (0.8) (0.9) (0.8) (0.8) (0.7) (0.9) (1.0) (1.0) 

∆CL07(-1) -0.283 -0.834 -0.637 -0.556 -0.544 -0.435 -0.619 -0.465 -0.503 
 (-0.2) (-0.5) (-0.5) (-0.4) (-0.5) (-0.4) (-0.6) (-0.4) (-0.5) 

∆CL08(-1) -2.319 -1.822 -1.673 -1.456 -1.322 -1.337 -1.344 -1.512 -1.392 
 (-1.2) (-1.0) (-1.1) (-1.0) (-1.0) (-1.0) (-1.1) (-1.3) (-1.2) 

∆CL09(-1) 2.128 1.927 1.538 1.372 1.324 1.334 1.375 1.430 1.358 
 (1.9) (1.9) (1.7) (1.6) (1.7) (1.8) (1.9) (2.1) (2.1) 

 R2 0.003 0.004 0.004 0.004 0.006 0.008 0.012 0.015 0.019 
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Table 6: Results from the univariate and vector autoregressions run for the NYMEX 
crude oil futures data set. The univariate autoregressions are of the form 

1 1
j j

t t tF c a F u−∆ = + ∆ +  j = CL1,…, CL9, CO1,…, CO7, HO1,…, HO9, HU1,…, HU7. 
The vector autoregression is of the form -1t t tF c F u∆ = +Φ∆ + .  


