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Abstract

In this paper, we develop a new measure of specification error, and thus derive new statisti-

cal tests, for conditional factor models, i.e. models in which the factor loadings (and hence risk

premia) are allowed to be time-varying. Our test exploits the close links between the stochastic

discount factor framework and mean-variance efficiency. We show that a given set of factors

is a true conditional asset pricing model if and only if the efficient frontiers spanned by the

traded assets and the factor-mimicking portfolios, respectively, intersect. In fact, we show that

our test is proportional to the difference in squared Sharpe ratios of these two frontiers.

We draw three main conclusions from our empirical findings. First, optimal scaling clearly

improves the performance of asset pricing models, to the point where several of the scaled

models are capable of explaining asset pricing anomalies. However, even the optimally scaled

models fall short of being true conditional asset pricing models in that they fail to price actively

managed portfolios correctly. Second, there is significant time-variation in factor loadings and

hence risk premia, which plays a significant role in asset pricing. Moreover, the optimal factor

loadings display a high degree of non-linearity in the conditioning variables, suggesting that the

linear scaling prevalent in the literature is sub-optimal and does not capture the inter-temporal

pattern of risk premia. Third, skewness and kurtosis do matter in the conditional setting, while

adding little to unconditional performance.

JEL Classification: C31, G11, G12
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1 Introduction

Asset pricing research has documented that the cross-sectional dispersion in expected returns

is determined not only by beta, as prescribed by the CAPM, but by firm size, book-to-market

ratio, and other factors. Subsequent work has advocated time-varying betas to capture such

deviations, often termed financial market anomalies, from the unconditional CAPM. For

example, Chan and Chen (1988), and Ball and Kothari (1989) find that beta variation

explains the size premium and the profitability of contrarian strategies. Berk, Green, and

Naik (1999), and Gomes, Kogan, and Zhang (2003) suggest that beta depends upon the

business cycle as well as on firm size and book-to-market ratio. These findings have led to

the introduction of conditional factor models, in which the factor loadings are allowed to be

time-varying, for example as functions of macro-economic or firm-level variables1.

In this paper, we construct a new measure of specification error which provides necessary

and sufficient conditions for a given set of factors to constitute a viable conditional asset

pricing model. While traditional asset pricing models are designed to explain unconditional

risk premia in terms of factor risk exposure, conditional models capture the cross-sectional

and intertemporal variation of conditional risk premia. Static models require additional

factors to explain the abnormal returns due to asset pricing anomalies. Often, these factors

are derived from the very anomalies they are designed to explain2. In contrast, the empirical

evidence suggests that models with time-varying factor loadings (‘betas’) can capture much

of the cross-section of expected returns without the need for additional factors. Moreover,

such models are also able to capture the intertemporal dynamics of these anomalies.

1Lewellen (1999), Ferson and Harvey (1998, 1999), and Avramov and Chordia (2004), among others,

have studied multi-factor models with time-varying factor loadings. Avramov and Chordia (2004) find that

time-varying factor loadings could explain size and book-to-market effects.
2For example, the Fama-French factors are constructed by sorting stocks on size and book-to-market

ratio.
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Our specification test is designed to measure how well a given factor model prices the traded

assets, both unconditionally and conditionally. It is easy to show that, if a factor model prices

the traded assets conditionally correctly, it must necessarily also price all actively managed

strategies (unconditionally) correctly. The most difficult active strategies to price are the

ones that use conditioning information optimally in the sense that they are unconditionally

mean-variance efficient. Our test exploits the close links between the stochastic discount

factor framework and mean-variance efficiency. In particular, we show that the pricing error

of a given factor model is related to the position of the efficient frontier spanned by the

factors (or factor-mimicking portfolios) relative to the asset frontier. More specifically, a

given set of factors can be a true asset pricing model if and only if these frontiers intersect.

We show that our measure is proportional to the difference in squared Sharpe ratios of the

asset and the factor frontiers.

In this paper we make several methodological and empirical contributions. We find that our

optimal scaling using macro-economic variables improves the performance of asset pricing

models quite significantly. We find that a three factor CAPM where the market return

is augmented by skewness and kurtosis factors and the factor loadings are time-varying is

capable of pricing momentum portfolios and comes quite close to pricing portfolios sorted

by size and book-to-market. Our findings suggest that it may be possible to explain size

and value premia as well as momentum without having to construct factors that are based

on them. However none of the models is capable of pricing the managed portfolios and are

thus not true asset pricing models in our setting.

Our theoretical and methodological contributions are fourfold. First, in the case of non-

traded factors we explicitly construct the factor-mimicking portfolios in the presence of

conditioning information, generalizing the results of Ferson, Siegel, and Xu (2005). Second,

we extend the measure of specification error of Hansen and Jagannathan (1997) to the case

with conditioning information, and relate our measure to the difference in maximum squared

Sharpe ratios. Our test is thus an extension of the Gibbons, Ross, and Shanken (1989) test

to the case with conditioning information. Our third contribution is to construct the actively
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managed portfolios that attain the maximum Sharpe ratios for both the base assets and the

factors. We show that, if the asset and factor frontiers indeed intersect, the corresponding

factor portfolio can be lifted to give a valid stochastic discount factor. However, even if our

test rejects the model, our methodology allows us to construct the best possible conditional

factor model for a given choice of factors in the sense that it minimizes conditional pricing

error. In either case, our framework allows us to explicitly construct the optimal factor

loadings as functions of the conditioning instruments. Earlier conditional factor models,

e.g. Jagannathan and Wang (1996), and Ferson and Harvey (1999) have assumed the factor

loadings to be linear in the instruments. However, recent studies have found that this

specification can lead to serious pricing errors. For example, Ghysels (1998) shows that a

linearly scaled model in fact under-performs an unscaled model with constant factor loadings

out-of-sample. Brandt and Chapman (2005) show that if the true model exhibits even mild

non-linearities, estimating a linear beta model leads to considerable mis-pricing. In line with

these findings, our analysis shows that the optimal use of conditioning information in the

construction of factor models leads to highly non-linear factor loadings.

We implement our measure to test the performance of a number of factor models consid-

ered in the literature. We use commonly used predictive instruments that measure macro-

economic and interest rate risk3.

We first consider the performance of our models on the Fama-French 30 industry portfolios,

a benchmark set of base assets that is free of any asset pricing anomalies. Optimal scaling

increases the asset Sharpe ratio more than one and a half times while the Sharpe ratio of the

CAPM and Fama-French models increase by 48% and 160% respectively. Adding skewness

and kurtosis factors to both the CAPM and Fama-French models leads to little improvement

in the fixed-weight models but strong effects on the scaled models with the Sharpe ratios

3The instruments are unexpected shocks to inflation, the 1-month Treasury Bill rate, the term spread,

convexity which is a measure of curvature of the yield curve and credit spread. These instruments thus

capture both information about interest rates, as well as changes in the macro-economic environment.
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increasing by 76% for the CAPM and 45% for the Fama-French model. The scaled three

factor CAPM prices the base assets. However none of the models are capable of pricing the

managed assets with the scaled Fama-French model augmented by skewness, kurtosis and

the momentum factors achieving 63% of the scaled asset Sharpe ratio. The outperformance

of the optimally scaled version relative to the corresponding fixed-beta specification. is

thus in contrast to Ghysels (1998). This shows that our optimal scaling indeed reduces

misspecification error relative to fixed-beta models, which is not necessarily the case for the

linearly scaled beta models prevalent in most of the literature. Our findings also suggest

that, while skewness and kurtosis effects are ‘washed out’ in the unconditional setting by

time-aggregation, they have a significant effect in the conditional setting. In other words,

the non-normality and in particular asymmetry of returns carries a significant time-varying

risk-premium in the short run, which tends to vanish at longer horizons.

We focus next on the size and book-to-market effects and use the 25 portfolios sorted by

these characteristics as our base assets. We find that the effect of optimal scaling almost

dominates that of sorting assets on these criteria, as while the fixed weight Sharpe ratio

of these portfolios is almost double that of the thirty industry portfolios the scaled Sharpe

ratios are very close. The unscaled CAPM and Fama-French models are unable to price

these portfolios (with pricing errors of 74% and 45%, respectively). In other words, over

the time period we consider, even the Fama-French model fails to price the size and value

portfolios. Moreover, even with optimal scaling, both models are unable to price the assets

(with pricing errors of 68% and 28%, respectively). In contrast, when we augment these

models by skewness and kurtosis factors, we find that an optimally scaled three-factor CAPM

achieves 90% of the fixed-weight asset Sharpe ratio, while the scaled augmented Fama-French

model actually prices the assets correctly. Our results thus show that a scaled three factor

CAPM goes a long way towards explaining the size and book-to-market effects.

We also consider the performance of the models in pricing the momentum portfolios. Momen-

tum remains the one CAPM-based anomaly that cannot be explained by the Fama-French

model. We use the momentum portfolios constructed by Chordia and Shivakumar (2002)
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that span the 1960-1999 period. We find that the fixed-weight Fama-French model achieves

82% of the Sharpe ratio of the assets and, while it performs considerably better than the

unscaled CAPM which achieves just over 50% of the asset Sharpe ratio, still does not price

the momentum portfolios correctly. We consider a three factor CAPM, that is the market

return together with the skewness and kurtosis factors scaled by a number of common busi-

ness cycle variables. The potential importance of the skewness factor in pricing momentum

returns was first observed by Harvey and Siddique (2000) while the ability of business cycle

variables to predict momentum profits was analyzed in Chordia and Shivakumar (2002) We

find that this scaled three factor CAPM achieves a Sharpe ratio of 1.23 which is higher

than the fixed weight asset Sharpe ratio of 1.15 and thus this model prices the momentum

portfolios correctly. It is however not a true asset pricing model as it fails to price the scaled

momentum portfolios, but still appears to be the first rational asset pricing model that prices

the unscaled momentum portfolios.

We draw three main conclusions from our empirical findings. First, optimal scaling clearly

improves the performance of asset pricing models, to the point where several of the scaled

models are capable explaining some asset pricing anomalies. However, even the optimally

scaled models fall short of being true conditional asset pricing models in that they fail to price

actively managed portfolios correctly. Second, there is significant time-variation in factor

loadings and hence risk premia, which plays a significant role in asset pricing. Moreover, the

optimal factor loadings display a high degree of non-linearity in the conditioning variables,

suggesting that the linear scaling prevalent in the literature is sub-optimal4, and does not

capture the inter-temporal pattern of risk premia. Third, skewness and kurtosis do matter

in the conditional setting, while adding little to unconditional performance. Our results thus

expand upon the findings of Kraus and Litzenberger (1976), Harvey and Siddique (2000),

as well as Dittmar (2002).

Finally, we check for the robustness of our results. Our tests are all based on Sharpe

4See for example Ghysels (1998).
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ratios which can exhibit a high degree of sampling variability particularly in the presence of

conditioning information, as observed in Ferson and Siegel (2003). To see to what extent our

results may be driven by this sampling variability we simulate a pure noise variable as our

predictive instrument and compute the mean and percentiles of the asset and factor Sharpe

ratios. We find that although the optimal factor Sharpe ratios are higher than the fixed

weight factor Sharpe ratios, they are never as high as the fixed weight asset Sharpe ratios

for all our asset sets. Our optimal asset and factor Sharpe ratios using the actual predictive

instruments are always well above the simulated 95% confidence levels. This shows that our

findings are robust to sampling variability.

The remainder of the paper is organized as follows. In Section 2, we briefly review the

theory of conditional factor models in the context of a stochastic discount factor framework.

In the following section, we derive explicit expressions for the factor-mimicking portfolios,

and develop our test statistic. The results of our empirical analysis are reported in Section

4. All mathematical proofs are given in the appendix.

2 Set-Up and Notation

The aim of this paper is to construct a measure of misspecification for factor models in

the presence of conditioning information, based on properties of unconditionally efficient

portfolios. To this end, we construct the space of state-contingent pay-offs, and within it

the space of traded pay-offs, augmented by the use of conditioning information. For a given

set of factors, we then construct the subset of augmented pay-offs that is spanned by the

corresponding factor-mimicking portfolios. Our test, developed in the following section, is

based on a notion of ‘distance’ which measures whether the factor-mimicking portfolios span

the efficient frontier in the augmented base asset space.
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2.1 Traded Assets and Managed Pay-Offs

The information flow in the economy is described by a discrete-time filtration (Ft)t, defined

on some probability space (Ω,F , P ). We fix an arbitrary t > 0, and consider the period

beginning at time t − 1 and ending at t. Denote by L2
t the space of all Ft-measurable

random variables that are square-integrable with respect to P . We interpret Ω as the set

of ‘states of nature’, and L2
t as the space of all (not necessarily attainable) state-contingent

pay-off claims, realized at time t.

Traded Assets:

There are n traded risky assets, indexed k = 1 . . . n. We denote the gross return (per dollar

invested) of the k-th asset by rk
t ∈ L2

t , and by R̃t := ( r1
t . . . rn

t )
′
the n-vector of risky asset

returns. In addition to the risky assets, a risk-free is traded with gross return r0
t = rf .

Conditioning Information:

To incorporate conditioning information, we take as given a sub-σ-field Gt−1 ⊆ Ft−1. We

think of Gt−1 as summarizing all information on which investors base their portfolio decisions

at time t− 1. In our empirical applications, Gt−1 will be chosen as the σ-field generated by

one or more lagged conditioning instruments, variables observable at time t− 1 that contain

information about the distribution of asset returns5. To simplify notation, we write Et−1( · )
for the conditional expectation operator with respect to Gt−1.

Managed Portfolios:

We allow for the formation of managed portfolios of the base assets. To this end, denote by

5Examples of conditioning variables considered in the literature include, among others, dividend yield

(Fama and French 1988), or interest rate spreads (Campbell 1987),
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Xt the space of all elements xt ∈ L2
t that can be written in the form,

xt = θ0
t−1rf +

n∑

k=1

( rk
t − rf )θk

t−1, (1)

for Gt−1-measurable functions θk
t−1. To simplify notation, we write (1) in vector form as

xt = θ0
t−1rf +( R̃t− rfe )′ θt−1, where e is an n-vector of ‘ones’. We interpret Xt as the space

of managed pay-offs, obtained by forming combinations of the base assets with time-varying

weights θk
t−1 that are functions of the conditioning information.

Pricing Function:

Because the base assets are defined by their returns, we set Πt−1( rk
t ) = 1 for k = 0, 1, . . . n,

and extend Πt−1 to all of Xt by conditional linearity. In particular, for an arbitrary pay-off

xt ∈ Xt of the form (1), it is easy to see that Πt−1( xt ) = θ0
t−1. By construction, the pricing

rule Πt−1 satisfies the ‘law of one price’, a weak from of no-arbitrage condition.

2.2 Stochastic Discount Factors

We use the stochastic discount factor framework to define what it means for a set of factors

to give rise to an admissible asset pricing model.

Definition 2.1 By an admissible stochastic discount factor (SDF) for the model ( Xt, Πt−1 ),

we mean an element mt ∈ L2
t that prices all base assets conditionally correctly, i.e.

Et−1( mt r
k
t ) = Πt−1( rk

t ) = 1 for all k = 0, 1, . . . n. (2)

The existence of at least one SDF is guaranteed by the Riesz representation theorem, but

unless markets are complete it will not be unique. Much of modern asset pricing research

focuses on deriving plausible SDFs from principles of economic theory, and then empirically

testing such candidates against observed asset returns. Note that in our definition, the SDF

is required to price the base assets conditionally. The vast majority of asset pricing model
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tests considered in the literature have used the unconditional version of (2). In our setting,

we allow both assets and factors to be dynamically managed, and thus we are testing the

conditional version of the pricing equation. Note also that, if mt is an admissible SDF in

the sense of (2), linearity implies Et−1( mt xt ) = Πt−1( xt ) for any arbitrary managed pay-off

xt ∈ Xt. In other words, an SDF that prices all base assets correctly is necessarily compatible

with the pricing function Πt−1 for managed pay-offs. Taking expectations we obtain,

E( mt xt ) = E( Πt−1( xt ) ) =: Π0( xt ). (3)

In other words, any SDF that prices the base assets (conditionally) correctly must necessarily

also be consistent with the unconditional pricing rule Π0. In fact, it is easy to show that

a candidate mt is an admissible SDF if and only if (3) holds for all xt ∈ Xt. We can thus

interpret (3) as a set of moment conditions that any candidate SDF must satisfy. There

are many empirical techniques (e.g. GMM) to estimate and test such restrictions. However,

as the space Xt of ‘test assets’ is infinite-dimensional, such tests will typically yield only

necessary but not sufficient conditions for the SDF.

This problem can be overcome by exploiting the close link between the SDF framework

and mean-variance efficiency. More specifically, one can obtain necessary and sufficient

conditions by testing how the candidate SDF acts on the unconditionally efficient frontier in

the space Xt of managed pay-offs (see Section 3 below). By two-fund separation, this reduces

the test to a one-dimensional problem. Motivated by this observation, we set Rt = Π−1
0 {1}.

In other words, Rt is the set of all managed pay-offs that have unit price and thus represent

the returns on dynamically managed portfolios.

2.3 Conditional Factor Models

Our focus here is not the selection of factors, but rather the construction and testing of

models for a given set of factors. Therefore, we take as given m factors, F i
t ∈ L2

t , indexed

i = 1 . . . m. Denote by F̃t = ( F 1
t , . . . , Fm

t )′ the m-vector of factors. In general we do not

assume the factors to be traded assets, that is we may have F i
t 6∈ Xt.
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Definition 2.2 We say that the model ( Xt, Πt−1 ) admits a conditional factor structure, if

and only if there exist Gt−1-measurable functions at−1 and bi
t−1 such that,

mt = αt−1 +
m∑

i=1

F i
t bi

t−1 (4)

is an admissible SDF for the model in the sense of Definition 2.1.

We refer to the coefficients bi
t−1 as the conditional factor loadings of the model and write (4)

in vector notation as mt = αt−1 + F̃ ′
t bt−1. We emphasize that the above specification defines

a conditional factor model, in that the coefficients at−1 and bi
t−1 are allowed to be functions

of the conditioning information. In other words, in this specification the conditional risk

premia associated with the factors are allowed to be time-varying. This potentially gives the

model the flexibility necessary to price also managed portfolios, since the co-efficients of the

model can respond to the same information that is used in the formation of portfolios.

Factor-Mimicking Portfolios:

Since the factors need not be traded assets, we construct factor-mimicking portfolios within

the space Rt of managed returns.

Definition 2.3 An element f i
t ∈ Xt is called a factor-mimicking portfolio (FMP) for the

factor F i
t ∈ L2

t if and only if Πt−1( f i
t ) = 1, and

ρ2
(
f i

t , F i
t

) ≥ ρ2
(
rt, F i

t

)
for all rt ∈ Xt with Πt−1( rt ) = 1. (5)

Note that we define an FMP via the concept of maximal correlation with the factor. In

the literature, it is also common to characterize factor-mimicking portfolios by means of an

orthogonal projection6. However, it can be shown that these characterizations are in fact

equivalent. To define our test, we now take the factor-mimicking portfolios themselves as

6This is for example the approach taken in Ferson, Siegel, and Xu (2005).
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base assets, and consider the space of pay-offs attainable by forming managed portfolios of

FMPs. Specifically, denote by XF
t the space of all xt ∈ L2

t that can be written in the form,

xt = φ0
t−1rf +

m∑
i=1

( f i
t − rf )φi

t−1, (6)

for Gt−1-measurable functions φi
t−1. By construction, Πt−1( xt ) = φ0

t−1 for any xt ∈ XF
t

of the form (6). Mimicking the construction in the preceding section, we define the set of

returns in this space as RF
t = Rt ∩XF

t .

3 Tests of Conditional Linear Factor Models

In this section, we develop a new measure of model misspecification in the presence of

conditioning information. This measure gives rise to a necessary and sufficient condition for

a given set of factors to constitute a viable asset pricing model. Moreover, we show that our

measure is closely related to the shape of the efficient portfolio frontier in the augmented

pay-off space.

As a starting point, we take as given an unconditionally efficient benchmark return r∗t ∈ Rt.

Although the results outlined below can be shown to be robust with respect to the choice

of benchmark return, we follow Hansen and Jagannathan (1997) and take r∗t as the return

with minimum unconditional second moment in Rt.

Definition 3.1 For given factors F̃t, the model misspecification error is defined as,

δF := inf
rt∈RF

t

σ2( r∗t − rt ). (7)

In other words, δF measures the minimum variance distance between the efficient benchmark

return r∗t and the return space RF
t spanned by the factor-mimicking portfolios. In the

following sections, we prove a series of results that motivate the interpretation of δF ( r∗t ) as

a measure of model misspecification. Specifically,
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(i) We show (Theorem 3.8) that for given set of factors F̃t, the model admits a factor

structure in the sense of Definition 2.2 if and only if δF = 0. In other words, our measure

defines a necessary and sufficient condition for a given set of factors to constitute a

viable conditional asset pricing model.

(ii) By construction, r∗t attains the maximum Sharpe ratio λ∗ in the space RG
t of generalized

returns. We show (Proposition 3.6) that any rF
t ∈ RF

t that attains the minimum in

(7) also attains the maximum Sharpe ratio λF in the space RF
t spanned by the FMPs.

Moreover, we show (Theorem 3.7) that δF is proportional to the difference in squared

Sharpe ratios, λ2
∗ − λ2

F . In other words, δF ( r∗t ) measures the distance between the

efficient frontiers spanned by the base assets and by the FMPs, respectively.

As a consequence of (i) and (ii), it follows that a given factor model is a true asset pricing

model if and only if it is possible to construct a dynamic portfolio of the FMPs that is

unconditionally mean-variance efficient in the asset return space. Thus, our condition is

an extension of the Gibbons, Ross, and Shanken (1989) test to the case with conditioning

information. In fact, the resulting test statistic is similar to a standard Wald test. In the

following sections, we derive explicit characterizations of the measure δF and the return that

attains it, in terms of the conditional moments of the base asset returns and the factors. This

allows us to implement our test for a variety of factor models considered in the literature.

3.1 Factor-Mimicking Portfolios

We now give an explicit characterization of the factor-mimicking portfolios as ‘managed’

portfolios of the base assets. We define the conditional moments,

µt−1 = Et−1( R̃t − rfe ), and Λt−1 = Et−1

(
( R̃t − rfe )( R̃t − rfe )′

)
(8)

In other words, excess returns can be written as R̃t−rfe = µt−1 +εt, where εt has zero mean

and variance-covariance matrix Σt−1 = Λt−1 − µt−1µ
′
t−1. Similarly, we denote the mixed
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conditional moments of the factors by

νt−1 = Et−1

(
F̃t

)
, and Qt−1 = Et−1

(
( R̃t − rfe )F̃ ′

t

)
(9)

Note that, if an admissible SDF of the form (4) exists, this implies,

0 ≡ Et−1

(
( R̃t − rfe )mt

)
= at−1µt−1 + Qt−1bt−1.

Conversely, if at−1 and bt−1 exist so that at−1µt−1 + Qt−1bt−1 = 0, then mt in (4) prices all

excess returns correctly and can hence be modified to be an admissible SDF. In other words,

the model admits a conditional factor structure if and only if the image of the conditional

linear operator Qt−1 contains µt−1. This fact will be key to the proof of the equivalence

result (Theorem 3.8).

Proposition 3.2 For a given factor F i
t , the factor-mimicking portfolio can be written as,

f i
t = rf +

(
R̃t − rfe

)′
θi

t−1 with θi
t−1 = Λ−1

t−1

(
qi
t−1 − κiµt−1

)
(10)

where qi
t−1 is the column of Qt−1 corresponding to factor i, and κi is a constant.

Note that the constant κi in the above expression is directly related to the unconditional

mean of the FMP. In the case where a risk-free asset is present, this constant is not uniquely

determined, since the first-order condition arising from maximizing the correlation in (5) is

independent of that mean.

Proof of Proposition 3.2: Appendix A.1.

To conclude this section, we derive expressions for the first and second moments of the factor-

mimicking portfolios, which we will need for the explicit characterization of the maximum

Sharpe ratio spanned by the factors (Corollary 3.5).

Corollary 3.3 The conditional moments of the factor mimicking portfolios are given by,

Et−1

(
ft − rfe

)
= Y ′

t−1Λ
−1
t−1µt−1, and Et−1

(
( ft − rfe )( ft − rfe )′

)
= Y ′

t−1Λ
−1
t−1Yt−1,

where yi
t−1 = qi

t−1 − κiµt−1, and Yt−1 is the matrix whose columns are the yi
t−1.
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Proof: Follows directly from Proposition 3.2.

3.2 Maximum Sharpe Ratios

In this section, we derive explicit expressions for the maximum generalized Sharpe ratios, in

the spaces of augmented pay-offs spanned by the base assets and the factors, respectively.

Denote by λ∗ the maximum Sharpe ratio in the generalized return space RG
t ,

λ∗ = sup
rt∈RG

t

E( rt )− rf

σ( rt )
. (11)

Similarly, denote by λF the corresponding maximum Sharpe ratio in the space RF
t of managed

returns spanned by the factors.

Proposition 3.4 The maximum generalized Sharpe ratio in the space RG
t is given by λ∗ = h,

where h2 = E( H2
t−1 ), and H2

t−1 = µ′t−1 Σ−1
t−1 µt−1, (12)

Proof: Appendix A.2.

Expression (12) for the maximum Sharpe ratio has many interesting features; first, it extends

the expression given in Equation (16) of Jagannathan (1996) to the case with conditioning

information. It is well-known (Cochrane 2001) that in the fixed-weight case without condi-

tioning information the maximum (squared) Sharpe ratio is given by an expression of the

form (12), with conditional moments replaced by unconditional ones. In other words, Ht−1

represents the maximum conditional Sharpe ratio, once the realization of the conditioning

information is known. Hence, the maximum squared unconditional Sharpe ratio is simply

given by the expectation of the maximum squared conditional Sharpe ratio. For the case of

only one risky asset, this result was also shown in Cochrane (1999).

Corollary 3.5 The maximum generalized Sharpe ratio in the space RF
t is given by λF = hF ,

where h2
F = E( H2

F,t−1 ),
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and H2
F,t−1 = µ′t−1Λ

−1
t−1Yt−1

[
Y ′

t−1Λ
−1
t−1Σt−1Λ

−1
t−1Yt−1

]−1
Y ′

t−1Λ
−1
t−1µt−1, (13)

Proof: Using the conditional moments from Corollary 3.3, we obtain,

ΣF
t−1 = Y ′

t−1Λ
−1
t−1Yt−1 + Y ′

t−1Λ
−1
t−1µt−1µ

′
t−1Λ

−1
t−1Yt−1 = Y ′

t−1Λ
−1
t−1

[
Λt−1 + µt−1µ

′
t−1

]
︸ ︷︷ ︸

= Σt−1

Λ−1
t−1Yt−1.

(14)

The result then follows from Proposition 3.4, applied to the factor-mimicking portfolios as

base assets.

Finally, we characterize the weights on the mimicking portfolios of the portfolio that attains

the maximum Sharpe ratio in (13). These weights are in fact proportional to the factor

loadings in the optimal conditional factor model for given choice of factors.

Proposition 3.6 The maximum generalized Sharpe ratio in (13) is attained by,

rF
t = φ0

t−1 rf + ( ft − rfe )′ φt−1 with φ0
t−1 =

1 + H2
F,t−1

1 + h2
F

(15)

and φt−1 = − rf

1 + h2
F

[
Y ′

t−1Λ
−1
t−1Σt−1Λ

−1
t−1Yt−1

]−1
Y ′

t−1Λ
−1
t−1µt−1

Proof: We apply Lemma A.1, using the factor-mimicking portfolios as base assets, and

substituting the conditional moments from Corollary 3.3 as in the proof of Corollary 3.5.

3.3 Necessary and Sufficient Condition

We are now in a position to prove the main results of our paper. First, we show that the

measure of model misspecification defined in (7) is proportional to the difference in squared

Sharpe ratios in the return spaces spanned by the base assets and the factors, respectively.

This related our measure to the respective shapes of the efficient portfolio frontiers in the

two spaces. Second, we show that for a given set of factors, the model admits a conditional
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factor structure if the only if the misspecification error is zero. This establishes a necessary

and sufficient condition for the factors to constitute a viable conditional asset pricing model.

Theorem 3.7 The measure δF of misspecification error can be written as,

δF ( r∗t ) =

(
rf

1 + λ2∗

)2

· ( λ2
∗ − λ2

F )

Proof: Appendix A.3.

As a consequence, testing the hypothesis that δF ( r∗t ) = 0 is similar to a standard Wald test,

as shown in Abhyankar, Basu, and Stremme (2005).

Theorem 3.8 The model ( Xt, Πt−1 ) admits a conditional factor structure if and only if

δF ( r∗t ) = 0.

Proof: Appendix A.4.

As a consequence of the above result, the difference λ2
∗ − λ2

F can be interpreted as a test of

whether it is possible to construct a conditional linear asset pricing model from a given set

of factors. Since by construction RF
t ⊆ RG

t , we always have λF ≤ λ∗, with equality if and

only if there exists a portfolio rt ∈ RF
t that is unconditionally efficient in the space RG

t .

Corollary 3.9 The model ( Xt, Πt−1 ) admits a conditional factor structure if and only if

there exist Gt−1-measurable functions φi
t−1 with E( φ0

t−1 ) = 1, such that

φ0
t−1rf +

m∑
i=1

φi
t−1

(
f i

t − rf

)
(16)

is unconditionally efficient in the space RG
t of generalized returns.

Proof: Follows directly from Theorem 3.8.
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4 Empirical Analysis

In this section, we report the results of implementing our test for a variety of asset pricing

models, and three sets of base assets (portfolios sorted on industry, size and book-to-market

ratio, and momentum).

4.1 Data and Methodology

We specialize the set-up of the preceding sections to the case of a linear predictive model.

Let yt−1 be a vector of Ft−1-measurable conditioning variables, and set Gt−1 = σ( yt−1 ). For

the estimation, we will use the de-meaned variables y0
t−1 = yt−1−E ( yt−1 ). To estimate the

conditional moments, we postulate a linear specification of the form,

(
R̃t − rfe

F̃t

)
=

(
µ0

ν̄

)
+

(
β

γ

)
· y0

t−1 +

(
εt

ηt

)
(17)

where εt and ηt are independent of y0
t−1 with Et−1( εt ) = Et−1( ηt ) = 0. Note however

that we do not assume the εt and ηt to be cross-sectionally independent, i.e. the residual

variance-covariance matrix need not be diagonal. In the notation of Section 2, we can then

calculate the conditional moments as,

µt−1 = µ0 + βy0
t−1 and Λt−1 = ( µ0 + βy0

t−1 )( µ0 + βy0
t−1 )′ + Et−1( εtε

′
t )

νt−1 = ν̄ + γy0
t−1 and Qt−1 = ( µ0 + βy0

t−1 )( ν̄ + γy0
t−1 )′ + Et−1( εtη

′
t )

The maximum generalized Sharpe ratios generated by the base assets and the factor mim-

icking portfolios, respectively, are then calculated using (12) and (13).

We test the performance of both the unscaled (fixed-beta) as well as the optimally scaled

versions of several classic asset pricing models, including the CAPM and the three-factor

model of Fama and French (1992). Each of these models is then augmented by additional

factors to capture skewness, excess kurtosis, and/or momentum effects. We perform our tests
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on three distinct sets of base assets. As a benchmark case, we consider a set of 30 portfolios

sorted by industry sector, an asset universe that does not exhibit any of the known asset

pricing anomalies. To investigate how well the models succeed in explaining well-known

anomalies, we then repeat our tests on Fama and French’s 25 portfolios sorted on size and

book-to-market ratio, and the 10 portfolios sorted on momentum (past returns) as used in

Chordia and Shivakumar (2002). To optimally scale both assets as well as factor loadings, we

employ a set of conditioning instruments designed to capture changes in the overall economic

environment7. In our empirical analysis, we address the following questions

(1) Can unscaled (fixed-beta) models explain the size, value and momentum effects?

(2) Can time-varying betas improve the performance of an asset pricing model?

(3) Does the inclusion of skewness and kurtosis factors improve model performance?

(4) Are the Fama-French factors necessary to explain the size and value premia?

(5) Do we need a momentum factor to explain the momentum effect?

(6) Can any scaled model price actively managed portfolios?

While we discuss the results of our empirical analysis in detail in the following sections, we

summarize our answers to the above questions in Section 4.6.

4.2 Optimal Scaling and Time-Varying Betas

As a benchmark, we first analyze the effect of optimal scaling on both asset as well as model

performance, using Fama and French’s 30 industry portfolios as base assets. Table 1 reports

7These instruments are the short rate (TB1M), term spread (TSPR), curvature of the yield curve (CONV),

credit yield spread (CSPR), and unexpected shocks to inflation (INFL).
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the slope of the efficient frontier spanned by assets and factors, respectively, both with and

without the optimal use of conditioning information, for a variety of classic asset pricing

models.

The Effect of Optimal Scaling

From row (1) we see that the optimal use of the conditioning instruments dramatically

expands the efficient frontier (with Sharpe ratios increasing by a factor of more than 3/2

from 0.88 to 2.36). This considerably raises the bar if we require a model to not only price

the base assets but also actively managed portfolios correctly.

On the other hand, optimal scaling improves the performance of the CAPM (row 1 in

the table) and Fama-French model (row 6) just as dramatically (with the factor frontiers

expanding by 48% and 163%, respectively). In fact, while the unscaled version still has a

pricing error of about 40%, the scaled Fama-French model successfully prices static portfolios

(with the factor frontier expanding beyond the fixed-weight asset frontier). However both

models, even optimally scaled, still fall short by a wide margin of pricing managed portfolios

correctly (with pricing errors of 71% and 60%, respectively). Interestingly, the consumption-

CAPM shows the most significant boost in performance (with the factor frontier expanding

by orders of magnitude from 0.09 to 0.77).

Skewness, Kurtosis and Momentum Factors

Rows (2) and (7) of Table 1 show that the skewness factor, while having virtually no effect

on the performance of the unscaled models, significantly improves the performance of the

optimally scaled models. The addition of the skewness factor increases the factor frontier

by less than 1% for the unscaled CAPM and Fama-French model, but by 76% and 45% for

the scaled versions, respectively. In fact, augmented by the skewness factor, the CAPM now

prices static portfolios correctly, and the pricing error for managed portfolios falls below

50%. Similarly, the pricing error for the Fama-French model drops to about 40% for active

portfolios. In other words, while skewness has little importance for asset pricing at the level

of long-run average returns, it has a dramatic effect on conditional pricing. Intuitively, this
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is due to the fact that any skewness in the conditional return distribution is ‘washed out’

by time aggregation in the unconditional distribution (Central Limit Theorem). Conversely,

the inclusion of the skewness factor considerably amplifies the effect of optimal scaling. For

example, while conditioning information improves the performance of the CAPM by only

48%, once the skewness factor is added, this goes up to 158%.

In contrast, rows (3) and (8) of Table 1 show that kurtosis has a much less dramatic effect,

similar in size for both unscaled and scaled models (with an additional expansion of the

factor frontier by between 6% and 11%).

Time-Varying Betas

In most of our empirical tests, we find that the optimal factor loadings exhibit a consider-

able degree of non-linearity in the conditioning instrument, in contrast to the linear scaling

prevalent in most of the literature. For example, Figure 2 shows the optimal factor load-

ings, as functions of the conditioning instruments, for the CAPM augmented by a skewness

and kurtosis factor. Interestingly, when we estimated the CAPM without the skewness and

kurtosis factors, the non-linearity in the market factor all but disappears. This seems to

indicate that it is not only factor risk that matters, but also the correlations between the

factors.

In order to compare our optimal scaling with the linear specification prevalent in most of the

literature, we also estimate the models using linearly scaled factor loadings. We find that the

linear models considerably under-perform the optimally scaled versions. For example, for a

standard CAPM, the factor Sharpe ratio of the optimally scaled model is 62% higher than

that generated by the linearly scaled factor. In fact, the linearly scaled model only marginally

out-performs the corresponding model with constant betas. This provides further support

for the necessity of non-linear factor risk premia and the sub-optimality of linear scaling,

see also Ghysels (1998), and Brandt and Chapman (2005). It should also be noted that, in

models with multiple factors and multiple conditioning instruments, linearly scaled models

are at risk of ‘over-fitting’ in-sample. For example, a linearly scaled model with m factors
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and p instruments has m× (p + 1) free parameters (‘betas’) to fit the data.

4.3 The Size and Book-to-Market Effect

Asset pricing research has documented that the cross-sectional dispersion in expected returns

is determined not only by beta, as prescribed by the CAPM, but by firm size, book-to-market

ratio, and other factors. The CAPM has demonstrated virtually no power to explain the

cross section of average returns on assets sorted by size and book-to-market equity ratios

(Fama and French 1992).

To capture this effect, we now repeat our tests using Fama and French’s 5 × 5 portfolios

sorted on size and book-to-market ratio. The results are reported in Table 2. In our analysis,

the size and value effect (Fama and French 1992) manifests itself in the dramatic increase

in asset performance (with the fixed-weight asset Sharpe ratio almost doubling from 0.88 to

1.57). Interestingly, the increase in performance for optimally managed portfolios is much

less dramatic (increasing from 2.36 to 2.66). This seems to suggest that the superior returns

due to the size and value effect are largely washed out by the increase in portfolio performance

due to active management. Conversely, because efficient passive portfolios constructed on

the basis of size and book-to-market ratio already exhibit much higher returns, the marginal

benefit of active management is much smaller in this asset universe (with an increase of the

efficient frontier by 69% as compared to 168% for the industry portfolios).

The unscaled CAPM and Fama-French models are unable to price these portfolios (with

pricing errors of 74% and 45%, respectively). In other words, over the time period we con-

sider, even the Fama-French model fails to price the size and value portfolios. Moreover,

even with optimal scaling, both models are unable to price the assets (with pricing errors

of 68% and 28%, respectively). In contrast, when we augment these models by skewness

and kurtosis factors, we find that an optimally scaled three-factor CAPM achieves 90% of

the fixed-weight asset Sharpe ratio, while the scaled augmented Fama-French model actu-

ally prices the assets correctly. However, none of the scaled models comes close to pricing
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managed portfolios (with pricing errors still as large as 48% and 40%, respectively). Our

results thus show that a scaled three factor CAPM goes a long way towards explaining the

size and book-to-market effects.

4.4 The Momentum Effect

We next examine the performance of the scaled models on the momentum portfolios. The

momentum portfolios stocks sorted on the basis of prior returns and the pricing of these

portfolios has posed a great challenge to standard asset pricing model. Indeed momentum

remains the only CAPM-based anomaly that cannot be explained by the static Fama-French

model. Several partial risk-based explanations have been proposed. Grundy and Martin

(2001) have suggested that the factor loadings should be time-varying to account for the dy-

namic nature of the momentum strategy, but find that momentum profits persist even when

time-varying factor loadings are incorporated. Harvey and Siddique (2000) find that the pric-

ing errors from the Fama-French model are correlated with their skewness factor suggesting

that this factor may have significant explanatory power for these portfolios. Recently, Hung

(2005) found that stylized momentum effects are partly driven by exposures to co-skewness

and co-kurtosis factors. These results indicate that the option like elements of the momen-

tum returns may be captured by nonlinear factors such as skewness and kurtosis. Chordia

and Shivakumar (2002) find that profits to momentum strategies can be explained by lagged

values of standard macro-economic instruments and that momentum profits disappear once

returns are adjusted for their predictability based on their business cycle variables. Their

results suggest that time-varying expected returns could be an explanation for momentum

profits.

All of the above studies suggest that a three-factor CAPM that is the market return to-

gether with skewness and kurtosis factors, optimally scaled by macro-economic variables,

might outperform static models in pricing the momentum portfolios. We use the momen-

tum portfolios constructed by Chordia and Shivakumar (2002), covering the period from

24



January 1960 until January 19998.

We first examine the performance of the static CAPM and Fama-French model on these

portfolios. The fixed-weight Sharpe ratio of the momentum portfolios is 1.15 while the

static CAPM achieves a Sharpe ratio of 0.64, just over 50% of the momentum portfolios

showing that it does a poor job of pricing these. Adding the Fama-French factors improves

the performance considerably (with the unscaled factor Sharpe ratio increasing to 0.93),

reducing pricing error to about 18%. This shows that although the Fama-French model does

much better than the CAPM it still does not completely explain the momentum portfolio

returns.

We now examine the performance of the three-factor CAPM. Adding the skewness and

kurtosis factors to the unscaled CAPM makes very little difference (with the Sharpe ratio

rising only to 0.65). This is in line with our earlier empirical findings where the inclusion

of skewness and kurtosis in the unscaled model has very little impact. However, when we

incorporate optimal scaling, the Sharpe ratio of the scaled CAPM rises to 0.87, just below

that of the static Fama-French model. However the performance of the three-factor CAPM

improves dramatically when we scale the factors (with the factor Sharpe ratio rising to

1.23). Thus the scaled three-factor CAPM actually prices the momentum portfolios, which

the unscaled Fama-French model is unable to do. Our results thus provide evidence of a

rational risk-based explanation for momentum returns, which is in line with earlier studies.

However, the scaled three-factor CAPM still leads to considerable pricing errors for optimally

managed portfolios (achieving about 67% of the asset Sharpe ratio). Adding the Fama-

French factors, while improving the performance of the model, still does not make it a true

asset pricing model (with a minimum achievable pricing error of about 15%).

Nonetheless our model appears to be the first rational asset pricing model that successfully

8See Chordia and Shivakumar (2002) for details of the construction of these portfolios. We thank Doron

Avramov for making this data available.
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prices the momentum portfolios. The time-varying and option-like features of momentum

returns appear to be captured mostly by the skewness factor with time-varying factor load-

ings9. We find as in our earlier results that incorporating time-varying factor loadings is

absolutely crucial, and that our method of optimal scaling significantly improves the perfor-

mance of the model.

4.5 Robustness

Our tests are all based on in-sample Sharpe ratios which are known to exhibit high sampling

variability particularly in the presence of conditioning information (Ferson and Siegel 2003).

This raises the concern that our results may be driven in part by this sampling variability.

To this end we conduct the following robustness check. We construct a pure noise variable by

simulating from a standard normal random variable and use this as our predictive instrument.

We then compute the optimal asset and factor Sharpe ratios for the various sets of assets

and factors. The result that if of greatest concern to us is the pricing of the fixed weight

assets by the scaled factor models and we want to see if the optimal factor Sharpe ratio

using the noise variable is ever as high as the fixed-weight factor Sharpe ratio. We simulate

10,000 values of the noise predictor for all the sets of base assets and in all cases while the

optimal factor Sharpe ratio is higher than the fixed weight factor Sharpe ratio, the fixed

weight asset Sharpe ratio is above the simulated 99% confidence interval indicating that our

results are robust to sampling variability. It is also the case that the optimal factor Sharpe

ratio using the true predictive instruments is above the simulated 99% confidence interval.

Our conclusion is thus that our findings are robust to sampling variability in the estimation

of Sharpe ratio.

9Our results are also consistent with Chen, Hong, and Stain (2001), who find that stocks with prior

positive returns tend to exhibit high negative skewness.
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4.6 Summary

To answer the questions set out in the beginning of this section:

(1) Can unscaled (fixed-beta) models explain the size, value and momentum effects?

No. Although the unscaled CAPM and Fama-French models, augmented by the skew-

ness factor, correctly price industry portfolios, none of the unscaled models tested

comes close to pricing size or book-to-market portfolios correctly. While the inclusion

of additional factors does improves the performance of the unscaled models, pricing

errors are still considerable.

(1) Can time-varying betas improve the performance of an asset pricing model?

The optimal use of conditioning information dramatically improves the performance

of all models considered here, although the magnitude of the improvement depends on

the choice of base assets. Generally, the marginal benefit of optimal scaling is smaller

in the presence of asset pricing anomalies. Scaling affects the Fama-French model more

than it does the CAPM. While time-variation in factor loadings reduces pricing errors

for all factors, the improvement appears most significant for the skewness factor.

(3) Does the inclusion of skewness and kurtosis factors improve model performance?

For unscaled (fixed-beta) models, the skewness factor has virtually no effect, whatever

the base assets. In contrast, the kurtosis factor adds marginally to the performance of

the unscaled CAPM and Fama-French model on the size and book-to-market portfolios.

The situation is reversed when the factor betas are time-varying. In this case, the

skewness factor reduces pricing errors dramatically for both models, while kurtosis has

only marginal effect.

(4) Are the Fama-French factors necessary to explain the size and value premia?

No. Surprisingly, an optimally scaled three-factor CAPM, augmented by skewness

and kurtosis factors, achieves pricing errors of less than 10% for the size and book-to-
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market portfolios, thus in fact clearly out-performing the unscaled Fama-French model

(without the skewness and kurtosis factors).

(5) Do we need a momentum factor to explain the momentum effect?

No. While the momentum factor adds marginally to the performance of unscaled

models, as soon as betas are allowed to be time-varying, skewness and kurtosis clearly

dominate the momentum factor. In particular, an optimally scaled three-factor CAPM,

augmented by skewness and kurtosis, perfectly prices the momentum portfolios.

(6) Can any scaled model price actively managed portfolios?

Although none of the scaled models succeeds in pricing actively managed portfolios

correctly, a scaled Fama-French model, augmented by skewness and kurtosis factors,

has pricing errors of less than 40%. Interestingly, the model performs much better

on those portfolios that exhibit abnormal returns (i.e. the size, book-to-market and

momentum portfolios), with pricing errors as low as 15%.

5 Conclusion

In this paper, we develop a new measure of specification error for conditional factor models,

leading to new tests for such models. Our test measures how close the frontier spanned by

the factors (or factor-mimicking portfolios) is to the unconditionally efficient frontier of the

base assets. We can thus show that a conditional factor model is a true asset pricing model

if and only if our measure of specification error is zero. Moreover, we show that our test

is proportional to the difference in squared Sharpe ratios of the asset and factor frontiers,

respectively. Finally, for a given set of factors, our analysis allows us to construct a portfolio

of the factor-mimicking portfolios that minimizes pricing error.

We draw three main conclusions from our empirical findings. The first is that there is

significant time-variation in factor loadings and that this time-variation plays a significant
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role in asset pricing. The second is that our optimal scaling clearly improves the performance

of asset pricing models to the point where several of the scaled models are capable of pricing

the base assets although they are still not true conditional asset pricing models. The third is

that the skewness factor matters for pricing in a conditional setting, that is when the factor

loadings are allowed to be time-varying.

We find that a three factor CAPM scaled by business cycle variables is capable of pricing

the momentum portfolios. Our results are robust to the high sampling variability observed

in Sharpe ratios.
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A Mathematical Appendix

A.1 Proof of Proposition 3.2:

Throughout the proof, we omit the time subscript to simplify notation. Denote by f i the

factor-mimicking portfolio for factor F i.

Step 1: Let r ∈ R be an arbitrary return. For ε ∈ IR, define r(ε) = (1 − ε)f i + εr. As f i

has maximal correlation with F i, the first-order condition implies,

0 =
d

dε

∣∣∣∣
ε=0

ρ2
(
r(ε), F i

)

= cov
(
r − f i , F i

)
cov

(
f i , f i

)− cov
(
f i , F i

)
cov

(
f i , r − f i

)

= cov
(
r , var

(
f i

)
F i − cov

(
f i , F i

)
f i

)
.

In other words, βif
i is the orthogonal projection of F i onto the space R of managed returns,

where βi = cov ( F i , f i ) /var ( f i ).

Step 2: Write f i = rf + ( R̃− rfe )′θi. For arbitrary φ, the first-order condition implies,

0 = cov
(

F i − βi( R̃− rfe )′θi , ( R̃− rfe )′φ
)

= E
(

[ F i − βi( R̃− rfe )′θi ]( R̃− rfe )′φ
)

−E
(

F i − βi( R̃− rfe )′θi
)

︸ ︷︷ ︸
=: κi

E
(

( R̃− rfe )′φ
)

= E
(
[ qi − βiΛθi − κiµ ]′φ

)

As this must hold for all φ, we find,

θi =
1

βi

Λ−1
(
qi − κiµ

)

Finally, as correlation is homogenous of degree 0, we can set βi = 1, which determines the

value of the constant κi.

This completes the proof of Proposition 3.2.
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A.2 Proof of Proposition 3.4:

We use Lemma 3.3 in Hansen and Richard (1987), which shows that the unconditionally

efficient generalized return with mean m can be written as r∗ + w z∗ for some w ∈ IR, where

r∗ ∈ R is the unique generalized return with minimal second moment, and z∗ is the Riesz

representation of the expectation functional on the space Z of excess returns. From this, it

follows that the maximum (squared) unconditional Sharpe ratio is given by,

λ2
∗ =

rf − E( r∗ )

E( r∗ )
. (18)

From Lemma A.1 below we obtain the weights of r∗. A straight-forward calculation then

yields E( r∗ ) = rf / ( 1 + h2 ), which yields the desired result.

Lemma A.1 The generalized return r∗t with minimum unconditional second moment is,

r∗t = θ0
t−1rf +

(
R̃t − rfe

)′
θt−1

with θt−1 = − rf

1 + h2
Σ−1

t−1µt−1 and θ0
t−1 =

1 + H2
t−1

1 + h2

Proof: Throughout the proof, we will omit the time subscript to simplify notation. We

use calculus of variation. Let θ0(ε) and θ(ε) be differentiable one-parameter families of

admissible weights, and define

r(ε) = θ0(ε)rf + ( R̃− rfe )′θ(ε).

We assume E( θ0(ε) ) = 1 for all ε, so that the r(ε) are indeed generalized returns for all ε.

Suppose that the minimum second moment is attained at ε = 0, then we must have,

d

dε

∣∣∣∣
ε=0

E
(
r(ε)2

)
= 0 (19)

We will use this condition to determine the solutions θ0 and θ separately.

Step 1: Characterizing θ0

31



Let φ0 be an arbitrary weight function, and set a = 1/E( φ0 ). Define

θ0(ε) = (1− ε)θ0 + εaφ0, θ(ε) ≡ θ

By construction, E( θ0(ε) ) = 1 for all ε, so that this specification indeed defines a family of

generalized returns. The first-order condition (19) in this case becomes,

0 = 2 r2
f E

(
θ0(aφ0 − θ0)

)
+ 2 rf E

(
(aφ0 − θ0)µ′θ

)

Multiplying this equation by E( φ0 ) = 1/a, we obtain,

E
(

[ rfθ
0 + µ′θ ]φ0

)
= γE

(
φ0

)

for some unconditional constant γ. Since this equation must hold for all φ0, we obtain

rfθ
0 + µ′θ = γ (20)

Finally, since E( θ0 ) = 1, taking unconditional expectations implies,

γ = rf + E ( µ′θ ) (21)

Step 2: Characterizing θ

Let φ be an arbitrary vector of weights for the risky assets, and set

θ0(ε) ≡ θ0, θ(ε) = θ + εφ

Since E( θ0(ε) ) = 1, this specification generates a family of generalized returns. Hence, we

can apply the first-order condition (19) to obtain,

0 = 2 rf E
(

θ0µ′φ
)

+ 2 E ( θ′Λφ )

Since this equation must hold for all φ, we obtain,

rfθ
0µ = −Λθ = −[

Σ + µµ′
]
θ

Substituting from (20) into the left-hand side of this equation, we can write,

θ = −γΣ−1µ,
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Multiplying this by µ and taking unconditional expectations, we obtain,

E ( µ′θ ) = −γE
(

µ′Σ−1µ
)

= −γE
(

H2
)

= −γh2 (22)

Finally, equating (21) and (22),

−γh2 = E ( µ′θ ) = γ − rf , which implies γ =
rf

1 + h2

Hence, the weights for the risky assets are given by,

θ = −γΣ−1µ = − rf

1 + h2
Σ−1µ

Finally, using (20), we obtain the weight for the risk-free asset,

rfθ
0 = γ − µ′θ = γ +

rfH
2

1 + h2
, which implies θ0 =

1 + H2

1 + h2

This completes the proof of Lemma A.1.

A.3 Proof of Theorem 3.7

Throughout the proof, we omit the time subscript to simplify notation. From Proposition

3.2, we know that any portfolio that is constructed from the factor-mimicking portfolios can

be written in the form

r(φ) = φ0rf + ( R̃− rfe )′Λ−1Y φ

for arbitrary φ0 and φ. It is then straight-froward to show that

var ( r∗ − r(φ) ) = const + r2
fE

(
(φ0)2

)− 2 rf
h2

1 + h2
E ( b′θ )− E ( b′θ )

2

+E ( φ′[ M + bb′ ]φ ) + 2 rf E
(
φ0b′φ

)
,

where b = µ′Λ−1Y and M = Y ′Λ−1ΣΛ−1Y . Now suppose φ minimizes the variance in the

above expression, and hence attains δ2.

Step 1: Characterizing φ0
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Let θ0 be arbitrary, set a = 1/E ( θ0 ) and define

φ0(ε) = (1− ε)φ0 + εaθ0

As the minimum variance is attained at ε = 0, the first-order condition implies,

0 =
d

dε

∣∣∣∣
ε=0

var ( r∗ − r(φ(ε)) )

= 2 r2
f E

(
φ0[ aθ0 − φ0 ]

)
+ 2 rf E

(
[ aθ0 − φ0 ]b′φ

)

From this follows,

E
(
[ rfφ

0 + b′φ ]θ0
)

= E
(
rf (φ

0)2 + φ0b′φ
)

︸ ︷︷ ︸
=: γ

E
(
θ0

)

As this must hold for all θ0, we get

rfφ
0 + b′θ = γ. (23)

Step 2: Characterizing φ

Let θ be arbitrary, and set

φ(ε) = φ + εθ

As the minimum variance is attained at ε = 0, the first-order condition is,

0 = −2 rf
h2

1 + h2
E ( b′θ )− 2 E ( b′φ ) E ( b′θ )

+2 E ( φ′[ M + bb′ ]θ ) + 2 rf E
(
θ0b′θ

)

−[
rf

h2

1 + h2
+ E ( b′φ )︸ ︷︷ ︸

= γ − rf from Step 1

]
E ( b′θ )

A.4 Proof of Theorem 3.8

We omit the proof of this theorem here due to its length. Details of the proof can be obtained

from the authors upon request.

34



References

Abhyankar, A., D. Basu, and A. Stremme (2005): “The Optimal Use of Asset Return

Predictability: An Empirical Analysis,” working paper, Warwick Business School.

Avramov, D., and T. Chordia (2004): “Asset Pricing Models and Financial Market

Anomalies,” working paper, University of Maryland.

Ball, R., and S. Kothari (1989): “Nonstationarity in Expected Returns: Implications

for Tests of Market Efficiency and Serial Correlations in Returns,” Journal of Financial

Economics, 25, 51–74.

Berk, J., R. Green, and V. Naik (1999): “Optimal Investment, Growth Options, and

Security Returns,” Journal of Finance, 54, 1553–1607.

Brandt, M., and D. Chapman (2005): “Linear Approximations and Tests of Conditional

Factor Models,” working paper, Boston College.

Campbell, J. (1987): “Stock Returns and the Term Structure,” Journal of Financial

Economics, 18, 373–399.

Chan, K., and N. Chen (1988): “An Unconditional Asset Pricing Test and the Role of

Firm Size as an Instrumental Variable for Risk,” Journal of Finance, 43, 309–325.

Chen, J., H. Hong, and J. Stain (2001): “Trading Volume, Past Returns and Conditional

Skewness in Stock Prices,” Journal of Financial Economics, 61, 345–381.

Chordia, T., and L. Shivakumar (2002): “Momentum, Business Cycle and Time-

Varying Expected Return,” Journal of Finance, 57, 985–1019.

Cochrane, J. (1999): “Portfolio Advice for a Multi-Factor World,” Economic Perspectives,

Federal Reserve Bank of Chicago, 23(3), 59–78.

Cochrane, J. (2001): Asset Pricing. Princeton University Press, Princeton, New Jersey.

35



Dittmar, R. (2002): “Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from

the Cross Section of Equity Returns,” Journal of Finance, 57(1), 369–403.

Fama, E., and K. French (1988): “Dividend Yields and Expected Stock Returns,” Journal

of Financial Economics, 22, 3–25.

Fama, E., and K. French (1992): “The Cross-Section of Expected Returns,” Journal of

Finance, 47, 427–465.

Ferson, W., and C. Harvey (1998): “Fundamental Determinants of Equity Market

Returns: A Perspective on Conditional Asset Pricing,” Journal of Banking and Finance,

21, 1625–1665.

Ferson, W., and C. Harvey (1999): “Conditioning Variables and the Cross-Section of

Stock Returns,” Journal of Finance, 54, 1325–1360.

Ferson, W., and A. Siegel (2003): “Stochastic Discount Factor Bounds with Condition-

ing Information,” Review of Financial Studies, 16(2), 567–595.

Ferson, W., A. Siegel, and T. Xu (2005): “Mimicking Portfolios with Conditioning

Information,” forthcoming, Journal of Financial and Quantitative Analysis.

Ghysels, E. (1998): “On Stable Factor Structures in the Pricing of Risk: Do Time-Varying

Betas Help or Hurt?,” Journal of Finance, 53, 549–573.

Gibbons, M., S. Ross, and J. Shanken (1989): “A Test of Efficiency of a Given Portfo-

lio,” Econometrica, 57(5), 1121–1152.

Gomes, J., L. Kogan, and L. Zhang (2003): “Equilibrium Cross-Section of Returns,”

Journal of Political Economy, 111, 693–732.

Grundy, B., and S. Martin (2001): “Understanding the Nature of the Risks and the

Sources to Rewards of Momentum Investing,” Review of Financial Studies, 14, 29–78.

36



Hansen, L., and R. Jagannathan (1997): “Assessing Specification Errors in Stochastic

Discount Factor Models,” Journal of Finance, 52, 557–590.

Hansen, L., and S. Richard (1987): “The Role of Conditioning Information in Deducing

Testable Restrictions Implied by Dynamic Asset Pricing Models,” Econometrica, 55(3),

587–613.

Harvey, C., and A. Siddique (2000): “Conditional Skewness in Asset Pricing Tests,”

Journal of Finance, 55(3), 1263–1295.

Hung, D. (2005): “Systematic Risks, Nonlinear Market Models and International Momen-

tum and Size Strategies,” working paper, University of Durham.

Jagannathan, R. (1996): “Relation between the Slopes of the Conditional and Uncondi-

tional Mean-Standard Deviation Frontier of Asset Returns,” in Modern Portfolio Theory

and its Applications: Inquiries into Asset Valuation Problems, ed. by S. Saito et al. Center

for Academic Societies, Osaka, Japan.

Jagannathan, R., and Z. Wang (1996): “The Conditional CAPM and the Cross-Section

of Expected Returns,” Journal of Finance, 51(1), 3–53.

Kraus, A., and R. Litzenberger (1976): “Skewness Preference and the Valuation of

Risky Assets,” Journal of Finance, 31, 1085–1100.

Lewellen, J. (1999): “The Time-Series Relations among Expected Return, Risk, and

Book-to-Market,” Journal of Financial Economics, 54, 5–43.

37



Sh
ar

pe
R

at
io

s
A

ss
et

Fa
ct

or
Fr

on
ti

er
Fr

on
ti

er
M

od
el

Fa
ct

or
s

fw
op

t
fw

op
t

(1
)

C
A

P
M

M
K

T
0.

87
95

2.
36

00
0.

47
00

0.
69

50
(2

)
..

.
+

Sk
ew

ne
ss

M
K

T
SK

E
W

0.
47

38
1.

22
25

(3
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SK

E
W

K
U

R
T

0.
52

12
1.

34
00

(4
)

..
.

+
M

om
en

tu
m

M
K

T
U

M
D

0.
47

78
0.

75
85

(5
)

..
.

+
A

ll
M

K
T

SK
E

W
K

U
R
T

U
M

D
0.

52
82

1.
38

86
(6

)
F
F

3-
Fa

ct
or

M
K

T
SM

B
H

M
L

0.
52

83
0.

95
29

(7
)

..
.

+
Sk

ew
ne

ss
M

K
T

SM
B

H
M

L
SK

E
W

0.
52

83
1.

38
53

(8
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

0.
58

73
1.

47
06

(9
)

..
.

+
M

om
en

tu
m

M
K

T
SM

B
H

M
L

U
M

D
0.

53
31

0.
98

54
(1

0)
..

.
+

A
ll

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

U
M

D
0.

59
28

1.
49

78
(1

1)
C

-C
A

P
M

C
G

R
0.

09
22

0.
77

16
(1

2)
..

.
+

Sk
ew

ne
ss

SK
E

W
∗

C
G

R
0.

09
29

0.
90

39
(1

3)
..

.
..

.
+

K
ur

to
si

s
SK

E
W
∗ K

U
R
T
∗

C
G

R
0.

30
11

1.
08

53

T
ab

le
1:

T
e
st

R
e
su

lt
s

(3
0

In
d
u
st

ry
P
o
rt

fo
li
o
s)

T
hi

s
ta

bl
e

re
po

rt
s

th
e

m
ax

im
um

(a
nn

ua
liz

ed
)

Sh
ar

pe
ra

ti
os

ge
ne

ra
te

d
by

th
e

ba
se

as
se

ts
an

d
th

e
fa

ct
or

-m
im

ic
ki

ng
po

rt
fo

lio
s,

re
sp

ec
ti

ve
ly

.
T

he
fa

ct
or

m
od

el
s

te
st

ed
ar

e
th

e
cl

as
si

c
C

A
P

M
,
th

e
th

re
e-

fa
ct

or
(R

M
F
,
H

M
L

an
d

SM
B

)
Fa

m
a-

Fr
en

ch
m

od
el

,
an

d
th

e
C

on
su

m
pt

io
n-

C
A

P
M

.A
ls

o
re

po
rt

ed
ar

e
th

e
re

su
lt

s
w

he
n

th
e

m
od

el
s

ar
e

au
gm

en
te

d
by

sk
ew

ne
ss

(S
K

E
W

),
ku

rt
os

is
(K

U
R
T

),
an

d/
or

m
om

en
tu

m
(U

M
D

)
fa

ct
or

s.
T

he
ba

se
as

se
ts

ar
e

Fa
m

a
an

d
Fr

en
ch

’s
30

in
du

st
ry

po
rt

fo
lio

s,
an

d
th

e
co

nd
it

io
ni

ng
in

st
ru

m
en

ts
ar

e
th

e
sh

or
t

ra
te

(T
B

1M
),

te
rm

sp
re

ad
(T

SP
R

),
co

nv
ex

it
y

(C
O

N
V

),
cr

ed
it

yi
el

d
sp

re
ad

(C
SP

R
),

an
d

in
fla

ti
on

(I
N

F
L
).

38



Sh
ar

pe
R

at
io

s
A

ss
et

Fa
ct

or
Fr

on
ti

er
Fr

on
ti

er
M

od
el

Fa
ct

or
s

fw
op

t
fw

op
t

(1
)

C
A

P
M

M
K

T
1.

57
12

2.
65

95
0.

41
28

0.
66

20
(2

)
..

.
+

Sk
ew

ne
ss

M
K

T
SK

E
W

0.
48

79
1.

07
97

(3
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SK

E
W

K
U

R
T

0.
78

66
1.

39
51

(4
)

..
.

+
M

om
en

tu
m

M
K

T
U

M
D

0.
41

55
0.

73
67

(5
)

..
.

+
A

ll
M

K
T

SK
E

W
K

U
R
T

U
M

D
0.

79
87

1.
43

10
(6

)
F
F

3-
Fa

ct
or

M
K

T
SM

B
H

M
L

0.
85

95
1.

13
36

(7
)

..
.

+
Sk

ew
ne

ss
M

K
T

SM
B

H
M

L
SK

E
W

0.
91

43
1.

39
76

(8
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

1.
03

69
1.

59
58

(9
)

..
.

+
M

om
en

tu
m

M
K

T
SM

B
H

M
L

U
M

D
1.

05
23

1.
33

53
(1

0)
..

.
+

A
ll

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

U
M

D
1.

20
28

1.
71

84
(1

1)
C

-C
A

P
M

C
G

R
0.

05
61

0.
74

22
(1

2)
..

.
+

Sk
ew

ne
ss

SK
E

W
∗

C
G

R
0.

16
76

0.
95

63
(1

3)
..

.
..

.
+

K
ur

to
si

s
SK

E
W
∗ K

U
R
T
∗

C
G

R
0.

48
55

1.
08

74

T
ab

le
2:

T
e
st

R
e
su

lt
s

(5
×

5
S
iz

e
a
n
d

B
o
o
k
-t

o
-M

a
rk

e
t

P
o
rt

fo
li
o
s)

T
hi

s
ta

bl
e

re
po

rt
s

th
e

m
ax

im
um

(a
nn

ua
liz

ed
)

Sh
ar

pe
ra

ti
os

ge
ne

ra
te

d
by

th
e

ba
se

as
se

ts
an

d
th

e
fa

ct
or

-m
im

ic
ki

ng
po

rt
fo

lio
s,

re
sp

ec
ti

ve
ly

.
T

he
fa

ct
or

m
od

el
s

te
st

ed
ar

e
th

e
cl

as
si

c
C

A
P

M
,
th

e
th

re
e-

fa
ct

or
(R

M
F
,
H

M
L

an
d

SM
B

)
Fa

m
a-

Fr
en

ch
m

od
el

,
an

d
th

e
C

on
su

m
pt

io
n-

C
A

P
M

.A
ls

o
re

po
rt

ed
ar

e
th

e
re

su
lt

s
w

he
n

th
es

e
m

od
el

s
ar

e
au

gm
en

te
d

by
sk

ew
ne

ss
(S

K
E

W
),

ku
rt

os
is

(K
U

R
T

),
an

d/
or

m
om

en
tu

m
(U

M
D

)
fa

ct
or

s.
T

he
ba

se
as

se
ts

ar
e

Fa
m

a
an

d
Fr

en
ch

’s
5
×

5
si

ze
an

d
bo

ok
-t

o-
m

ar
ke

t
po

rt
fo

lio
s,

an
d

th
e

co
nd

it
io

ni
ng

in
st

ru
m

en
ts

ar
e

th
e

sh
or

t
ra

te
(T

B
1M

),
te

rm
sp

re
ad

(T
SP

R
),

co
nv

ex
it
y

(C
O

N
V

),
cr

ed
it

yi
el

d
sp

re
ad

(C
SP

R
),

an
d

in
fla

ti
on

(I
N

F
L
).

39



Sh
ar

pe
R

at
io

s
A

ss
et

Fa
ct

or
Fr

on
ti

er
Fr

on
ti

er
M

od
el

Fa
ct

or
s

fw
op

t
fw

op
t

(1
)

C
A

P
M

M
K

T
1.

14
78

1.
85

65
0.

64
38

0.
86

22
(2

)
..

.
+

Sk
ew

ne
ss

M
K

T
SK

E
W

0.
64

56
1.

06
41

(3
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SK

E
W

K
U

R
T

0.
65

77
1.

23
69

(4
)

..
.

+
M

om
en

tu
m

M
K

T
U

M
D

0.
72

42
0.

99
93

(5
)

..
.

+
A

ll
M

K
T

SK
E

W
K

U
R
T

U
M

D
0.

86
04

1.
36

96
(6

)
F
F

3-
Fa

ct
or

M
K

T
SM

B
H

M
L

0.
93

43
1.

30
40

(7
)

..
.

+
Sk

ew
ne

ss
M

K
T

SM
B

H
M

L
SK

E
W

1.
01

08
1.

48
98

(8
)

..
.

..
.

+
K

ur
to

si
s

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

1.
01

15
1.

57
14

(9
)

..
.

+
M

om
en

tu
m

M
K

T
SM

B
H

M
L

U
M

D
1.

00
52

1.
48

93
(1

0)
..

.
+

A
ll

M
K

T
SM

B
H

M
L

SK
E

W
K

U
R
T

U
M

D
1.

02
50

1.
63

38

T
ab

le
3:

T
e
st

R
e
su

lt
s

(1
0

M
o
m

e
n
tu

m
P
o
rt

fo
li
o
s)

T
hi

s
ta

bl
e

re
po

rt
s

th
e

m
ax

im
um

(a
nn

ua
liz

ed
)

Sh
ar

pe
ra

ti
os

ge
ne

ra
te

d
by

th
e

ba
se

as
se

ts
an

d
th

e
fa

ct
or

-m
im

ic
ki

ng
po

rt
fo

lio
s,

re
sp

ec
ti

ve
ly

.
T

he
fa

ct
or

m
od

el
s

te
st

ed
ar

e
th

e
cl

as
si

c
C

A
P

M
,
an

d
th

e
th

re
e-

fa
ct

or
(R

M
F
,
H

M
L

an
d

SM
B

)
Fa

m
a-

Fr
en

ch
m

od
el

.
A

ls
o

re
po

rt
ed

ar
e

th
e

re
su

lt
s

w
he

n
th

es
e

m
od

el
s

ar
e

au
gm

en
te

d
by

sk
ew

ne
ss

(S
K

E
W

),
ku

rt
os

is
(K

U
R
T

),
an

d/
or

m
om

en
tu

m
(U

M
D

)
fa

ct
or

s.
T

he
ba

se
as

se
ts

ar
e

10
po

rt
fo

lio
s

so
rt

ed
by

m
om

en
tu

m
,

an
d

th
e

co
nd

it
io

ni
ng

in
st

ru
m

en
ts

ar
e

th
e

sh
or

t
ra

te
(T

B
1M

),
te

rm
sp

re
ad

(T
SP

R
),

co
nv

ex
it
y

(C
O

N
V

),
cr

ed
it

yi
el

d
sp

re
ad

(C
SP

R
),

an
d

in
fla

ti
on

(I
N

F
L
).

40



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

MMRF

SMB

HML

SKEW
KURT

optimally scaled factor frontier 

fixed−weight asset frontier 

optimally scaled asset frontier 

base assets 

Figure 1: Efficient Frontiers

This figure shows the efficient frontiers generated by the base assets, both for fixed-weight (dashed
line) and optimally managed (light-weight line) portfolios, and the factor-mimicking portfolios (bold-
faced line), respectively. The base assets are the 30 Fama-French industry portfolios, the model is the
Fama-French 3-factor model augmented by skewness and kurtosis factors, and the predictive variable
is the term spread. The dots indicate the 30 base assets, and the circles depict the factor-mimicking
portfolios.
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