
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

MPI-IO

Chris Brady
Heather Ratcliffe

Getting data in and out
• The purpose of MPI-IO is to get data in or out of an MPI parallel

program to or from disk

• For primary data representation there are libraries

• NetCDF

• HDF5

• Might be easier than writing your own

• But, you might want to if

• Getting data from, or giving data to another code with a
specific format

• Ultimate performance!

Alternatives

• Send all data to rank 0 and writing normal file

• Strictly serial

• Requires rank 0 to have enough memory to
store all data (at least for 1 variable)

• Takes no advantage of special IO hardware in
HPC systems

Alternatives
• Write 1 file per rank

• Performance surprisingly OK

• Bottlenecks hard with large numbers of files

• Especially on some systems (Lustre)

• Sysadmin might seek your death

• Leaves you with a lot of files to maintain

• Can’t restart easily on different number of processors

“Rules” for IO
• Even the best system is slow compared with compute or

communication

• Do as much reduction in code as possible before writing

• Write as little data as possible

• If IO is limiting feature of your code, check if you really
need parallelism

• Might be easier to get workstation with lots of
memory

MPI-IO concepts

Concepts
• Almost exactly the same as normal file IO

• You have

• Opening (fopen, OPEN) routines giving you

• File handles (FILE*, LUN) - describe a given file

• Position (fseek, POS=) routines that let you get or set

• File pointers - describe where you are “looking” in a file

• Read/write (fread/fwrite, READ/WRITE) routines

• Read or Write data at the location of the file pointer

• Sync (fsync, N/A) - Flush data from buffers to disk. (Called sync in MPI)

• Close(fclose, CLOSE) routines to close the file handle

Concepts
• In MPI-IO there are two file pointers

• Individual pointer - each rank maintains a separate pointer

• Shared pointer - a file pointer that is held in common across
all rank

• You can read or write using either pointer with different
routines

• Finally, there is the concept of a file view

• Maps data from multiple processors to representation on
disk

• Deal with later

Note for Fortran
• MPI-IO defines a MPI_Offset type to represent byte

offsets in files

• In Fortran this becomes
INTEGER(KIND=MPI_OFFSET_KIND)

• Using a simple INTEGER will, at best, fail to compile

• Sometimes it will compile and then crash

• This includes INTEGER literals

Handling files

MPI_File_open
int MPI_File_open(MPI_Comm comm, ROMIO_CONST char *filename, int amode,
MPI_Info info, MPI_File *fh)

• comm - Communicator. For some operations, all processors in
comm must call the same function

• filename - the name of the input/output file

• amode - the mode with which to open file (see next slide).
Combine modes by bitwise OR (or addition with care)

• info - Used to provide additional information to the MPI-IO
system. System dependent, so here we just use
MPI_INFO_NULL

• fh - File handle object

MPI_File_open modes
• MPI_MODE_RDONLY - Read only

• MPI_MODE_RDWR - Read write

• MPI_MODE_WRONLY - Write only

• MPI_MODE_CREATE - Create file if it doesn’t exist

• MPI_MODE_EXCL - Throw error if creating file that exists

• MPI_MODE_DELETE_ON_CLOSE - Delete file when closed (temporary
file)

• MPI_MODE_UNIQUE_OPEN - File will not be opened elsewhere (either
by your code, or by other systems (backups etc.))

• MPI_MODE_SEQUENTIAL - File will not have file pointer moved manually

• MPI_MODE_APPEND - Move file pointer to end of file at opening

MPI_File_close
MPI_File_sync

int MPI_File_sync(MPI_File fh)

• fh - File handle from MPI_File_open

int MPI_File_close(MPI_File *fh)

• fh - File handle from MPI_File_open

MPI_File_delete

int MPI_File_delete(char *filename, MPI_Info info)

• filename - Name of file to delete

• info - MPI_Info object holding hints for the file
system. These are system dependent. Can be
MPI_INFO_NULL

Writing using
individual pointers

MPI_File_seek
int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

• fh - File handle from MPI_File_open

• offset - Offset from whence in bytes. Can be negative

• whence - Where to set the offset from

• MPI_SEEK_SET - seek from start of the file

• MPI_SEEK_CUR - seek from current file pointer
position

• MPI_SEEK_END - seek from end of file. Use negative
offset to go backwards from end

Collective operations
• Two types of reading and writing operation

• MPI_File_read/MPI_File_write

• Non collective

• Can be called by any processor as desired

• MPI_File_read_all/MPI_File_write_all

• Collective

• Must be called by all processors in the communicator given to
MPI_File_open

• Generally gives superior performance in HPC

• Otherwise exactly the same

Write/Read
int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• fh - File handle from MPI_File_open

• buf - Buffer for data to be read from/written to

• count - Number of elements of datatype to be read/written

• datatype - MPI_Datatype of the elements to be written. Can
be a custom datatype

• status - Information about state of read/write. Can be
MPI_STATUS_IGNORE

Write_all/Read_all
int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• fh - File handle from MPI_File_open

• buf - Buffer for data to be read from/written to

• count - Number of elements of datatype to be read/written

• datatype - MPI_Datatype of the elements to be written. Can
be a custom datatype

• status - Information about state of read/write. Can be
MPI_STATUS_IGNORE

Write example
PROGRAM simple_write

 USE mpi
 IMPLICIT NONE

 INTEGER :: rank, nproc, ierr
 INTEGER :: file_handle
 CHARACTER(len=50) :: outstr

 CALL MPI_Init(ierr)
 CALL MPI_Comm_size(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

 !Delete the existing file
 CALL MPI_File_delete('out.txt', MPI_INFO_NULL, ierr)
 !Open the file for writing
 CALL MPI_File_open(MPI_COMM_WORLD, 'out.txt', &
 MPI_MODE_WRONLY + MPI_MODE_CREATE, MPI_INFO_NULL, file_handle, ierr)

 !MPI_IO is a binary output format. Have to manually add new line characters
 WRITE(outstr,'(A,I3,A)') "Hello from processor ", rank, NEW_LINE(' ')

 !Write using the individual file pointer
 CALL MPI_File_write(file_handle, TRIM(outstr), LEN(TRIM(outstr)), &
 MPI_CHARACTER, MPI_STATUS_IGNORE, ierr)
 !Close the file
 CALL MPI_File_close(file_handle, ierr)
 CALL MPI_Finalize(ierr)

END PROGRAM simple_write

Output on 16 cores
Hello from processor 3

• Only have a single line of output

• Because all of them are writing using their own
individual pointers

• All pointing to start of file

• Random which processor writes last and ends up
being in the file

Fix using MPI_File_seek
 !MPI_IO is a binary output format. Have to manually add new line characters
 WRITE(outstr,'(A,I3,A)') "Hello from processor ", rank, NEW_LINE(' ')

 !Get the lengths of all other writes
 CALL MPI_Allgather(LEN(TRIM(outstr)), 1, MPI_INTEGER, offsets, 1, &
 MPI_INTEGER, MPI_COMM_WORLD, ierr)

 !Calculate this processors offset in the file
 my_offset = SUM(offsets(1:rank))

 !Move the file pointer to that place
 CALL MPI_File_seek(file_handle, my_offset, MPI_SEEK_SET, ierr)

 !Write using the individual file pointer
 CALL MPI_File_write(file_handle, TRIM(outstr), LEN(TRIM(outstr)), &
 MPI_CHARACTER, MPI_STATUS_IGNORE, ierr)

• Use MPI_Allgather to get the lengths of all strings

• Then sum the offsets for ranks lower than current processor

• Use MPI_File_seek to seek to that offset

Output now
Hello from processor 0
Hello from processor 1
Hello from processor 2
Hello from processor 3
Hello from processor 4
Hello from processor 5
Hello from processor 6
Hello from processor 7
Hello from processor 8
Hello from processor 9
Hello from processor 10
Hello from processor 11
Hello from processor 12
Hello from processor 13
Hello from processor 14
Hello from processor 15

• Now works as expected

• Can do the same using shared pointer

Writing using shared
pointers

Shared pointers
• Kept in sync by all processors

• Writing or reading on one processor moves file
pointer for all processors

• Only one processor can “own” shared pointer for
writing or reading at a time

• Comes with a performance hit

• Intrinsically collective, no non-collective version

Write_shared/Read_shared
int MPI_File_write_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• fh - File handle from MPI_File_open

• buf - Buffer for data to be read from/written to

• count - Number of elements of datatype to be read/written

• datatype - MPI_Datatype of the elements to be written. Can
be a custom datatype

• status - Information about state of read/write. Can be
MPI_STATUS_IGNORE

Output now
Hello from processor 10
Hello from processor 0
Hello from processor 1
Hello from processor 12
Hello from processor 6
Hello from processor 14
Hello from processor 3
Hello from processor 2
Hello from processor 4
Hello from processor 11
Hello from processor 13
Hello from processor 5
Hello from processor 15
Hello from processor 8
Hello from processor 9
Hello from processor 7

• Output is all there, but in random order

• MPI_File_write_shared is on “first come, first
served” basis

Write_ordered/Read_ordered
int MPI_File_write_ordered(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• fh - File handle from MPI_File_open

• buf - Buffer for data to be read from/written to

• count - Number of elements of datatype to be read/written

• datatype - MPI_Datatype of the elements to be written. Can be
a custom datatype

• status - Information about state of read/write. Can be
MPI_STATUS_IGNORE

Output now
Hello from processor 0
Hello from processor 1
Hello from processor 2
Hello from processor 3
Hello from processor 4
Hello from processor 5
Hello from processor 6
Hello from processor 7
Hello from processor 8
Hello from processor 9
Hello from processor 10
Hello from processor 11
Hello from processor 12
Hello from processor 13
Hello from processor 14
Hello from processor 15

• Output is all there, in rank order

• Processors have to queue up

• Can serialise output, performance penalty

MPI_File_seek_shared
int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

• fh - File handle from MPI_File_open

• offset - Offset from whence in bytes. Can be negative

• whence - Where to set the offset from

• MPI_SEEK_SET - seek from start of the file

• MPI_SEEK_CUR - seek from current file pointer position

• MPI_SEEK_END - seek from end of file. Use negative
offset to go backwards from end

MPI_File_seek_shared

• Do not have different values for whence or offset
on different processors

• Not defined what will happen

• Probably won’t be what you want

• Will likely change on different MPI implementation

File views

File view concepts

• The most powerful and useful part of MPI-IO is the
file view

• This maps data on the current processor to its
place in a “global” view of the data

• Does this using MPI custom types

• Since generally mapping a subsection of an array,
good match to MPI_Type_create_subarray

MPI_File_set_view
int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, MPI_Datatype
filetype, ROMIO_CONST char *datarep, MPI_Info info)

• fh - File handle from MPI_File_open

• disp - Displacement of view from start of file in bytes

• etype - Primitive type for data in view. Should be shortest datatype being
written. MPI_BYTE is acceptable in all cases. Must have same extent on all ranks

• filetype - Type representing layout of data

• datarep - String representing how data should be represented. Usually “native”

• info - MPI_Info object containing hints. Good description at https://www.open-
mpi.org/doc/v2.0/man3/MPI_File_set_view.3.php. MPI_INFO_NULL is
acceptable

https://www.open-mpi.org/doc/v2.0/man3/MPI_File_set_view.3.php

Array subsection

A E I M

B F J N

C G K O

D H L P

• Split processors up using
MPI_Cart_create again

• MPI_Type_create_subarray
needs

• Sizes

• Subsizes

• Starts

nx x ny array of characters
(here 16)

1 character per processor

Array subsection

• For all processors

• sizes = (nx, ny)

• subsizes = (1, 1)

• Starts are just coordinates
from communicator

A E I M

B F J N

C G K O

D H L P

nx x ny array of characters
(here 16)

1 character per processor

Array subsection
 !Create the MPI Cartesian communicator
 CALL MPI_Dims_create(nproc, 2, nprocs_cart, ierr)
 CALL MPI_Cart_create(MPI_COMM_WORLD, 2, nprocs_cart, periods, .TRUE., &
 cart_comm, ierr)
 CALL MPI_Comm_rank(cart_comm, rank, ierr)
 CALL MPI_Cart_coords(cart_comm, rank, 2, coords, ierr)

 !Open the file for output
 CALL MPI_File_open(cart_comm, 'out.txt', &
 MPI_MODE_WRONLY + MPI_MODE_CREATE, MPI_INFO_NULL, file_handle, ierr)

 !Create the type representing a single character on this processor
 sizes = nprocs_cart
 subsizes = (/1, 1/)
 starts = coords !Output character at it’s coordinate in the Cartesian comm
 CALL MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_FORTRAN, &
 MPI_CHARACTER, view_type, ierr)
 CALL MPI_Type_commit(view_type, ierr)

 !Set the view using that type
 CALL MPI_File_set_view(file_handle, offset, MPI_BYTE, view_type, 'native', &
 MPI_INFO_NULL, ierr)

 !Write the file using a collective write
 outstr = ACHAR(rank + ICHAR('A'))
 CALL MPI_File_write_all(file_handle, outstr, 1, MPI_CHARACTER, &
 MPI_STATUS_IGNORE, ierr)

 !Close the file
 CALL MPI_File_close(file_handle, ierr)

Output
AEIMBFJNCGKODHLP

AEIM
BFJN
CGKO
DHLP

• Correct answer once carriage returns put in

• Can get code to write in own carriage returns, but
messier

Case Study - MPI-IO

Result
. . + + + + + + + + + + + + + + + + + +
. . . . + + + + + + + + + + + + + + + +
. + + + + + + + + + + + + + +
* + + + + + + + + + + + +
* + + + + + + + + + +
* + + + + + + + + +
* + + + + + + + +
* * + + + + + + +
* * + + + + + +
* * + + + + +
* * * + + + +
* * * + + + +
* * * * + + +
* * * * + + +
* * * * * + +
* * * * * * + +
* * * * * * * * +
* * * * * * * * * * +
* * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * . . .

Hot end

Cold End

Case study
• Had solution to heat equation that worked on

multiple processors

• Uses MPI Types for sending and receiving

• Now change to write output file rather than display
to screen

• Same general approach as for characters

• Is now a complication that we have guard cells that
we don’t want to write into the file

Types for case study IO
 //Now create the types used for MPI_IO
 //First, represent the main array without it's guard cells
 sizes[0] = nx_local + 2; sizes[1] = ny_local + 2;
 subsizes[0] = nx_local; subsizes[1] = ny_local;
 starts[0] = 1; starts[1] = 1;

 create_single_type(sizes, subsizes, starts, &type_no_guard);

• Create type representing local array shorn of
guard cells

• sizes = (nx_local + 2, ny_local + 2)

• subsizes = (nx_local, ny_local)

• starts = (1, 1)

Types for case study IO
 //Now represent the part of the global array that is represented
 //on this processor
 sizes[0] = nx; sizes[1] = ny;
 subsizes[0] = nx_local; subsizes[1] = ny_local;
 //Minus 1 because rest of code used Fortran like 1 based arrays
 //MPI ALWAYS uses C style 0 based
 starts[0] = x_cell_min_local -1; starts[1] = y_cell_min_local - 1;

 create_single_type(sizes, subsizes, starts, &type_subarray);

• Create type representing local subsection of global array. Does not
include ghost cells!

• sizes = (nx, ny)

• subsizes = (nx_local, ny_local)

• starts = (x_cell_min_local-1, y_cell_min_local-1)

• “-1” in starts because we’re using 1 based arrays and we want an offset

Opening the file

• Exactly as in the simple code

• Delete the old file

• Open the new one for creation

 MPI_File_delete("out.dat", MPI_INFO_NULL);
 MPI_File_open(cart_comm, "out.dat", MPI_MODE_WRONLY + MPI_MODE_CREATE,
 MPI_INFO_NULL, &file_handle);

Writing the data
//Subroutine to write the output file
//Notice that this is called on all cores
//unlike the output to screen
void output_to_file(grid_type * data)
{
 MPI_File_set_view(file_handle, offset, MPI_FLOAT, type_subarray,
 "native", MPI_INFO_NULL);
 MPI_File_write_all(file_handle, data->data, 1, type_no_guard,
 MPI_STATUS_IGNORE);

 //Shift the offset by the amount of data written
 offset = offset + (nx * ny * sizeof(float));
}

• Here, we’re only opening the file once, but writing to it
every output cycle

• Not a very general approach, but works here

Writing the data
//Subroutine to write the output file
//Notice that this is called on all cores
//unlike the output to screen
void output_to_file(grid_type * data)
{
 MPI_File_set_view(file_handle, offset, MPI_FLOAT, type_subarray,
 "native", MPI_INFO_NULL);
 MPI_File_write_all(file_handle, data->data, 1, type_no_guard,
 MPI_STATUS_IGNORE);

 //Shift the offset by the amount of data written
 offset = offset + (nx * ny * sizeof(float));
}

• Note that “type_subarray” is used in MPI_File_set_view

• “type_no_guard” is used in MPI_File_write_all to clip off the
guard cells before writing

• Works just like using MPI types when sending and receiving

• Data is reshaped to match

Writing the data
//Subroutine to write the output file
//Notice that this is called on all cores
//unlike the output to screen
void output_to_file(grid_type * data)
{
 MPI_File_set_view(file_handle, offset, MPI_FLOAT, type_subarray,
 "native", MPI_INFO_NULL);
 MPI_File_write_all(file_handle, data->data, 1, type_no_guard,
 MPI_STATUS_IGNORE);

 //Shift the offset by the amount of data written
 offset = offset + (nx * ny * sizeof(float));
}

• Note that offset is incremented by “nx * ny * sizeof(float)” each
time

• This means that the next output is written after the current one

• Can’t just rely on file pointer, because MPI_File_set_view
resets it

Reading the file
• File is a normal binary file can be read by Python/

Matlab, whatever

• But for testing purposes, want ASCII art back

• Almost exactly the same

• Create same types (in theory, don't need the guard
cells for visualising or their associated types, but
imagine that you’re restarting your code rather than
visualising)

• Just MPI_File_read_all rather than MPI_File_write_all

Reading the data
//Subroutine to write the output file
//Notice that this is called on all cores
//unlike the output to screen
void input_from_file(grid_type * data)
{
 MPI_File_set_view(file_handle, offset, MPI_FLOAT, type_subarray,
 "native", MPI_INFO_NULL);
 MPI_File_read_all(file_handle, data->data, 1, type_no_guard,
 MPI_STATUS_IGNORE);

 //Shift the offset by the amount of data written
 offset = offset + (nx * ny * sizeof(float));
}

• Very, very nearly identical to writing code

• Run “input_from_file” every time to get data back from
the file

• Then use the old visualisation routines

Result
. . + + + + + + + + + + + + + + + + + +
. . . . + + + + + + + + + + + + + + + +
. + + + + + + + + + + + + + +
* + + + + + + + + + + + +
* + + + + + + + + + +
* + + + + + + + + +
* + + + + + + + +
* * + + + + + + +
* * + + + + + +
* * + + + + +
* * * + + + +
* * * + + + +
* * * * + + +
* * * * + + +
* * * * * + +
* * * * * * + +
* * * * * * * * +
* * * * * * * * * * +
* * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * . . .

Hot end

Cold End

Notes

• File reading code can be run on different number
of cores to file writing code

• All works seamlessly

• Doesn’t keep any information indicating that array
was ever split up

• If you want that information then have to write it
into your file yourself

