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Notes for Fortran

• Since it works with raw memory pointers, these 
routines use a type MPI_Aint 

• That is an integer large enough to store a 
memory address 

• In Fortran, this becomes 

• INTEGER(KIND=MPI_ADDRESS_KIND)



Notes on MPI_Aint
MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

• Routine to add together two MPI_Aints 

MPI_Aint MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)

• Routine to difference two MPI_Aints 

int MPI_Get_address(const void *location, MPI_Aint *address)

• Routine to get MPI_Aint address from pointer (C) 
or variable (Fortran)



Notes on MPI_Aint

• Mostly people don’t bother using these 

• Except MPI_Get_address in Fortran 

• Result in C is almost always same as & operator 

• Strictly should always use them when working with 
MPI addresses



Parallel computation 
in general



Parallel concepts

• Two parts to communication 

• Communication - Put data in place 

• Synchronisation - Know that data is in place



Shared Memory
• Communication is implicit 

• Access memory directly 

• Load and store 

• Synchronisation is explicit 

• Mutex objects (pthreads) 

• OpenMP CRITICAL sections (among others)



MPI - Conventional

• Communication is explicit 

• Sends and receives 

• Synchronization is both 

• Implicit - Blocking operations 

• Explicit - Non-blocking operations



MPI - One sided
• Communication is explicit 

• Get and Put operators 

• Synchronisation is explicit 

• Communication epochs 

• Guarantee no communication before epoch starts 

• Guarantee all data in place when epoch ends



Why want explicit synchronisation?
• For most purposes implicit synchronisation is fine 

• Data can only be sent once it’s available 

• If load is well balanced data is available on all processors 
at the same time 

• You cannot continue the next iteration until data is both 
sent and synchronised 

• You can sometimes split computation up so this isn’t 
quite true 

• Combining communication and synchronisation makes 
sense
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Why want explicit synchronisation?

• If some processors take longer than others to 
calculate results then you have a load imbalance 

• If the system is still strongly coupled then there’s 
not much you can do in the communications 

• Have to load balance to try to prevent this from 
happening
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Why want explicit synchronisation?

• For more weakly coupled systems you might be 
able to access data from a remote processor as 
soon as you want it 

• Still don’t need one sided though 

• Non-blocking sends and receives will do
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Why want explicit synchronisation?

• If however processor 1 can’t know what data processor 0 
will want before it starts its computation you can’t do this 

• If processor 0 knows what it will want then you can have 
a negotiation phase before communication starts 

• Still locks next time you need to negotiate 

• Sometimes processor 0 doesn’t know at the start either 

• Better if processor 0 can just get data from processor 1 
when it wants it
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Performance
• Generally comparable to two sided 

• Sometimes one sided communication can be faster than 
two sided communication 

• True on systems with hardware support for remote 
memory access 

• Single nodes 

• Cray machines 

• Some support in Infiniband 

• Not usually faster than two sided



MPI one sided 
Memory Windows



Concepts
• Local memory is not in general available outside the 

processor that created it 

• To tell MPI that memory should be available to other 
processes, you create a “window” 

• Sometimes distinguish between a “window” (a view on a 
processor’s memory) and a “window set” (the collection 
of all such views over all processors in a communicator) 

• MPI routines themselves just talk about a window, so 
we’ll stick with that 

• There are several ways of creating a window



MPI_Win_create
int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm, 
MPI_Win *win)

• base - Pointer to the start of the memory that you want to create a window 
into (explicit pointer in C, just the variable in Fortran). Memory must already 
be allocated 

• size - length of memory window in bytes 

• disp_unit - length of displacements in the window in bytes. Typically either 
“1” to treat the window as a simple byte stream, or a size derived from sizeof() 

• info - MPI_Info object for hints. See https://www.open-mpi.org/doc/v2.0/
man3/MPI_Win_create.3.php 

• comm - The communicator that this window is to be valid on 

• win - The resulting window

https://www.open-mpi.org/doc/v2.0/man3/MPI_Win_create.3.php


MPI_Win_create
• MPI_Win_create makes an existing array available 

for remote access 

• MPI standard requires that this must work for any 
memory that you give it 

• There might be “correct” ways to allocate memory 
on a given machine 

• Special RMA memory areas 

• Memory alignment requirements for 
performance



MPI_Alloc_mem
int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

• size - Size of memory area to be allocated in bytes 

• info - MPI_Info object. Usually MPI_INFO_NULL 
unless specified for a given machine 

• baseptr - Pointer to allocated memory. Simple 
pointer in C, TYPE(C_PTR) or Cray pointer in Fortran 

• Must convert from C pointer to Fortran pointer using 
C_F_POINTER for other functions



MPI_Free_mem

int MPI_Free_mem(void *base)

• base - Pointer to memory allocated with 
MPI_Alloc_mem. Should be simple pointer in C, 
Fortran pointer in Fortran



MPI_Win_allocate
int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,  MPI_Comm comm, 
void *baseptr, MPI_Win *win)

• size - length of memory window in bytes 

• disp_unit - length of displacements in the window in bytes. 
Typically either “1” to treat the window as a simple byte stream, or a 
size derived from typeof() 

• info - MPI_Info object for hints. 

• comm - The communicator that this window is to be valid on 

• base - Pointer to a memory location to hold the pointer to the data. 
Should be type (thing)** in C or TYPE(C_PTR) in Fortran 

• win - The resulting window



MPI_Win_allocate

• Acts as combined MPI_Alloc_mem and 
MPI_Window_create 

• Do not need to free memory with MPI_Free_mem 

• Memory freed when window freed



Dynamic Windows
• If you have several chunks of memory that should be in a 

single window, or you want memory to be freed and 
reallocated then you can use a dynamic window 

• Newest MPI3 standard only 

• MPI_Win_create_dynamic - creates a window 

• MPI_Win_attach - attach memory to a window 

• Memory regions that overlap cannot be attached to the 
same window 

• MPI_Win_detach - detach memory from a window 

• Bit specific for this course



MPI_Win_free

int MPI_Win_free(MPI_Win *win)

• win - Window to be freed 

• Frees the window and makes it invalid for further 
use 

• Detaches any memory windows attached to the 
window



MPI one sided -  
Active synchronisation 1



Concepts
• Once you have defined a window you have to control access 

to the memory 

• Make sure that reads and writes only happen when they’re 
supposed to 

• MPI provides a model rather like Bulk Synchronous 
Parallelism (https://en.wikipedia.org/wiki/
Bulk_synchronous_parallel) 

• Two “epochs” that individual ranks can be separately in 

• Access epoch - can access data on other ranks 

• Exposure epoch - allows other ranks to access it’s memory

https://en.wikipedia.org/wiki/Bulk_synchronous_parallel


Concepts

• Once the exposure epoch has started it isn’t safe 
to write to the memory window using pointers 

• Explained more later 

• Only sure that data is finally in place when the 
access epoch is over 

• Also explained more later



Fenceposting
• “Fenceposts” MPI access epochs 

• First call enters both “access” and “exposure” 
epochs 

• Second call exits both “access” and “exposure” 
epochs 

• Third call enters both …. etc. 

• Few caveats, but broadly true



MPI_Win_fence
int MPI_Win_fence(int assert, MPI_Win win)

• assert - Special conditions to optimise communication. 0 is 
always acceptable. 

• MPI_MODE_NOSTORE - Local memory not updated since last 
call to MPI_Win_fence 

• MPI_MODE_NOPUT - Local memory will not be updated by 
RMA put or accumulate calls. Can still use get. 

• https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/
mpi-report-2.0/node130.htm for others 

• win - Window to be fenceposted

https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node130.htm


MPI one sided - 
Remote actions 1



MPI_Put
int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int 
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win 
win)

• origin_addr - Buffer for data to put on the remote rank 

• origin_count - Number of origin_datatypes to put on the remote rank 

• origin_datatype - Type of local data. Can be a derived type 

• target_rank - Rank of destination for put. Must be the rank in the 
communicator specified when win was created 

• target_disp - displacement from the start of the target window in units of the 
disp_unit specified when win was created 

• target_count - number of target_datatypes to put into the window 

• target_datatype - Type of data in the remote window. Can be a derived type. 

• win - The window on which to perform the put. Data is put into the memory 
associated with the window



MPI_Get
int MPI_Get(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int 
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win 
win)

• origin_addr - Buffer into which to receive the data from the remote rank 

• origin_count - Number of origin_datatypes to get from the remote rank 

• origin_datatype - Type of local data. Can be a derived type 

• target_rank - Rank of source for get. Must be the rank in the communicator 
specified when win was created 

• target_disp - displacement from the start of the target window in units of the 
disp_unit specified when win was created 

• target_count - number of target_datatypes to get from the window 

• target_datatype - Type of data in the remote window. Can be a derived type. 

• win - The window on which to perform the get. Data is taken from the memory 
associated with the window



Example



  !MPI helper routine to get size of int 
  CALL MPI_Sizeof(recv_rank, intsize, ierr) 
  !Just using a single int here 
  size_of_window = intsize * n_elements 

  CALL MPI_Win_allocate(size_of_window, intsize, MPI_INFO_NULL, MPI_COMM_WORLD,& 
      c_pointer, window, ierr) 

  !Get Fortran pointer to  
  CALL C_F_POINTER(c_pointer, f_pointer, shape=(/n_elements/)) 

  !Populate source data object 
  DO iindex = 1, n_elements 
    data(iindex) = iindex + rank 
  END DO 

  !Use collective synchronization model. After this command any processor 
  !can use MPI_Put or MPI_Get on any other processor 
  CALL MPI_Win_fence(0, window, ierr) 

  !Put the result into the first (zeroth) slot 
  offset = 0 
  !Actual call to put the data in the remote processor 
  CALL MPI_Put(data, n_elements, MPI_INTEGER, right, offset, n_elements, & 
      MPI_INTEGER, window, ierr) 

  !Call Win_fence again to end the access and exposure epochs 
  CALL MPI_Win_fence(0, window, ierr) 
  !Print output 
  PRINT ("(a,i3, a, i3, a, 10i3)"),"Rank ", rank, " got message from rank ", & 
      left, " of ", f_pointer

Example



  !MPI helper routine to get size of int 
  CALL MPI_Sizeof(recv_rank, intsize, ierr) 
  !Just using a single int here 
  size_of_window = intsize * n_elements 

  CALL MPI_Win_allocate(size_of_window, intsize, MPI_INFO_NULL, MPI_COMM_WORLD,& 
      c_pointer, window, ierr) 

  !Get Fortran pointer to  
  CALL C_F_POINTER(c_pointer, f_pointer, shape=(/n_elements/)) 

  !Populate source data object 
  DO iindex = 1, n_elements 
    data(iindex) = iindex + rank 
  END DO 

  !Use collective synchronization model. After this command any processor 
  !can use MPI_Put or MPI_Get on any other processor 
  CALL MPI_Win_fence(0, window, ierr) 

  !Put the result into the first (zeroth) slot 
  offset = 0 
  !Actual call to put the data in the remote processor 
  CALL MPI_Put(data, n_elements, MPI_INTEGER, right, offset, n_elements, & 
      MPI_INTEGER, window, ierr) 

  !Call Win_fence again to end the access and exposure epochs 
  CALL MPI_Win_fence(0, window, ierr) 
  !Print output 
  PRINT ("(a,i3, a, i3, a, 10i3)"),"Rank ", rank, " got message from rank ", & 
      left, " of ", f_pointer

Example



Results
Rank   0 got message from rank  15 of  16 17 18 19 20 21 22 23 24 25 
Rank   1 got message from rank   0 of   1  2  3  4  5  6  7  8  9 10 
Rank   2 got message from rank   1 of   2  3  4  5  6  7  8  9 10 11 
Rank   3 got message from rank   2 of   3  4  5  6  7  8  9 10 11 12 
Rank   4 got message from rank   3 of   4  5  6  7  8  9 10 11 12 13 
Rank   5 got message from rank   4 of   5  6  7  8  9 10 11 12 13 14 
Rank   6 got message from rank   5 of   6  7  8  9 10 11 12 13 14 15 
Rank   7 got message from rank   6 of   7  8  9 10 11 12 13 14 15 16 
Rank   8 got message from rank   7 of   8  9 10 11 12 13 14 15 16 17 
Rank   9 got message from rank   8 of   9 10 11 12 13 14 15 16 17 18 
Rank  10 got message from rank   9 of  10 11 12 13 14 15 16 17 18 19 
Rank  11 got message from rank  10 of  11 12 13 14 15 16 17 18 19 20 
Rank  12 got message from rank  11 of  12 13 14 15 16 17 18 19 20 21 
Rank  13 got message from rank  12 of  13 14 15 16 17 18 19 20 21 22 
Rank  14 got message from rank  13 of  14 15 16 17 18 19 20 21 22 23 
Rank  15 got message from rank  14 of  15 16 17 18 19 20 21 22 23 24

• Works as expected



MPI one sided - 
Active synchronisation 2



Manually controlling epochs

• You can specify manual entry into and exit from 
each epoch. 

• Called PSCW (Post/Start/Complete/Wait) or 
Generalised Active Target Synchronisation 

• Have to introduce the concept of a collection of 
ranks that is not a communicator 

• MPI_Group



MPI_Comm_group

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

• comm - Communicator to make group from 

• group - Outputs produced group containing all 
ranks in comm



MPI_Group_incl
int MPI_Group_incl(MPI_Group group, int n, const int 
ranks[], MPI_Group *newgroup)

• group - Existing populated group referring to 
ranks 

• n - number of ranks to include in new group 

• ranks - array of ranks to include in new group 

• newgroup - Output new group



MPI_Group_free

int MPI_Group_free(MPI_Group *group)

• group - group to be freed. Can no longer validly 
be used after freeing



Epoch commands
• There are four commands 

• MPI_Win_start - starts the access epoch 

• MPI_Win_complete - end the access epoch 

• MPI_Win_post - start the exposure epoch 

• MPI_Win_wait - end the exposure epoch 

• MPI_Win_wait will not complete until all ranks that called 
MPI_Win_start call MPI_Win_complete 

• Data is not guaranteed to be in final position until all ranks 
have called the appropriate MPI_Win_complete or 
MPI_Win_wait calls



Remember!

• Ranks that get or put data to or from another rank 
must be in the access epoch 

• Ranks that are going to have data get or put into 
their memory must be in the exposure epoch 

• Ranks that do both must be in both epochs



MPI_Win_start

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

• group - group of processors to put into the access 
epoch 

• assert - same as for MPI_Win_fence. 0 is always 
OK 

• win - Window to start epoch on



MPI_Win_post

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

• group - group of processors to put into the 
exposure epoch 

• assert - same as for MPI_Win_fence. 0 is always 
OK 

• win - Window to start epoch on



MPI_Win_complete

int MPI_Win_complete(MPI_Win win)

• win - Window to end access epoch on 

• Non blocking operation itself 

• Must be called on all processors that called 
MPI_Win_start or MPI_Win_wait will block



MPI_Win_wait

int MPI_Win_wait(MPI_Win win)

• win - Window to end exposure epoch on 

• Blocking operation 

• Until all processors that called MPI_Win_start 
call MPI_Win_complete this routine will lock



MPI one sided - 
Remote actions 2



Accumulate
• Reduce for one-sided communications 

• For once some guarantees about order 

• Guarantees that result will be “correct” 

• All processors that call MPI_Accumulate with 
MPI_SUM (say) operation will have their values 
added to the value on target

• No worry about order



MPI_Accumulate
int MPI_Accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int 
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

• origin_addr - Address of source data for accumulate 

• origin_count - Elements of origin_datatype in source 

• origin_datatype - Type representing source. Can be custom 

• target_rank - Rank to accumulate result into 

• target_disp - displacement from the start of the target window in units of the disp_unit 
specified when win was created 

• target_count - Elements of target_datatype in destination 

• target_datatype - Datatype of destination on target. Can be custom 

• op - Operation. Same as MPI_Reduce operations + MPI_REPLACE (replace value on target 
with value in origin_addr. Atomic replace operation). Cannot use user defined operations 

• win - Window to operate on



MPI one sided 
Passive synchronisation 

Very, very quickly



Passive synchronisation

• Allows one rank to both put itself in the access 
epoch and put the remote processor in the 
exposure epoch 

• This gives you a lot less certainty about what’s 
going to happen 

• Tricky to use, but potentially very powerful



MPI_Win_lock (MPI3)
int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

• lock_type

• MPI_LOCK_SHARED - other processors can also lock this 
window on rank 

• MPI_LOCK_EXCLUSIVE - other processors will be 
excluded from locking this window on rank 

• rank - remote processor to put in exposure epoch 

• assert - As MPI_Win_fence. 0 always acceptable 

• win - Window to operate on



MPI_Win_unlock (MPI3)

int MPI_Win_unlock(int rank, MPI_Win win)

• rank - remote processor to remove from 
exposure epoch 

• win - Window to operate on



Risks and 
complications



Risks

• MPI one sided communications gives fewer 
guarantees than regular MPI communications 

• You guarantee a point at which all operations are 
finished 

• You have no idea of when they happen before 
that point 

• Or the order in which they happen



Risks

• Two ranks getting data 
from a remote rank 
works OK 

• Both get the same 
value 

• So long as the data 
source doesn’t change 
it between the two calls



Risks
• Two ranks putting data 

onto a remote process 
at the same time not 
OK 

• Undefined behaviour 

• Could be either value 

• Could be useless 
intermediate state



Risks

• Can’t do this 

• Might work as expected 
with get followed by put 

• Might not

i=i+1
get(i) 
i=i+1 
put(i)



Risks
• So what’s the complete list of what you can do and what you 

can’t do? 

• Sadly, it depends on what “memory model” your MPI 
implementation is using 

• You can check using “MPI_WIN_MODEL” as a parameter to 
“MPI_Win_get_attr” 

• Generally easier to just assume that you’re using the older 
MPI_WIN_SEPARATE model 

• Following table shows what commands can be used within a 
single synchronisation period



MPI_WIN_SEPARATE
• Oldest and most 

conservative model 

• There is specific memory 
set aside for remote access 

• It synchronises with the 
actual memory storing a 
variable at synchronisation 
points 

• MPI_Win_sync(window) 

• At other times, they are not 
guaranteed to be the same

Local Memory

RMA Memory

Put Get

Synchronize

Conventional memory access 
“Loads and Stores”



Safety
Load Store Get Put Accumulate

Load

Store X X

Get

Put X

Accumulate X

Can use on same 
data in window

Can use on different 
data in window

Cannot safely use 
together



MPI_WIN_UNIFIED
• Only defined in 

MPI3 standard 

• Now is just 
“memory” 

• All accesses, 
whether from local 
or remote sources 
affect the memory 
directly and 
immediately

Memory

Put Get

Conventional memory access 
“Loads and Stores”



Safety
Load Store Get Put Accumulate

Load

Store

Get

Put

Accumulate

Can use on same 
data in window

Can use on different 
data in window


