
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

MPI One sided Communication

Chris Brady
Heather Ratcliffe

Notes for Fortran

• Since it works with raw memory pointers, these
routines use a type MPI_Aint

• That is an integer large enough to store a
memory address

• In Fortran, this becomes

• INTEGER(KIND=MPI_ADDRESS_KIND)

Notes on MPI_Aint
MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

• Routine to add together two MPI_Aints

MPI_Aint MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)

• Routine to difference two MPI_Aints

int MPI_Get_address(const void *location, MPI_Aint *address)

• Routine to get MPI_Aint address from pointer (C)
or variable (Fortran)

Notes on MPI_Aint

• Mostly people don’t bother using these

• Except MPI_Get_address in Fortran

• Result in C is almost always same as & operator

• Strictly should always use them when working with
MPI addresses

Parallel computation
in general

Parallel concepts

• Two parts to communication

• Communication - Put data in place

• Synchronisation - Know that data is in place

Shared Memory
• Communication is implicit

• Access memory directly

• Load and store

• Synchronisation is explicit

• Mutex objects (pthreads)

• OpenMP CRITICAL sections (among others)

MPI - Conventional

• Communication is explicit

• Sends and receives

• Synchronization is both

• Implicit - Blocking operations

• Explicit - Non-blocking operations

MPI - One sided
• Communication is explicit

• Get and Put operators

• Synchronisation is explicit

• Communication epochs

• Guarantee no communication before epoch starts

• Guarantee all data in place when epoch ends

Why want explicit synchronisation?
• For most purposes implicit synchronisation is fine

• Data can only be sent once it’s available

• If load is well balanced data is available on all processors
at the same time

• You cannot continue the next iteration until data is both
sent and synchronised

• You can sometimes split computation up so this isn’t
quite true

• Combining communication and synchronisation makes
sense

Strongly coupled

Compute

Send
data

Compute

Compute

Compute

Receive
Data

Time

0 1

Why want explicit synchronisation?

• If some processors take longer than others to
calculate results then you have a load imbalance

• If the system is still strongly coupled then there’s
not much you can do in the communications

• Have to load balance to try to prevent this from
happening

Strongly coupled but unbalanced

Compute

Send
data

Compute

Compute

Compute

Receive
Data

Dead
timeTime

0 1

Why want explicit synchronisation?

• For more weakly coupled systems you might be
able to access data from a remote processor as
soon as you want it

• Still don’t need one sided though

• Non-blocking sends and receives will do

Weakly coupled

Compute

ISend
Data

Compute

Compute

Compute

Receive
DataTime

0 1

Why want explicit synchronisation?

• If however processor 1 can’t know what data processor 0
will want before it starts its computation you can’t do this

• If processor 0 knows what it will want then you can have
a negotiation phase before communication starts

• Still locks next time you need to negotiate

• Sometimes processor 0 doesn’t know at the start either

• Better if processor 0 can just get data from processor 1
when it wants it

Undefinable requirement

Compute

Compute

Compute

Compute

Get Data

Time

0 1
epoch

epoch

Correct data is
available to 0
anywhere
between epoch
markers

epoch

epoch

Data is available
on 0 at the end of
the epoch on
processor 0

Performance
• Generally comparable to two sided

• Sometimes one sided communication can be faster than
two sided communication

• True on systems with hardware support for remote
memory access

• Single nodes

• Cray machines

• Some support in Infiniband

• Not usually faster than two sided

MPI one sided
Memory Windows

Concepts
• Local memory is not in general available outside the

processor that created it

• To tell MPI that memory should be available to other
processes, you create a “window”

• Sometimes distinguish between a “window” (a view on a
processor’s memory) and a “window set” (the collection
of all such views over all processors in a communicator)

• MPI routines themselves just talk about a window, so
we’ll stick with that

• There are several ways of creating a window

MPI_Win_create
int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
MPI_Win *win)

• base - Pointer to the start of the memory that you want to create a window
into (explicit pointer in C, just the variable in Fortran). Memory must already
be allocated

• size - length of memory window in bytes

• disp_unit - length of displacements in the window in bytes. Typically either
“1” to treat the window as a simple byte stream, or a size derived from sizeof()

• info - MPI_Info object for hints. See https://www.open-mpi.org/doc/v2.0/
man3/MPI_Win_create.3.php

• comm - The communicator that this window is to be valid on

• win - The resulting window

https://www.open-mpi.org/doc/v2.0/man3/MPI_Win_create.3.php

MPI_Win_create
• MPI_Win_create makes an existing array available

for remote access

• MPI standard requires that this must work for any
memory that you give it

• There might be “correct” ways to allocate memory
on a given machine

• Special RMA memory areas

• Memory alignment requirements for
performance

MPI_Alloc_mem
int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

• size - Size of memory area to be allocated in bytes

• info - MPI_Info object. Usually MPI_INFO_NULL
unless specified for a given machine

• baseptr - Pointer to allocated memory. Simple
pointer in C, TYPE(C_PTR) or Cray pointer in Fortran

• Must convert from C pointer to Fortran pointer using
C_F_POINTER for other functions

MPI_Free_mem

int MPI_Free_mem(void *base)

• base - Pointer to memory allocated with
MPI_Alloc_mem. Should be simple pointer in C,
Fortran pointer in Fortran

MPI_Win_allocate
int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
void *baseptr, MPI_Win *win)

• size - length of memory window in bytes

• disp_unit - length of displacements in the window in bytes.
Typically either “1” to treat the window as a simple byte stream, or a
size derived from typeof()

• info - MPI_Info object for hints.

• comm - The communicator that this window is to be valid on

• base - Pointer to a memory location to hold the pointer to the data.
Should be type (thing)** in C or TYPE(C_PTR) in Fortran

• win - The resulting window

MPI_Win_allocate

• Acts as combined MPI_Alloc_mem and
MPI_Window_create

• Do not need to free memory with MPI_Free_mem

• Memory freed when window freed

Dynamic Windows
• If you have several chunks of memory that should be in a

single window, or you want memory to be freed and
reallocated then you can use a dynamic window

• Newest MPI3 standard only

• MPI_Win_create_dynamic - creates a window

• MPI_Win_attach - attach memory to a window

• Memory regions that overlap cannot be attached to the
same window

• MPI_Win_detach - detach memory from a window

• Bit specific for this course

MPI_Win_free

int MPI_Win_free(MPI_Win *win)

• win - Window to be freed

• Frees the window and makes it invalid for further
use

• Detaches any memory windows attached to the
window

MPI one sided -
Active synchronisation 1

Concepts
• Once you have defined a window you have to control access

to the memory

• Make sure that reads and writes only happen when they’re
supposed to

• MPI provides a model rather like Bulk Synchronous
Parallelism (https://en.wikipedia.org/wiki/
Bulk_synchronous_parallel)

• Two “epochs” that individual ranks can be separately in

• Access epoch - can access data on other ranks

• Exposure epoch - allows other ranks to access it’s memory

https://en.wikipedia.org/wiki/Bulk_synchronous_parallel

Concepts

• Once the exposure epoch has started it isn’t safe
to write to the memory window using pointers

• Explained more later

• Only sure that data is finally in place when the
access epoch is over

• Also explained more later

Fenceposting
• “Fenceposts” MPI access epochs

• First call enters both “access” and “exposure”
epochs

• Second call exits both “access” and “exposure”
epochs

• Third call enters both …. etc.

• Few caveats, but broadly true

MPI_Win_fence
int MPI_Win_fence(int assert, MPI_Win win)

• assert - Special conditions to optimise communication. 0 is
always acceptable.

• MPI_MODE_NOSTORE - Local memory not updated since last
call to MPI_Win_fence

• MPI_MODE_NOPUT - Local memory will not be updated by
RMA put or accumulate calls. Can still use get.

• https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/
mpi-report-2.0/node130.htm for others

• win - Window to be fenceposted

https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node130.htm

MPI one sided -
Remote actions 1

MPI_Put
int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win
win)

• origin_addr - Buffer for data to put on the remote rank

• origin_count - Number of origin_datatypes to put on the remote rank

• origin_datatype - Type of local data. Can be a derived type

• target_rank - Rank of destination for put. Must be the rank in the
communicator specified when win was created

• target_disp - displacement from the start of the target window in units of the
disp_unit specified when win was created

• target_count - number of target_datatypes to put into the window

• target_datatype - Type of data in the remote window. Can be a derived type.

• win - The window on which to perform the put. Data is put into the memory
associated with the window

MPI_Get
int MPI_Get(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Win
win)

• origin_addr - Buffer into which to receive the data from the remote rank

• origin_count - Number of origin_datatypes to get from the remote rank

• origin_datatype - Type of local data. Can be a derived type

• target_rank - Rank of source for get. Must be the rank in the communicator
specified when win was created

• target_disp - displacement from the start of the target window in units of the
disp_unit specified when win was created

• target_count - number of target_datatypes to get from the window

• target_datatype - Type of data in the remote window. Can be a derived type.

• win - The window on which to perform the get. Data is taken from the memory
associated with the window

Example

 !MPI helper routine to get size of int
 CALL MPI_Sizeof(recv_rank, intsize, ierr)
 !Just using a single int here
 size_of_window = intsize * n_elements

 CALL MPI_Win_allocate(size_of_window, intsize, MPI_INFO_NULL, MPI_COMM_WORLD,&
 c_pointer, window, ierr)

 !Get Fortran pointer to
 CALL C_F_POINTER(c_pointer, f_pointer, shape=(/n_elements/))

 !Populate source data object
 DO iindex = 1, n_elements
 data(iindex) = iindex + rank
 END DO

 !Use collective synchronization model. After this command any processor
 !can use MPI_Put or MPI_Get on any other processor
 CALL MPI_Win_fence(0, window, ierr)

 !Put the result into the first (zeroth) slot
 offset = 0
 !Actual call to put the data in the remote processor
 CALL MPI_Put(data, n_elements, MPI_INTEGER, right, offset, n_elements, &
 MPI_INTEGER, window, ierr)

 !Call Win_fence again to end the access and exposure epochs
 CALL MPI_Win_fence(0, window, ierr)
 !Print output
 PRINT ("(a,i3, a, i3, a, 10i3)"),"Rank ", rank, " got message from rank ", &
 left, " of ", f_pointer

Example

 !MPI helper routine to get size of int
 CALL MPI_Sizeof(recv_rank, intsize, ierr)
 !Just using a single int here
 size_of_window = intsize * n_elements

 CALL MPI_Win_allocate(size_of_window, intsize, MPI_INFO_NULL, MPI_COMM_WORLD,&
 c_pointer, window, ierr)

 !Get Fortran pointer to
 CALL C_F_POINTER(c_pointer, f_pointer, shape=(/n_elements/))

 !Populate source data object
 DO iindex = 1, n_elements
 data(iindex) = iindex + rank
 END DO

 !Use collective synchronization model. After this command any processor
 !can use MPI_Put or MPI_Get on any other processor
 CALL MPI_Win_fence(0, window, ierr)

 !Put the result into the first (zeroth) slot
 offset = 0
 !Actual call to put the data in the remote processor
 CALL MPI_Put(data, n_elements, MPI_INTEGER, right, offset, n_elements, &
 MPI_INTEGER, window, ierr)

 !Call Win_fence again to end the access and exposure epochs
 CALL MPI_Win_fence(0, window, ierr)
 !Print output
 PRINT ("(a,i3, a, i3, a, 10i3)"),"Rank ", rank, " got message from rank ", &
 left, " of ", f_pointer

Example

Results
Rank 0 got message from rank 15 of 16 17 18 19 20 21 22 23 24 25
Rank 1 got message from rank 0 of 1 2 3 4 5 6 7 8 9 10
Rank 2 got message from rank 1 of 2 3 4 5 6 7 8 9 10 11
Rank 3 got message from rank 2 of 3 4 5 6 7 8 9 10 11 12
Rank 4 got message from rank 3 of 4 5 6 7 8 9 10 11 12 13
Rank 5 got message from rank 4 of 5 6 7 8 9 10 11 12 13 14
Rank 6 got message from rank 5 of 6 7 8 9 10 11 12 13 14 15
Rank 7 got message from rank 6 of 7 8 9 10 11 12 13 14 15 16
Rank 8 got message from rank 7 of 8 9 10 11 12 13 14 15 16 17
Rank 9 got message from rank 8 of 9 10 11 12 13 14 15 16 17 18
Rank 10 got message from rank 9 of 10 11 12 13 14 15 16 17 18 19
Rank 11 got message from rank 10 of 11 12 13 14 15 16 17 18 19 20
Rank 12 got message from rank 11 of 12 13 14 15 16 17 18 19 20 21
Rank 13 got message from rank 12 of 13 14 15 16 17 18 19 20 21 22
Rank 14 got message from rank 13 of 14 15 16 17 18 19 20 21 22 23
Rank 15 got message from rank 14 of 15 16 17 18 19 20 21 22 23 24

• Works as expected

MPI one sided -
Active synchronisation 2

Manually controlling epochs

• You can specify manual entry into and exit from
each epoch.

• Called PSCW (Post/Start/Complete/Wait) or
Generalised Active Target Synchronisation

• Have to introduce the concept of a collection of
ranks that is not a communicator

• MPI_Group

MPI_Comm_group

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

• comm - Communicator to make group from

• group - Outputs produced group containing all
ranks in comm

MPI_Group_incl
int MPI_Group_incl(MPI_Group group, int n, const int
ranks[], MPI_Group *newgroup)

• group - Existing populated group referring to
ranks

• n - number of ranks to include in new group

• ranks - array of ranks to include in new group

• newgroup - Output new group

MPI_Group_free

int MPI_Group_free(MPI_Group *group)

• group - group to be freed. Can no longer validly
be used after freeing

Epoch commands
• There are four commands

• MPI_Win_start - starts the access epoch

• MPI_Win_complete - end the access epoch

• MPI_Win_post - start the exposure epoch

• MPI_Win_wait - end the exposure epoch

• MPI_Win_wait will not complete until all ranks that called
MPI_Win_start call MPI_Win_complete

• Data is not guaranteed to be in final position until all ranks
have called the appropriate MPI_Win_complete or
MPI_Win_wait calls

Remember!

• Ranks that get or put data to or from another rank
must be in the access epoch

• Ranks that are going to have data get or put into
their memory must be in the exposure epoch

• Ranks that do both must be in both epochs

MPI_Win_start

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

• group - group of processors to put into the access
epoch

• assert - same as for MPI_Win_fence. 0 is always
OK

• win - Window to start epoch on

MPI_Win_post

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

• group - group of processors to put into the
exposure epoch

• assert - same as for MPI_Win_fence. 0 is always
OK

• win - Window to start epoch on

MPI_Win_complete

int MPI_Win_complete(MPI_Win win)

• win - Window to end access epoch on

• Non blocking operation itself

• Must be called on all processors that called
MPI_Win_start or MPI_Win_wait will block

MPI_Win_wait

int MPI_Win_wait(MPI_Win win)

• win - Window to end exposure epoch on

• Blocking operation

• Until all processors that called MPI_Win_start
call MPI_Win_complete this routine will lock

MPI one sided -
Remote actions 2

Accumulate
• Reduce for one-sided communications

• For once some guarantees about order

• Guarantees that result will be “correct”

• All processors that call MPI_Accumulate with
MPI_SUM (say) operation will have their values
added to the value on target

• No worry about order

MPI_Accumulate
int MPI_Accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

• origin_addr - Address of source data for accumulate

• origin_count - Elements of origin_datatype in source

• origin_datatype - Type representing source. Can be custom

• target_rank - Rank to accumulate result into

• target_disp - displacement from the start of the target window in units of the disp_unit
specified when win was created

• target_count - Elements of target_datatype in destination

• target_datatype - Datatype of destination on target. Can be custom

• op - Operation. Same as MPI_Reduce operations + MPI_REPLACE (replace value on target
with value in origin_addr. Atomic replace operation). Cannot use user defined operations

• win - Window to operate on

MPI one sided
Passive synchronisation

Very, very quickly

Passive synchronisation

• Allows one rank to both put itself in the access
epoch and put the remote processor in the
exposure epoch

• This gives you a lot less certainty about what’s
going to happen

• Tricky to use, but potentially very powerful

MPI_Win_lock (MPI3)
int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

• lock_type

• MPI_LOCK_SHARED - other processors can also lock this
window on rank

• MPI_LOCK_EXCLUSIVE - other processors will be
excluded from locking this window on rank

• rank - remote processor to put in exposure epoch

• assert - As MPI_Win_fence. 0 always acceptable

• win - Window to operate on

MPI_Win_unlock (MPI3)

int MPI_Win_unlock(int rank, MPI_Win win)

• rank - remote processor to remove from
exposure epoch

• win - Window to operate on

Risks and
complications

Risks

• MPI one sided communications gives fewer
guarantees than regular MPI communications

• You guarantee a point at which all operations are
finished

• You have no idea of when they happen before
that point

• Or the order in which they happen

Risks

• Two ranks getting data
from a remote rank
works OK

• Both get the same
value

• So long as the data
source doesn’t change
it between the two calls

Risks
• Two ranks putting data

onto a remote process
at the same time not
OK

• Undefined behaviour

• Could be either value

• Could be useless
intermediate state

Risks

• Can’t do this

• Might work as expected
with get followed by put

• Might not

i=i+1
get(i)
i=i+1
put(i)

Risks
• So what’s the complete list of what you can do and what you

can’t do?

• Sadly, it depends on what “memory model” your MPI
implementation is using

• You can check using “MPI_WIN_MODEL” as a parameter to
“MPI_Win_get_attr”

• Generally easier to just assume that you’re using the older
MPI_WIN_SEPARATE model

• Following table shows what commands can be used within a
single synchronisation period

MPI_WIN_SEPARATE
• Oldest and most

conservative model

• There is specific memory
set aside for remote access

• It synchronises with the
actual memory storing a
variable at synchronisation
points

• MPI_Win_sync(window)

• At other times, they are not
guaranteed to be the same

Local Memory

RMA Memory

Put Get

Synchronize

Conventional memory access
“Loads and Stores”

Safety
Load Store Get Put Accumulate

Load

Store X X

Get

Put X

Accumulate X

Can use on same
data in window

Can use on different
data in window

Cannot safely use
together

MPI_WIN_UNIFIED
• Only defined in

MPI3 standard

• Now is just
“memory”

• All accesses,
whether from local
or remote sources
affect the memory
directly and
immediately

Memory

Put Get

Conventional memory access
“Loads and Stores”

Safety
Load Store Get Put Accumulate

Load

Store

Get

Put

Accumulate

Can use on same
data in window

Can use on different
data in window

