MPI One sided Communication

Chris Brady
Heather Ratcliffe

“The Angry Penguin®, used under creative commons licence
om Swantje Hess and Jannis Pohimann.
<!
-

Warwick RSE

Notes for Fortran

* Since it works with raw memory pointers, these
routines use a type MPI_Aint

* Thatis an integer large enough to store a
memory address

e In Fortran, this becomes

* INTEGER(KIND=MPI_ADDRESS_KIND)

Notes on MPl Aint

MPI Aint MPI Aint add(MPI Aint base, MPI Aint disp)

* Routine to add together two MPI_Aints

MPI Aint MPI Aint diff(MPI Aint addrl, MPI Aint addr2)

e Routine to difference two MPI_Aints

int MPI Get address(const void *location, MPI Aint *address)

* Routine to get MPI_Aint address from pointer (C)
or variable (Fortran)

Notes on MPl Aint

* Mostly people don't bother using these
* Except MPI_Get_address in Fortran

* Resultin Cis almost always same as & operator

o Strictly should always use them when working with
MPI| addresses

Parallel computation

in general

Parallel concepts

* Two parts to communication

 Communication - Put data in place

* Synchronisation - Know that data is in place

Shared Memory

 Communication is implicit
* Access memory directly
* Load and store

* Synchronisation is explicit
* Mutex objects (pthreads)

* OpenMP CRITICAL sections (among others)

MPI - Conventional

 Communication is explicit
* Sends and receives
* Synchronization is both
* Implicit - Blocking operations

» Explicit - Non-blocking operations

MPI - One sided

 Communication is explicit
* Get and Put operators
* Synchronisation is explicit
 Communication epochs
« Guarantee no communication before epoch starts

e Guarantee all data in place when epoch ends

Why want explicit synchronisation?

* For most purposes implicit synchronisation is fine
» Data can only be sent once it's available

 If load is well balanced data is available on all processors
at the same time

e You cannot continue the next iteration until data is both
sent and synchronised

* You can sometimes split computation up so this isn't
quite true

 Combining communication and synchronisation makes
sense

Strongly coupled

0 1
Compute Compute
Time

Receive B Send
BEIF! data

Compute Compute

Why want explicit synchronisation?

 |f some processors take longer than others to
calculate results then you have a load imbalance

 |f the system is still strongly coupled then there's
not much you can do in the communications

* Have to load balance to try to prevent this from
nappening

Strongly coupled but unbalanced

Compute

Compute

Compute

Dead
time

Time

Receive P
Data

Compute

Why want explicit synchronisation?

* For more weakly coupled systems you might be
able to access data from a remote processor as
soon as you want it

 Still don't need one sided though

* Non-blocking sends and receives will do

Weakly couplea

Compute

Recelve

Data
Compute

Compute

Compute

Why want explicit synchronisation?

|t however processor 1 can't know what data processor O
will want before it starts its computation you can’t do this

* It processor 0 knows what it will want then you can have
a negotiation phase before communication starts

* Still locks next time you need to negotiate
* Sometimes processor 0 doesn’t know at the start either

« Better it processor O can just get data from processor 1
when it wants it

Undetinable requirement

Compute

Data is available epoch
on 0 atthe end of

D
the epoch on Get Data g

processor 0 epoch

Time

Compute

epoch

Compute

epoch

Compute

1

Correct data is
available to 0
anywhere
between epoch
markers

Performance

e Generally comparable to two sided

e Sometimes one sided communication can be faster than
two sided communication

e True on systems with hardware support for remote
memory access

* Single nodes
e Cray machines
* Some supportin Infiniband

e Not usually faster than two sided

MPI one sided
Memory Windows

Concepts

* Local memory is not in general available outside the

processor that created it

* To tell MPIl that memory should be available to other
processes, you create a "window”

* Sometimes distinguish between a "window"” (a view on a
processor’'s memory) and a “window set” (the collection
of all such views over all processors in a communicator)

* MPI routines themselves just talk about a window, so
we'll stick with that

* There are several ways of creating a window

MPl Win create

int MPI Win create(void *base, MPI Aint size, int disp unit, MPI Info info, MPI Comm comm,
MPI Win *win)

* base - Pointer to the start of the memory that you want to create a window
into (explicit pointer in C, just the variable in Fortran). Memory must already
be allocated

* size - length of memory window in bytes

 disp_unit - length of displacements in the window in bytes. Typically either
“1" to treat the window as a simple byte stream, or a size derived from sizeof()

* info - MPI_Info object for hints. See https://www.open-mpi.org/doc/v2.0/
man3/MPI_Win_create.3.php

e comm - The communicator that this window is to be valid on

e win - The resulting window

https://www.open-mpi.org/doc/v2.0/man3/MPI_Win_create.3.php

MPl Win create

 MPI_Win_create makes an existing array available
for remote access

* MPI standard requires that this must work for any
memory that you give it

* There might be “correct” ways to allocate memory
on a given machine

* Special RMA memory areas

 Memory alignment requirements for

performance
D

MPI Alloc mem

int MPI Alloc mem(MPI Aint size, MPI Info info, void *baseptr)

* size - Size of memory area to be allocated in bytes

* info - MPI_Info object. Usually MPI_INFO_NULL
unless specitied for a given machine

* baseptr - Pointer to allocated memory. Simple
pointer in C, TYPE(C_PTR) or Cray pointer in Fortran

e Must convert from C pointer to Fortran pointer using
C F POINTER for other functions

MP| Free mem

int MPI Free mem(void *base)

* base - Pointer to memory allocated with
MPI_Alloc_mem. Should be simple pointer in C,

Fortran pointer in Fortran

MPl Win allocate

int MPI Win allocate(MPI Aint size, int disp unit, MPI Info info, MPI Comm comm,
void *baseptr, MPI Win *win)

* size - length of memory window in bytes

* disp unit - length of displacements in the window in bytes.
Typically either “1" to treat the window as a simple byte stream, or a
size derived from typeof()

* info - MPI_Info object for hints.
e comm - he communicator that this window is to be valid on

* base - Pointer to a memory location to hold the pointer to the data.
Should be type (thing)** in C or TYPE(C_PTR) in Fortran

* win - The resulting window

MPl Win allocate

e Acts as combined MPI Alloc mem and
MPI Window create

* Do not need to free memory with MPI_Free_mem

 Memory freed when window freed

Dynamic Windows

* If you have several chunks of memory that should be in a

single window, or you want memory to be freed and
reallocated then you can use a dynamic window

* Newest MPI3 standard only
* MPI Win create dynamic - creates a window
* MPI Win attach - attach memory to a window

 Memory regions that overlap cannot be attached to the
same window

e MPI Win detach - detach memory from a window

* Bit specific for this course

MPI_Win_free

int MPI Win free(MPI Win *win)

e win - Window to be freed

e Freesthe window and makes it invalid for further
use

* Detaches any memory windows attached to the

window

MPI one sided -
Active synchronisation 1

Concepts

* Once you have defined a window you have to control access
to the memory

 Make sure that reads and writes only happen when they're
supposed to

* MPI provides a model rather like Bulk Synchronous
Parallelism (https://en.wikipedia.org/wiki/
Bulk_synchronous_parallel)

* Two "epochs” that individual ranks can be separately in
* Access epoch - can access data on other ranks

* Exposure epoch - allows other ranks to access it's memory

https://en.wikipedia.org/wiki/Bulk_synchronous_parallel

Concepts

* Once the exposure epoch has started it isn't safe
to write to the memory window using pointers

* Explained more later

* Only sure that data is finally in place when the
access epoch is over

* Also explained more later

Frenceposting

* "Fenceposts” MPl access epochs

 First call enters both “access” and “exposure”
epochs

» Second call exits both "access” and “exposure”
epochs

e Third call enters both etc.

* Few caveats, but broadly true

MPI_Win_fence

int MPI Win fence(int assert, MPI Win win)

* assert - Special conditions to optimise communication. O is
always acceptable.

« MPI_MODE_NOSTORE - Local memory not updated since last
call to MPl_Win_fence

« MPI_MODE_NOPUT - Local memory will not be updated by
RMA put or accumulate calls. Can still use get.

* https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/
mpi-report-2.0/node130.htm for others

* win - Window to be fenceposted

https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node130.htm

MP| one sided -
Remote actions 1

MPI_Put

int MPI Put(const void *origin addr, int origin count, MPI Datatype origin datatype, int
target rank, MPI Aint target disp, int target count, MPI Datatype target datatype, MPI Win
win)

e origin addr - Buffer for data to put on the remote rank
« origin count - Number of origin datatypes to put on the remote rank
 origin datatype - Type of local data. Can be a derived type

 target rank - Rank of destination for put. Must be the rank in the
communicator specified when win was created

 target disp - displacement from the start of the target window in units of the
disp_unit specified when win was created

 target count - number of target datatypes to putinto the window
 target datatype - Type of data in the remote window. Can be a derived type.

* win - The window on which to perform the put. Data is put into the memory
associated with the window

MP| Get

int MPI Get(const void *origin addr, int origin count, MPI Datatype origin datatype, int
target rank, MPI Aint target disp, int target count, MPI Datatype target datatype, MPI Win
win)

e origin addr - Buffer into which to receive the data from the remote rank
e« origin count - Number of origin datatypes to get from the remote rank
 origin datatype - Type of local data. Can be a derived type

 target rank - Rank of source for get. Must be the rank in the communicator
specified when win was created

 target disp - displacement from the start of the target window in units of the
disp unit specified when win was created

e target count - number of target datatypes to get from the window
 target datatype - Type of data in the remote window. Can be a derived type.

* win - The window on which to perform the get. Data is taken from the memory
associated with the window

Example

Example

CALL MPI Sizeof(recv_rank, intsize, ierr)

size of window = intsize * n_elements

CALL MPI Win _allocate(size of window, intsize, MPI INFO NULL, MPI_COMM WORLD,
C_pointer, window, 1ierr)

CALL C_F POINTER(c _pointer, f pointer, shape=(/n_elements/))

DO iindex = 1, n_elements
(iindex) = iindex + rank
END DO

CALL MPI Win_ fence(0, window, ierr)

offset =

CALL MPI Put(, h_elements, MPI INTEGER, right, offset, n_elements,
MPI INTEGER, window, ierr)

CALL MPI _Win_fence(®, window, 1ierr)

PRINT ()
left, , T _pointer

, rank, ,

Example

CALL MPI Sizeof(recv_rank, intsize, ierr)
size of window intsize n elements
CALL MPI Win allocate(size of window, intsize, MPI INFO NULL, MPI COMM WORLD, &

C_pointer, window, ierr)

CALL C_F POINTER(c pointer, f pointer, shape=(/n_elements/))

iindex , Nn_elements
(iindex) Tindex rank
(), , rank,

left, , T _pointer

Results

—

OOoONOUT D WN N

message
message
message
message
message
message
message
message
message
message
message
message
message
message
message
message

Ooo~NOTULIDRWNEFE,O

OCoOoO~NOTULTE WN P O U

OO NOTUTDE WN PO
e el all e e
UV D WNEFEO

LY
(o))

* Works as expected

MPI one sided -
Active synchronisation 2

Manually controlling epochs

* You can specify manual entry into and exit from
each epoch.

o Called PSCW (Post/Start/Complete/Wait) or
Generalised Active Target Synchronisation

* Have to introduce the concept of a collection of
ranks that is not a communicator

« MPI_Group

MPI_Comm_group

int MPI Comm group(MPI Comm comm, MPI Group *group)

» comm - Communicator to make group from

* group - Outputs produced group containing all

ranks in comm

MPI_Group_incl

int MPI Group incl(MPI Group group, int n, const int
ranks[], MPI Group *newgroup)

e group - Existing populated group referring to
ranks

* n-number of ranks to include in new group
e ranks - array of ranks to include in new group

 newgroup - Output new group

MPI_Group_free

int MPI Group free(MPI Group *group)

e group - group to be freed. Can no longer validly
be used after freeing

Epoch commands

e There are four commands

 MPI_Win_start - starts the access epoch
 MPI_Win_complete - end the access epoch
 MPI_Win_post - start the exposure epoch
 MPI_Win_wait - end the exposure epoch

 MPI_Win_wait will not complete until all ranks that called
MPI_Win_start call MPI_Win_complete

« Data is not guaranteed to be in final position until all ranks

have called the appropriate MPI_Win_complete or
MPI_Win_wait calls

Rememberl

* Ranks that get or put data to or from another rank
must be in the access epoch

* Ranks that are going to have data get or put into
their memory must be in the exposure epoch

* Ranks that do both must be in both epochs

MPl Win start

int MPI Win start(MPI Group group, 1int assert, MPI Win win)

e group - group of processors to put into the access
epoch

 assert-same asforMPI Win fence. 0 is always

OK

 win - Window to start epoch on

MPI_Win_post

int MPI Win post(MPI Group group, int assert, MPI Win win)

* group - group of processors to put into the
exposure epoch

 assert-same asforMPI Win fence. 0 is always

OK

 win - Window to start epoch on

MPI_Win_complete

int MPI Win complete(MPI Win win)

 win - Window to end access epoch on

* Non blocking operation itselt

* Must be called on all processors that called
MPI Win start orMPI Win wait will block

MPI_Win_wait

int MPI Win wait(MPI Win win)

 win - Window to end exposure epoch on

* Blocking operation

o Until all processors that called MPI Win start

call MPI Win complete this routine will lock

MP| one sided -
Remote actions 2

Accumulate

e Reduce for one-sided communications
* For once some guarantees about order
e (Guarantees that result will be “correct”

* All processors that call MPI Accumulate with
MPI SUM (say)operation will have their values
added to the value on target

* No worry about order

MPI Accumulate

int MPI Accumulate(const void *origin addr, int origin count, MPI Datatype origin datatype, int
target rank, MPI Aint target disp, int target count, MPI Datatype target datatype, MPI Op op, MPI Win win)

e origin addr - Address of source data for accumulate

e« origin_ count - Elements of origin_datatype in source

« origin datatype - Type representing source. Can be custom
e« target rank - Rank to accumulate result into

e target disp - displacement from the start of the target window in units of the disp unit
specified when win was created

e target count - Elements of target_datatype in destination
 target datatype - Datatype of destination on target. Can be custom

* op - Operation. Same as MPI_Reduce operations + MPI_REPLACE (replace value on target
with value in origin_addr. Atomic replace operation). Cannot use user defined operations

 win - Window to operate on

MPI one sided
Passive synchronisation

Very, very quickly

Passive synchronisation

» Allows one rank to both put itself in the access

epoch and put the remote processor in the
exposure epoch

* This gives you a lot less certainty about what's
going to happen

 Tricky to use, but potentially very powertul

MPI_Win_lock (MPI3)

int MPI Win lock(int lock type, int rank, int assert, MPI Win win)

* lock type

e MPI LOCK SHARED - other processors can also lock this
window on rank

e MPI LOCK EXCLUSIVE - other processors will be
excluded from locking this window on rank

e rank - remote processor to put in exposure epoch
e assert - As MPI_Win_fence. 0 always acceptable

 win - Window to operate on

MPI_Win_unlock (MPI3)

int MPI Win unlock(int rank, MPI Win win)

* rank - remote processor to remove from
exposure epoch

 win - Window to operate on

Risks and
complications

 MPI one sided communications gives tewer
guarantees than regular MPl communications

* You guarantee a point at which all operations are

finished

* You have no idea of when they happen before
that point

* Or the order in which they happen

* Two ranks getting data
from a remote rank

works OK

* Both get the same

value

* So long as the data

source doesn’t change
it between the two calls

* Two ranks putting data
onto a remote process

at the same time not
OK

e Undefined behaviour
e Could be either value

e Could be useless
iIntermediate state

I=1+1
get(i) e Can'tdo this
=1+

put(i) « Might work as expected
|] with get followed by put

* Might not

* So what's the complete list of what you can do and what you
can't do?

» Sadly, it depends on what “memory model” your MPI
implementation is using

* You can check using "“MPI_WIN_MODEL" as a parameter to
"MPI_Win_get_attr"

* Generally easier to just assume that you're using the older
MPI_WIN_SEPARATE model

« Following table shows what commands can be used within a
single synchronisation period

MPI_WIN_SEPARATE

Oldest and most

conservative model Conventional memory access
| B “Loads and Stores”

There is specific memory

set aSide fOr remote access |

It synchronises with the Local Memory

actual memory storing a |
variable at synchronisation Synchronize

points
RMA Memory

 MPI_Win_sync(window)
Put Get

At other times, they are not
guaranteed to be the same

| oad

Store

Get

Put

Accumulate

Accumulate

Can use on different
data in window

MPI_WIN_UNIFIED

e Only defined in
MPI3 standard

Conventional memory access
 Now is just “Loads and Stores”

"memory” |

whether from local
or remote sources
affect the memory

directly and
immediately

Accumulate

| oad

Store

Get

Put

Accumulate

Can use on different
data in window

