ES2A7 - Fluid Mechanics Example Classes Example Questions (Set I)

Question 1: Wind Tunnel

A simple wind-tunnel is depicted schematically in Figure 1. The flow speed in the working section is assumed to be constant with a value of $V_B = 60 \text{m/s}$ at point B. The cross-sectional area of the working section is 1 m^2 .

Figure 1: Sketch of simple wind-tunnel

- i) Neglecting irreversible losses, such as those due to viscous effects, calculate the gauge pressure in the working section. (Assume a value of $\rho = 1.2 \text{ kg/m}^3$ for the density of air).
- ii) Calculate the mass flow rate across the cross-section in the working section.

Question 2: Plunger

A plunger is moving through a cylinder as schematically illustrated in the Figure 2. The velocity of the plunger is $V_p = 10~{\rm ms}^{-1}$. The oil film separating the plunger from the cylinder has a dynamic viscosity of $\mu = 0.3 \, {\rm Nsm}^{-2}$. Assume that the oil-film thickness is uniform over the entire peripheral surface of the plunger. Calculate the force and the power required to maintain this motion.

Figure 2: Plunger moving through cylinder.

Question 3: Flow over Wing

Assume that a plane is flying with a constant velocity of $v_0 = 55 \,\mathrm{ms}^{-1}$ at standard sea level conditions (Density air: $\rho_0 = 1.23 \,\mathrm{kg m}^{-3}$, Pressure: $p_0 = 1.01 \times 10^5 \,\mathrm{Nm}^{-2}$). At some point on one of the plane's wings the pressure is measured as $p = 0.95 \times 10^5 \,\mathrm{Nm}^{-2}$. Calculate the flow velocity v at this point.

Question 4: Sphere in Fluid

A sphere moves through oil. The constant velocity of the sphere is $u = 1 \,\mathrm{mms}^{-1}$. The dynamic viscosity of the oil is $\mu = 0.05 \,\mathrm{Nsm}^{-2}$ and its density is $\rho_o = 900 \,\mathrm{kgm}^{-3}$. The radius of the sphere is $r = 10 \,\mathrm{mm}$ and its density is $\rho_s = 1200 \,\mathrm{kgm}^{-3}$. (i) Use Figure 3 to estimate the drag forces acting on the sphere. (ii) Calculate the buoyancy force acting on the sphere.

Figure 3: Drag coefficient of smooth, axially symmetric bodies (From: Massey, Mechanics of Fluids, Chapman & Hall, 1989, 6th Edition)

Question 5: Fire Engine

A fire engine pump develops a head of 50 m, i.e. it increases the energy per unit weight of the water passing through it by 50 N m N⁻¹. The pump draws water from a sump at A (Fig. 4) through a 150 mm diameter pipe in which there is a loss of energy per unit weight due to friction $h_I = 5u_I^2/2g$ varying with the mean velocity u_1 in the pipe, and discharges it through a 75 mm nozzle at C, 30 m above the pump, at the end of a 100 mm diameter delivery pipe in which there is a loss of energy per unit weight $h_2 = 12u_2^2/2g$. Calculate (a) the velocity of the jet issuing from the nozzle at C and (b) the pressure in the suction pipe at the inlet to the pump at B.

Figure 4: Fire engine Pump

Question 6: Multi-Fluid Manometer

A multi-fluid manometer is set up as shown in Fig.5. The pressure at its right end is $p_2 = 0.9 \times 10^5 \text{ Nm}^{-2}$. The densities of the fluids are $\rho_A = 1000 \text{ kg m}^{-3}$, $\rho_B = 900 \text{ kg m}^{-3}$ $\rho_C = 13000 \text{ kg m}^{-3}$. One measures $h_1 = 0.5 \text{ m}$ $h_2 = 0.3 \text{ m}$ and $h_3 = 0.6 \text{ m}$. Find the pressure p_1 .

Figure 5: Multi-fluid manometer