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Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples:

job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting,

quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control,

controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example),

bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics,

etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation

In optimal dynamic stochastic control, the output (payoff/penalty):

• is random; the objective being to maximize/minimize its expectation;

• subject to exogenous influence;

• controlled in a way which is adapted to the current and past state of
the system.

Information available to controller:

1 May be partial (observable vs. accumulated information).

2 Moreover, may depend on the control.

Indeed, the phenomenon of control-dependent-information is ubiquitous.

Examples: job hunting, quality control, controlled SDEs (loss of
information in Tanaka’s example), bandit models in economics, etc.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Motivation

Motivation (cont’d)

Major question # 1: Can we offer a consistent general framework for
optimal dynamic stochastic control, with an explicit control-dependent
informational structure, and that comes equipped with an abstract
version of Bellman’s optimality (/super/martingale) principle?
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Motivation (cont’d)

Key ingredient is the modeling of information:

• Obvious: use filtrations!

• What then is the typical & most important example of a
control-dependent filtration? Well, it is the (completed) natural
filtration of an observed (controlled) process.

• Informational consistency appears crucial:

If two controls agree up to a certain time, then what we
have observed up to that time should also agree.

• At the level of random (stopping) times, and in the context of
(completed) natural filtrations of processes, this ‘obvious’
requirement becomes surprisingly non-trivial (at least in continuous
time).
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Motivation (cont’d)

Major question # 2: If X and Y are two processes, and S a stopping
time of both (enough one?) of their (possibly completed) natural
filtrations, with the stopped processes agreeing, XS = Y S (possibly only
with probability one), must the two (completed) natural filtrations at the
time S agree also?
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Literature overview

Literature overview

• On the ‘optimal dynamic stochastic control’ front:

1 Of course, the phenomenon has entered and been studied in the
literature in specific situations/problems; but focus there on reducing
(i.e. a priori proving a suitable equivalence of) the original control
problem, which is based on partial control-dependent observation, to
an associated ‘separated’ problem, which is based on complete
observation.

2 As far as general frameworks go, however, hitherto, only a single,
non-control dependent (observable) informational flow appears to
have been allowed.

• On the ‘informational consistency’ front:

1 What is essentially required is a kind-of Galmarino’s test “connecting
σ(XS) with FX

S ”.
2 In literature this is available for coordinate processes on canonical

spaces.
3 However, coordinate processes are quite restrictive, and certainly not

pertinent to stochastic control . . .
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. . . , i.e. what is herewith being added to knowledge.

• Basically: we answer to the affirmative the two major questions
posed above (and several related ones, in the process).

• Specifically:

1 Addressing the first question, there is put forward a general
stochastic control framework which explicitly allows for a
control-dependent informational flow. In particular, there is provided
a fully general (modulo the relevant (technical) condition) abstract
version of Bellman’s principle in such a setting.

2 With respect to the second question, a generalization of (a part of)
Galmarino’s test to a non-canonical space setting is proved, although
full generality could not be achieved. Several corollaries and related
findings are given, which in particular shed light on the theme of
‘informational consistency’ (at random /stopping/ times).
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Part I: Dynamic stochastic control with control-dependent
information

Convention.The modeling of the informational flow using filtrations, can
be done in one of the following two, essentially different, ways:

1 Dealing with events ‘with certainty’, irrespective of the presence of
probability.

2 Dealing with events ‘up to a.s. equality’, insisting that the filtrations
be complete relative to the underlying probability measure(s).

The second ‘probabilistic’ approach – of complete filtrations – will be
dealt with in parallel to the default first – ‘measure-theoretic’ – setting.
Any differences of the second approach as compared to the first, will be
put in {} braces.
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Stochastic control systems

An abstract stochastic control system . . .

We will see a system of stochastic control as consisting of:

(T ,C,Ω, (Fc)c∈C, (Pc)c∈C, J, (Gc)c∈C)

(i) A set T with a linear ordering ≤. We assume (for simplicity) either T = N0, or
else T = [0,∞), with the usual order. T is the time set.

(ii) A set C. The set of admissible controls.

(iii) A set Ω endowed with a collection of σ-algebras (Fc)c∈C. Ω is the sample space
and Fc is all the information accumulated by the “end of time”/ a “terminal
time”, when c is the chosen control.

(iv) (Pc)c∈C, a collection of {complete} probability measures, each Pc having
domain which includes the {Pc-complete} σ-field Fc (for c ∈ C).

(v) A function J : C→ [−∞,+∞]Ω, each J(c) being Fc measurable (as c runs
over C) {and defined up to Pc-a.s. equality}. We further insist EPc

J(c)− <∞
for all c ∈ C. Given the control c ∈ C, J(c) is the random payoff.

(vi) A collection of filtrations (Gc)c∈C on Ω. It is assumed Gc∞ := ∨t∈TGct ⊂ Fc,
and (for simplicity) that Gc0 is Pc-trivial (for all c ∈ C) {and contains all the
Pc-null sets}, while Gc0 = Gd0 {i.e. the null sets for Pc and Pd are the same} and
Pc|Gc0 = Pd|Gd0 for all {c, d} ⊂ C. Gct is the information acquired by the

controller by time t ∈ T , if the control chosen is c ∈ C.
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Stochastic control systems

. . . its dynamical structure . . .

We will consider furthermore given a collection G of controlled times,

Definition (Controlled times)

A collection of random times S = (Sc)c∈C is called a controlled time, if Sc is a
{defined up to Pc-a.s. equality} stopping time of Gc for every c ∈ C.

and also a family (D(c,S))(c,S)∈C×G of subsets of C for which:

(1) c ∈ D(c,S) for all (c,S) ∈ C×G.

(2) For all S ∈ G and {c, d} ⊂ C, d ∈ D(c,S) implies Sc = Sd {Pc & Pd-a.s}.

(3) If {S, T } ⊂ G, c ∈ C and Sc = T c {Pc-a.s}, then D(c,S) = D(c, T ).

(4) If {S, T } ⊂ G and c ∈ C for which Sd ≤ T d {Pd-a.s.} for d ∈ D(c, T ), then
D(c, T ) ⊂ D(c,S).

(5) For each S ∈ G, {D(c,S) : c ∈ C} is a partition of C (→ denote the induced
equivalence relation by ∼S).

(6) For all (c,S) ∈ C×G: D(c,S) = {c} (resp. D(c,S) = C), if Sc is identically
{or Pc-a.s.} equal to ∞ (resp. 0).
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Stochastic control systems

. . . temporal consisteny and optimality

Assumption (Temporal consistency)

For all {c, d} ⊂ C and S ∈ G satisfying c ∼S d, we have GcSc = GdSd and
Pc|Gc

Sc
= Pd|Gd

Sd
.

Definition (Optimal expected payoff)

We define v := supc∈C EPc

J(c) (sup ∅ := −∞), the optimal expected
payoff. Next, c ∈ C is said to be optimal if EPc

J(c) = v. Finally, a
C-valued net is said to be optimizing if its limit is v.
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The conditional payoff and the Bellman system

Definition (Conditional payoff & Bellman system)

We define for c ∈ C and S ∈ G:

J(c,S) := EPc

[J(c)|GcSc ],

and then
V (c,S) := Pc|Gc

Sc
-esssupd∈D(c,S)J(d,S);

and say c ∈ C is conditionally optimal at S ∈ G, if V (c,S) = J(c,S)
Pc-a.s. (J(c,S))(c,S)∈C×G is called the conditional payoff system and
(V (c,S))(c,S)∈C×G the Bellman system.
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Bellman’s principle

A ‘technical’ condition

Proposition

Let c ∈ C, S ∈ G and ε ∈ [0,∞), M ∈ (0,∞]. Then (1)⇒(2)⇒(3).

(1) (i) For all d ∈ D(c,S), Pd = Pc . AND
(ii) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc , there is a d′′ ∈ D(c,S)
such that J(d′′) ≥M ∧ [1GJ(d) + 1Ω\GJ(d′)]− ε Pc-a.s.

(2) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc , there is a d′′ ∈ D(c,S) such
that J(d′′,S) ≥M ∧ [1GJ(d,S) + 1Ω\GJ(d′,S)]− ε Pc-a.s.

(3) (J(d,S))d∈D(c,S) has the “(ε,M)-upwards lattice property”:

For all {d, d′} ⊂ D(c,S) there exists a d′′ ∈ D(c,S) such
that

J(d′′,S) ≥ (M ∧ J(d,S)) ∨ (M ∧ J(d′,S))− ε

Pc-a.s.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Bellman’s principle

A ‘technical’ condition

Proposition

Let c ∈ C, S ∈ G and ε ∈ [0,∞), M ∈ (0,∞]. Then (1)⇒(2)⇒(3).

(1) (i) For all d ∈ D(c,S), Pd = Pc . AND
(ii) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc , there is a d′′ ∈ D(c,S)
such that J(d′′) ≥M ∧ [1GJ(d) + 1Ω\GJ(d′)]− ε Pc-a.s.

(2) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc , there is a d′′ ∈ D(c,S) such
that J(d′′,S) ≥M ∧ [1GJ(d,S) + 1Ω\GJ(d′,S)]− ε Pc-a.s.

(3) (J(d,S))d∈D(c,S) has the “(ε,M)-upwards lattice property”:

For all {d, d′} ⊂ D(c,S) there exists a d′′ ∈ D(c,S) such
that

J(d′′,S) ≥ (M ∧ J(d,S)) ∨ (M ∧ J(d′,S))− ε

Pc-a.s.

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Bellman’s principle

A ‘technical’ condition (cont’d)

Assumption (Upwards lattice property)

For all c ∈ C, S ∈ G and {ε,M} ⊂ (0,∞), (J(d,S))d∈D(c,S) enjoys the
(ε,M)-upwards lattice property.

This is only seemingly of merely a ‘technical’ nature . . . . In fact, it
represents a direct linking between C, G and the collection (Gc)c∈C. In
particular, it may fail at deterministic times!!
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Super/-/sub-martingale systems

Definition ((C,G)-super/-/sub-martingale systems)

A collection X = (X(c,S))(c,S)∈(C,G) of functions from [−∞,+∞]Ω is
a (C,G)- (resp. super-, sub-) martingale system, if for each
(c,S) ∈ C×G (i) X(c,S) is GcSc -measurable, (ii) X(c,S) = X(d,S)
Pc-a.s. and Pd-a.s., whenever c ∼S d, (iii) (resp. the negative, positive
part of) X(c,S) is integrable and (iv) for all {S, T } ⊂ G and c ∈ C with
Sd ≤ T d {Pd-a.s.} for d ∈ D(c, T ),

EPc

[X(c, T )|GcSc ] = X(c,S)

(resp. EPc

[X(c, T )|GcSc ] ≤ X(c,S), EPc

[X(c, T )|GcSc ] ≥ X(c,S)) Pc-a.s.
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Bellman’s principle

Theorem (Bellman’s principle)

(V (c,S))(c,S)∈C×G is a (C,G)-supermartingale system. Moreover, if c∗ ∈ C is

optimal, then (V (c∗, T ))T ∈G has a constant Pc∗ -expectation (equal to the optimal

value v = EPc∗
J(c∗)). If further EPc∗

J(c∗) <∞, then (V (c∗, T ))T ∈G is a

G-martingale in the sense that (i) for each T ∈ G, V (c∗, T ) is Gc∗
T c∗ -measurable and

Pc∗ -integrable and (ii) for any {S, T } ⊂ G with Sd ≤ T d {Pd-a.s.} for d ∈ D(c∗, T ),

Pc∗ -a.s.,

EPc∗
[V (c∗, T )|Gc

∗

Sc∗ ] = V (c∗,S).

Furthermore, if c∗ ∈ C is conditionally optimal at S ∈ G and EPc∗
J(c∗) <∞, then

c∗ is conditionally optimal at T for any T ∈ G satisfying T d ≥ Sd {Pd-a.s.} for
d ∈ D(c∗, T ). In particular, if c∗ is optimal, then it is conditionally optimal at 0, so

that if further EPc∗
J(c∗) <∞, then c∗ must be conditionally optimal at any S ∈ G.

Conversely, and regardless of whether the “upwards lattice assumption” holds true, if
G includes a sequence (Sn)n∈N0

for which (i) S0 = 0, (ii) the family (V (c∗,Sn))n≥0

has a constant Pc∗ -expectation and is uniformly integrable, and (iii)

V (c∗,Sn)→ V (c∗,∞), Pc∗ -a.s. (or even just in Pc∗ -probability), as n→∞, then c∗

is optimal.
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Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

A bird’s eye view

Start “measure-theoretically”, no completions, no probability.
One’s näıve expectation/“it must be true”:

If X is a process, and S a time, then S is a stopping time of

FX , if and only if it is a stopping time of FXS

. When so, then
FX

S = σ(XS). In particular, if X and Y are two processes, and
S is a stopping time of either FX or of FY , with XS = Y S ,
then S is a stopping time of FX and FY both, and
FX

S = σ(XS) = σ(Y S) = FY
S . Further, if U ≤ V are two

stopping times of FX , X again being a process, then
σ(XU ) = FX

U ⊂ FX
V = σ(XV ).

Is it true always/“can it be proved”?

In parts, maybe (so basically, I don’t know). Can be proved if
(imprecisely) “the underlying space is Blackwell, and the space
in which the processes live is also ‘nice enough’ ”.

What about if one “completes everything”? Then it’s trickier . . .
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One’s näıve expectation/“it must be true”:

If X is a process, and S a time, then S is a stopping time of

FX , if and only if it is a stopping time of FXS

. When so, then
FX

S = σ(XS). In particular, if X and Y are two processes, and
S is a stopping time of either FX or of FY , with XS = Y S ,
then S is a stopping time of FX and FY both, and
FX

S = σ(XS) = σ(Y S) = FY
S . Further, if U ≤ V are two

stopping times of FX , X again being a process, then
σ(XU ) = FX

U ⊂ FX
V = σ(XV ).

Is it true always/“can it be proved”?

In parts, maybe (so basically, I don’t know). Can be proved if
(imprecisely) “the underlying space is Blackwell, and the space
in which the processes live is also ‘nice enough’ ”.

What about if one “completes everything”? Then it’s trickier . . .

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

A bird’s eye view

Start “measure-theoretically”, no completions, no probability.
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In parts, maybe (so basically, I don’t know). Can be proved if
(imprecisely) “the underlying space is Blackwell, and the space
in which the processes live is also ‘nice enough’ ”.

What about if one “completes everything”?

Then it’s trickier . . .
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One’s näıve expectation/“it must be true”:

If X is a process, and S a time, then S is a stopping time of

FX , if and only if it is a stopping time of FXS

. When so, then
FX

S = σ(XS). In particular, if X and Y are two processes, and
S is a stopping time of either FX or of FY , with XS = Y S ,
then S is a stopping time of FX and FY both, and
FX

S = σ(XS) = σ(Y S) = FY
S . Further, if U ≤ V are two

stopping times of FX , X again being a process, then
σ(XU ) = FX

U ⊂ FX
V = σ(XV ).

Is it true always/“can it be proved”?

In parts, maybe (so basically, I don’t know). Can be proved if
(imprecisely) “the underlying space is Blackwell, and the space
in which the processes live is also ‘nice enough’ ”.

What about if one “completes everything”? Then it’s trickier . . .

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
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Part II: Stopping times, stopped processes and
natural filtrations at stopping times

The measure-theoretic case

Tools

Blackwell’s Theorem. Let (Ω,F) be a Blackwell space, G a
sub-σ-field of F and S a separable sub-σ-field of F . Then
G ⊂ S, if and only if every atom of G is a union of atoms of S.
In particular, a F-measurable real function g is S-measurable, if
and only if g is constant on every atom of S.

Lemma (Key lemma)

Let X be a process (on Ω, with time domain T ∈ {N0, [0,∞)} and
values in (E, E)), S an FX -stopping time, A ∈ FX

S . If Xt(ω) = Xt(ω
′)

for all t ∈ T with t ≤ S(ω) ∧ S(ω′), then S(ω) = S(ω′),
XS(ω) = XS(ω′) and 1A(ω) = 1A(ω′).
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Part II: Stopping times, stopped processes and
natural filtrations at stopping times

The measure-theoretic case

Key results – stopping times

Theorem (Stopping times)

Let X be a process (on Ω, with time domain T ∈ {N0, [0,∞)} and
values in (E, E)), S : Ω→ T ∪ {∞} a time. If T = N0, or else if the
conditions:

(1) σ(X|[0,t]) and σ(XS∧t) are separable, (ImX|[0,t], E⊗[0,t]) and
(ImXS∧t, E⊗T |ImXS∧t) Hausdorff for each t ∈ [0,∞).

(2) XS and X are both measurable with respect to a Blackwell σ-field G
on Ω.

are met, then the following statements are equivalent:

(i) S is an FX -stopping time.

(ii) S is an FXS

-stopping time.
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The measure-theoretic case

Key results – Galmarino’s test

Theorem (Generalized Galmarino’s test)

Let X be a process (on Ω, with time domain T ∈ {N0, [0,∞)} and values
in (E, E)), S an FX -stopping time. If T = N0, then σ(XS) = FX

S .
Moreover, if XS is FX

S /E⊗T -measurable (in particular, if it is adapted to
the stopped filtration (FX

t∧S)t∈T ) and either one of the conditions:

(1) ImXS ⊂ ImX.

(2) (a) (Ω,G) is Blackwell for some σ-field G ⊃ FX
∞.

(b) σ(XS) is separable.

(c) (ImXS , E⊗T |ImXS ) is Hausdorff.

is met, then the following statements are equivalent:

(i) A ∈ FX
S .

(ii) 1A is constant on every set on which XS is constant and A ∈ FX
∞.

(iii) A ∈ σ(XS).

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

The measure-theoretic case

Key results – Galmarino’s test

Theorem (Generalized Galmarino’s test)

Let X be a process (on Ω, with time domain T ∈ {N0, [0,∞)} and values
in (E, E)), S an FX -stopping time. If T = N0, then σ(XS) = FX

S .
Moreover, if XS is FX

S /E⊗T -measurable (in particular, if it is adapted to
the stopped filtration (FX

t∧S)t∈T ) and either one of the conditions:

(1) ImXS ⊂ ImX.

(2) (a) (Ω,G) is Blackwell for some σ-field G ⊃ FX
∞.

(b) σ(XS) is separable.

(c) (ImXS , E⊗T |ImXS ) is Hausdorff.

is met, then the following statements are equivalent:

(i) A ∈ FX
S .

(ii) 1A is constant on every set on which XS is constant and A ∈ FX
∞.

(iii) A ∈ σ(XS).

On the informational structure in optimal dynamic stochastic control {arXiv:1503.02375} Matija Vidmar



Introduction Part I: Dynamic stochastic control with control-
dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

The measure-theoretic case

Key results – informational consistency

Corollary (Observational consistency)

Let X and Y be two processes (on Ω, with time domain
T ∈ {N0, [0,∞)} and values in (E, E)), S an FX and an FY -stopping
time. Suppose furthermore XS = Y S . If any one of the conditions

(1) T = N0.

(2) ImX = ImY .

(3) (a) (Ω,G) (resp. (Ω,H)) is Blackwell for some σ-field G ⊃ FX
∞ (resp.

H ⊃ FY
∞).

(b) σ(XS) (resp. σ(Y S)) is separable and contained in FX
S (resp. FY

S ).
(c) (ImXS , E⊗T |ImXS ) (resp. (ImY S , E⊗T |ImY S )) is Hausdorff.

is met, then FX
S = FY

S .
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Introduction Part I: Dynamic stochastic control with control-
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Part II: Stopping times, stopped processes and
natural filtrations at stopping times

The measure-theoretic case

Key results – monotonicity of information

Proposition (Monotonicity of information)

Let Z be a process (on Ω, with time domain T ∈ {N0, [0,∞)} and values
in (E, E)), U ≤ V two stopping times of FZ . If either T = N0 or else
the conditions:

1 (Ω,G) is Blackwell for some σ-field G ⊃ σ(ZV ) ∨ σ(ZU ).

2 (ImZV , E⊗T |ImZV ) is Hausdorff.

3 σ(ZV ) is separable.

are met, then σ(ZU ) ⊂ σ(ZV ).
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dependent information

Part II: Stopping times, stopped processes and
natural filtrations at stopping times

Case with completions

Case with completions. . .

. . . is much more involved.

1 Unclear how to extend directly the ‘measure-theoretic’ approach (for
one, completions of ‘nice’ spaces, aren’t /the same kind of/ ‘nice’).

2 Grantedly, everything still ‘goes through’ if the temporal domain is
denumerable (unsurprising; measure theory works well when
everything is at most countable).

3 But, in the continuous case, things just aren’t true anymore (even if
everything is ‘extremely nice’) – counter-examples!

4 Are true, if the stopping times are predictable . . .
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Case with completions

A counter-example

Example

Let Ω = (0,∞)× {−2,−1, 0} be endowed with the law
P = Exp(1)×Unif({−2,−1, 0}), defined on the tensor product of the
Lebesgue σ-field on (0,∞) and the power set of {−2,−1, 0}. Denote by
e, respectively I, the projection onto the first, respectively second,
coordinate. Define the process Xt := I(t− e)1[0,t](e) , t ∈ [0,∞), and
the process Yt := (−1)(t− e)1[0,t](e)1{−1,−2} ◦ I, t ∈ [0,∞). The
completed natural filtrations of X and Y are already right-continuous.
The first entrance time S of X into (−∞, 0) is equal to the first entrance

time of Y into (−∞, 0), and this is a stopping time of FX
P

as it is of

FY
P

(but not of FX and not of FY ). Moreover, XS = 0 = Y S . Finally,

consider the event A := {I = −1}. Then A ∈ FX
P

S , however,

A /∈ FY
P

S . �
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Case with completions

Handling the predictable case (in continuous time)

Proposition

Let T = [0,∞), G be a filtration on Ω. Let furthermore P be a complete
probability measure on Ω, whose domain includes G∞; S a predictable

stopping time relative to GP
. Then S is P-a.s. equal to a predictable

stopping time P of G. Moreover, if U is any G-stopping time, P-a.s.

equal to S, then GP
S = GU

P
. Finally, if S′ is another random time, P-a.s

equal to S, then it is a GP
-stopping time, and GP

S = GP
S′ .
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Further work?

• Regarding the ‘technical’ condition: A more precise investigation
into the relationship between the validity of Bellman’s principle, and
the linking between C, G and the collection (Gc)c∈C.

• Regarding the theme of informational consistency: Try and
relax/drop the Blackwell-ian assumption. Alternatively (or in
addition) find relevant counter-examples!
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Thank you for your time and attention!
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