A note on the Markov property for PII(S)

Matija Vidmar

March 19, 2015

Setting. In what follows, let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, \mathsf{P})$ be a filtered probability space, $d \in \mathbb{N}$ and $X = (X_t)_{t \geq 0}$ be an \mathbb{F} -adapted \mathbb{R}^d -valued process with independent increments (i.e. $X_t - X_u \perp \mathcal{F}_u$ whenever $t \geq u \geq 0$). For an \mathbb{F} -stopping time T, let (the relevant functions are taken, here and in the sequel, as appropriate, on the set $\{T < \infty\}$):

- $\mathcal{G}_T^{\infty} := \sigma(X_{T+u} : u \ge 0)$ be the future of X after T,
- $\mathcal{F}'_T := \{A \cap \{T < \infty\} : A \in \mathcal{F}_T\}$ be the past up to T on $\{T < \infty\}$,
- and $\Delta_T := \sigma(X_{T+u} X_T : u \ge 0)$ be the incremental future after T, i.e. the σ -algebra of the increments after T.

Proposition 1 (Independent increments implies Markov). Given any $t \ge 0$, Δ_t is independent of \mathcal{F}_t . Moreover, X is Markovian relative to the filtraton \mathbb{F} in the sense that for any $t \ge 0$, \mathcal{F}_t is independent of \mathcal{G}_t^{∞} conditionally on X_t ; that is to say:

$$\mathsf{P}(A \cap B|X_t) = \mathsf{P}(A|X_t)\mathsf{P}(B|X_t) \quad \mathsf{P}-\text{a.s.}$$

for any $A \in \mathcal{F}_t$ and $B \in \mathcal{G}_t^{\infty}$.

Assume now X is in addition càd and has stationary increments (in the sense that $X_{t+d} - X_t \sim X_d$ whenever $\{t, d\} \subset [0, \infty)$). For any \mathbb{F} -stopping time T with $\mathsf{P}(T < \infty) > 0$, Δ_T is independent of \mathcal{F}'_T under the measure $\mathsf{P}' := \mathsf{P}(\cdot|T < \infty)$. Moreover, X satisfies the strong Markov property with respect to \mathbb{F} , i.e. for any stopping time, such as above, \mathcal{F}'_T (with respect to which X_T is measurable) is independent of \mathcal{G}^{∞}_T , conditionally on X_T under P' ; that is to say:

$$\mathsf{P}'(A \cap B|X_T) = \mathsf{P}'(A|X_T)\mathsf{P}'(B|X_T) \quad \mathsf{P}' - \text{a.s.}$$

for any $A \in \mathcal{F}'_T$ and $B \in \mathcal{G}^{\infty}_T$.

In the latter case the process $(X_{T+u} - X_T)_{u \ge 0}$ under P' is actually identical in law with X under P on the space of càd \mathbb{R}^d -valued paths on $[0, \infty)$ with the σ -field of evaluation maps.

We shall use in the proof the properties of how independence disintegrates, resp. aggregates, over σ -algebras. These are easily seen to hold true: either directly or, resp., by a π/λ -argument.

Proof. For the independence of Δ_t and \mathcal{F}_t note that given any finite sequence of times $0 \leq t = t_0 \leq t_1 \leq \cdots \leq t_n \leq t_{n+1}$ $(n \in \mathbb{N}_0)$, one has that $X_{t_1} - X_t$ is independent of $\mathcal{F}_t, X_{t_2} - X_{t_1}$ is independent of $\sigma(\mathcal{F}_t, X_{t_1} - X_t) \subseteq \mathcal{F}_{t_1}$ and so on and so forth, finally $X_{t_{n+1}} - X_{t_n}$ is independent of $\sigma(\mathcal{F}_t, X_{t_1} - X_t, \ldots, X_{t_{n-1}})$. Thus $\mathcal{F}_t, X_{t_1} - X_t, \ldots, X_{t_{n+1}} - X_{t_n}$ are jointly independent (disintegration of independence). But then so are \mathcal{F}_t and $\sigma(X_{t_1} - X_t, \ldots, X_{t_{n+1}} - X_{t_n})$ (aggregation of independence). Next, one has $(X_{t_1} - X_t, \ldots, X_{t_{n+1}} - X_t) = f \circ (X_{t_1} - X_t, \ldots, X_{t_{n+1}} - X_{t_n})$, where $f : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is given by $f(x_1, \ldots, x_n, x_{n+1}) = (x_1, x_2 + x_1, \ldots, x_{n+1} + x_n + \cdots x_1)$ and is certainly Borel. Thus $\sigma(X_{t_j} - X_t : 1 \leq j \leq n+1)$ is a sub- σ -algebra of $\sigma(X_{t_1} - X_t, \ldots, X_{t_{n+1}} - X_{t_n})$ and hence is independent of \mathcal{F}_t . But then Δ_t is indeed independent of \mathcal{F}_t (aggregation of independence).

We now show the Markov property. Since $\mathcal{G}_t^{\infty} = \sigma(X_t) \vee \Delta_t$, by the "taking out what is known property" of conditional expectation and a π/λ -argument, it will be sufficient to maintain the independence of the past \mathcal{F}_t and the incremental future Δ_t given the present X_t . But this follows immediately from the independence of \mathcal{F}_t and Δ_t , since X_t is \mathcal{F}_t -measurable. Namely one applies the tower property (conditioning first on \mathcal{F}_t).

Assume now X is càd and has stationary increments. We shall show the independence of the incremental future Δ_T and the past \mathcal{F}'_T under the conditional measure P'. The strong Markov property then obtains immediately, precisely as the Markov property did. Indeed, it will be enough to show the independence of the increment $X_{T+u} - X_T$ and \mathcal{F}'_T under P' for each fixed $u \geq 0$ and \mathbb{F} -stopping time T. To this end let us first show the claim for the case when T takes values in the countable set $D \cup \{\infty\}, D \subset \mathbb{R}_+$. For $A \in \mathcal{F}'_T$ and $B \in \mathcal{B}(\mathbb{R}^d)$ one has (for the obvious reasons, in particular by stationary independent increments):

$$P'(A \cap \{X_{T+u} - X_T \in B\}) = \sum_{d \in D} P(A \cap \{T = d\} \cap \{X_{d+u} - X_d \in B\}) / P(T < \infty)$$
$$= \sum_{d \in D} P(A \cap \{T = d\}) P(X_{d+u} - X_d \in B) / P(T < \infty)$$
$$= \sum_{d \in D} P(A \cap \{T = d\}) P(X_u \in B) / P(T < \infty)$$
$$= P'(A) P(X_u \in B)$$
$$= P'(A) P'(X_{T+u} - X_T \in B).$$

Now, for a general T, approximate it by a nonincreasing sequence $(T_n)_{n\geq 0}$ of \mathbb{F} -stopping times having only countably many values and converging to T. We may assume $\{T_n < \infty\} = \{T < \infty\}$ for all $n \in \mathbb{N}_0$. Moreover, we have shown that for any $A \in \mathcal{F}'_T$ and bounded continuous $f : \mathbb{R}^d \to \mathbb{R}$, $\mathsf{E}'[\mathbbm{1}_A f \circ (X_{T_n+u} - X_{T_n})] = \mathsf{P}'(A)\mathsf{E}'[f \circ (X_{T_n+u} - X_{T_n})]$. Let $n \to \infty$ and conclude, using the càd property, via dominated convergence (and then by the Functional Monotone Class Theorem).

The final remark is straightforward, from the above displayed computation.

References

[1] Cinlar, Erhan: Probability and Stochastics, Springer, 2011.