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of Lévy processes

Matija Vidmar1 (joint work with A. Mijatović and S. Jacka)
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Spectrally negative Lévy processes and their scale functions

Spectrally negative Lévy processes and their scale functions

Setting: (Ω,F ,F = (Ft)t≥0,P) under standard assumptions; X a Lévy
process.

Definition (Lévy process)

A continuous-time F-adapted stochastic process X = (Xt)t≥0, with state
space R, is a Lévy process (relative to (F,P)), if it starts at 0, a.s.,
Xt−s ∼ Xt −Xs ⊥ Fs (0 ≤ s ≤ t) and it is càdlàg off a null set.

A Lévy process is called spectrally negative, if:

1 it has no positive jumps (a.s.) and

2 does not have a.s. monotone paths.

For this class of Lévy processes, fluctuation theory in terms of the two
families of scale functions, (W (q))q∈[0,∞) and (their integrals)

(Z(q))q∈[0,∞), has been developed.
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Spectrally negative Lévy processes and their scale functions
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Part I: Introduction Part II: Results

Spectrally negative Lévy processes and their scale functions

(cont’d)

Setting/Notation: X henceforth a spectrally negative Lévy process with
Laplace exponent ψ, ψ(β) := log E[eβX1 ]
(β ∈ {γ ∈ C : <γ ≥ 0} =: C→).
Note: ψ is given by [(σ2, λ, µ)c̃ – characteristic triplet; c̃ := idR1[−V,0),
V ∈ {0, 1}]:

ψ(β) =
1

2
σ2β2 + µβ +

∫
(−∞,0)

(
eβy − βc̃(y)− 1

)
λ(dy), β ∈ C→.

Analytic characterization of scale functions: is in terms of their
Laplace transforms;∫ ∞

0

e−βxW (q)(x)dx =
1

ψ(β)− q
(β > Φ(q)).

(Z(q)(x) = 1 + q
∫ x
0
W (q)(y)dy, x ≥ 0.)
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Spectrally negative Lévy processes and their scale functions

(cont’d)

Setting/Notation: X henceforth a spectrally negative Lévy process with
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Scale functions in applied probability

Scale functions in applied probability

There exist numerous identities concerning boundary crossings in which
scale functions feature. For example (W := W (0));

(i) Two-sided exit problem. For a ≥ 0 let Ta (respectively T−a ) be
the first entrance time of X to [a,∞) (respectively (−∞,−a)).
Then:

P(T−x > Ta) =
W (x)

W (a+ x)
,

whenever {a, x} ⊂ (0,∞) =: R+.

(ii) Ruin probabilities. In the case that X drifts to +∞ we have for
x ∈ R+, the generalised Cramér-Lundberg identity:

P(T−x =∞) = W (x)ψ′(0+).
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Part I: Introduction Part II: Results

Scale functions in applied probability

Scale functions in applied probability

There exist numerous identities concerning boundary crossings in which
scale functions feature. For example (W := W (0));

(i) Two-sided exit problem. For a ≥ 0 let Ta (respectively T−a ) be
the first entrance time of X to [a,∞) (respectively (−∞,−a)).
Then:

P(T−x > Ta) =
W (x)

W (a+ x)
,

whenever {a, x} ⊂ (0,∞) =: R+.

(ii) Ruin probabilities. In the case that X drifts to +∞ we have for
x ∈ R+, the generalised Cramér-Lundberg identity:

P(T−x =∞) = W (x)ψ′(0+).

Markov chain approximations to scale functions of Lévy processes Matija Vidmar (Warwick)
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Scale functions in applied probability

(cont’d)
(iii) Continuous-state branching processes. Under mild conditions, the law of the

supremum of a continuous state branching process Y is given by the identity (for
x ∈ R+, y ∈ R):

Py(sup
s≥0

Ys ≤ x) =
W (x− y)

W (x)
,

where W is the scale function of the associated Lévy process.

(iv) Population biology. The typical branch length H between two consecutive
individuals alive at time t ∈ R+, conditionally on there being at least two extant
individuals at said time, satisfies the identity:

P(H < s) =
1−W (s)−1

1−W (t)−1
,

whenever s ∈ (0, t], and with W the scale function associated to the jumping
chronological contour process.

Miscellaneous other areas featuring scale functions W (q) (together with
their derivatives and the integrals Z(q)), include queuing theory, optimal
stopping and control problems, fragmentation processes etc.
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Numerical evaluation of scale functions

Numerical evaluation of scale functions

• Central to applications to be able to evaluate scale functions
numerically for any spectrally negative Lévy process X.

• Analytically, scale functions are characterized in terms of their
Laplace transforms.

• Typically not possible to perform the inversion explicitly; user is
faced with a Laplace inversion (e.g. Filon’s (with FFT),
Gaver-Stehfest, Euler’s, fixed Talbot’s) algorithm, which:

(a) requires evaluation of the Laplace exponent of X (at complex values
of its argument);

(b) says little about the dependence of the scale function on the Lévy
triplet of X;

(c) fails to a priori ensure that the computed values of the scale function
are probabilistically meaningful.

Kuznetsov, Kyprianou, Rivero: The Theory of Scale Functions for Spectrally Negative

Lévy Processes (in S. Cohen et al., Lévy Matters II, Lecture Notes in Mathematics,

Springer-Verlag Berlin Heidelberg, 2012).
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Lévy Processes (in S. Cohen et al., Lévy Matters II, Lecture Notes in Mathematics,

Springer-Verlag Berlin Heidelberg, 2012).

Markov chain approximations to scale functions of Lévy processes Matija Vidmar (Warwick)
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Overview

Overview

(i) A general algorithm for the computation of the scale functions of
any spectrally negative Lévy process X.

(ii) Based on a natural weak approximation of X via upwards
skip-free continuous-time Markov chains with stationary
independent increments.
Vylder, Goovaerts: Recursive calculation of finite-time ruin probabilities
(Insurance: Mathematics and Economics 7(1), 1988).

Dickson, Waters: Recursive calculation of survival probabilities (ASTIN Bulletin

21(2), 1991).

(iii) Consists of evaluating a finite linear recursion with nonnegative
coefficients given explicitly in terms of the Lévy triplet of X.

(iv) Thus easy to implement and numerically stable.

(v) Main result establishes sharp rates of convergence of this
algorithm providing an explicit link between the semimartingale
characteristics of X and its scale functions.
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21(2), 1991).

(iii) Consists of evaluating a finite linear recursion with nonnegative
coefficients given explicitly in terms of the Lévy triplet of X.

(iv) Thus easy to implement and numerically stable.

(v) Main result establishes sharp rates of convergence of this
algorithm providing an explicit link between the semimartingale
characteristics of X and its scale functions.
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Part I: Introduction Part II: Results

The algorithm

The algorithm

To compute W (x) for some x > 0, choose small h > 0 such that x/h is
an integer and define the approximation Wh(x) by the formula:

Wh(y+h) = Wh(0)+

y/h+1∑
k=1

Wh(y+h−kh)
γ−kh
γh

, Wh(0) = (γhh)−1

for y = 0, h, 2h, . . . , x− h, where the coefficients γh and (γ−kh)k≥1 are
given explicitly in terms of (σ2, λ, µ)c̃ (next slide).

Remark: These coefficients have a probabilistic interpretation in terms of
a process Xh, which is used to weakly approximate X (details to follow
(!)), and Wh is the scale function of Xh.
Two main results:

1 approximating scale functions converge pointwise to those of the
original Lévy process (as h ↓ 0);

2 sharp rates on Zh := hZ (under a weak condition on the Lévy
measure).
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Part I: Introduction Part II: Results

The algorithm

(cont’d)

Recall: (σ2, λ, µ)c̃ – characteristic triplet; c̃ := idR1[−V,0).

V = 0 or V = 1, according as to whether λ(R) < +∞ or λ(R) = +∞.

ch0 :=

∫
[−h/2,0)

y21[−V,0)(y)λ(dy) and µh :=
∑

y∈Z−−
h

y

∫
[−y−h/2,−y+h/2)

1[−V,0)(z)λ(dz).

σ̃2
h :=

1

2h2
(
σ2 + ch0

)
and µ̃h :=

1

2h

(
µ− µh

)
.

γh := σ̃2
h + 1(0,∞)(σ

2)µ̃h + 1{0}(σ
2)2µ̃h, γ−h := σ̃2

h − 1(0,∞)(σ
2)µ̃h + λ(−∞,−h/2]

γ−kh := λ(−∞,−kh+ h/2], where k ≥ 2.
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Part I: Introduction Part II: Results

The algorithm

(cont’d)

Key attractions:

(a) consistency : for each fixed h > 0, algorithm calculates precisely the
values of the scale function Wh for the process Xh;

(b) conceptual simplicity : a weak approximation of X by a
skip-free-to-the-right-CTMC Xh provides a natural way of encoding
the underlying probabilistic structure of the problem in the design of
the algorithm;

(c) robustness: method valid for all spectrally negative Lévy processes;

(d) straightforwardness of the algorithm: implementation requires only to
effect a linear recursion;

(e) no evaluations of Laplace exponent necessary;

(f) convergence rates known;

(g) stability : algorithm is numerically stable.
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Part I: Introduction Part II: Results

Genesis of algorithm

Genesis of algorithm

Note: similar recursions obtain for functions W
(q)
h and Z

(q)
h

approximating W (q) and Z(q), respectively.
A two step programme, which yields these formulae, as follows:

(i) Approximate the spectrally negative Lévy process X by a CTMC Xh

with state space Zh := {hk: k ∈ Z} (h ∈ (0, h?) , h? ∈ (0,+∞]):

(a) Brownian motion with drift → asymmetric random walk;
(b) Lévy measure becomes concentrated on Zh;
(c) + details for the part of the Lévy measure around the origin (when

the latter infinite).

Mijatović, V., Jacka: Markov chain approximations for transition densities of

Lévy processes, (EJP 19(7), 2014).

(ii) Find an algorithm for computing the scale functions W
(q)
h and Z

(q)
h

of the chain Xh.
V.: Fluctuation theory for upwards skip-free Lévy chains.
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Part I: Introduction Part II: Results

Rates of convergence

Rates of convergence
Fix q ≥ 0; let K, G be bounded subset of (0,∞); K bounded away from
zero when σ2 = 0; and define:

∆K
W (h) := sup

x∈Zh∩K

∣∣∣W (q)
h (x− δ0h)−W (q)(x)

∣∣∣ and ∆G
Z (h) := sup

x∈Zh∩G

∣∣∣Z(q)
h (x)− Z(q)(x)

∣∣∣ ,
where δ0 equals 0 if X has sample paths of finite variation and 1
otherwise. Further introduce:

κ(δ) :=

∫
[−1,−δ)

|y|λ(dy), for any δ ≥ 0.

If the jump part of X has paths of infinite variation, assume:

Assumption

There exists ε ∈ (1, 2) with:

(1) lim supδ↓0 δ
ελ(−1,−δ) <∞ and

(2) lim infδ↓0
∫
[−δ,0) x

2λ(dx)/δ2−ε > 0.

Markov chain approximations to scale functions of Lévy processes Matija Vidmar (Warwick)



Part I: Introduction Part II: Results

Rates of convergence

(cont’d)

Theorem

Then the rates of convergence of the scale functions are summarized by
the following table:

λ(R) = 0 ∆K
W (h) = O(h2) and ∆G

Z (h) = O(h)

0 < λ(R) & κ(0) <∞ ∆K
W (h) + ∆G

Z (h) = O(h)

κ(0) =∞ ∆K
W (h) + ∆G

Z (h) = O(h2−ε)

Moreover, the rates so established are sharp in the sense that for each of
the three entries in the table above, examples of spectrally negative Lévy
processes are constructed for which the rate of convergence is no better
than stipulated.
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Part I: Introduction Part II: Results

A numerical illustration

A numerical illustration

Note: Algorithm computes values recursively and so, together with
Wh(x), we obtain automatically and necessarily Wh|[0,x]!

Example: σ2 = 0; the Lévy measure λ(dy) given by

3

2(−y)5/2
1[−1,0)(y)dy +

1

2
(δ−1 + δ−2) (dy)+

1

2(−y − 1)1/2
1[−2,−1)(y)dy +

(
ecos(y)(2 + y sin(y))

(−y)3
+

e

y2

)
1(−∞,−1)(y)dy;

and (with V = 1) µ = 10.

(i) Lévy measure has fat tails at 0 and −∞, a discontinuity (indeed, a
pole) in the density of its absolutely continuous part (which, in
particular, is not completely monotone), two atoms. No Gaussian
component. Sample paths of the process have infinite variation.

(ii) No explicit expression in terms of elementary/special functions for
the Laplace/Furrier transform of the Lévy measure, and thus not
the Laplace exponent.
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the Laplace exponent.

Markov chain approximations to scale functions of Lévy processes Matija Vidmar (Warwick)
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the Laplace exponent.

Markov chain approximations to scale functions of Lévy processes Matija Vidmar (Warwick)



Part I: Introduction Part II: Results

A numerical illustration

(cont’d)

n 5 7 9 11 13
max reln 0.4058 0.2152 0.1040 0.0467 0.0182

Table : Convergence of Whn on the decreasing sequence
(hn = 1/2n)n∈{5,7,9,11,13}, on the interval [0, 3]. Number of computed values
of Whn is Nn = 3 · 2n in each case. Relative error:

max reln := maxi∈[96]
|Whn (xi−hn)−Wh16

(xi−h16)|
Wh16

(xi−h16)
, where xi = i/32, i ∈ [96].
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A numerical illustration

(cont’d)
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Figure : Convergence of Wh(· − h) to W (as h ↓ 0).
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Part I: Introduction Part II: Results

A numerical illustration

(cont’d)
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Figure : Relative error
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Part I: Introduction Part II: Results

Conclusions

Conclusions

Current state-of-the-art for computing scale functions: Laplace inversion
techniques (except in special cases).
How does our algorithm compare/what is the value-added?
• Drawback: # of necessary operations to achieve given precision.
• Efficiency of algorithm sensitive to tail of Lévy measure at 0, rather

than smoothness of the target scale function.
Abate, Whitt: A Unified Framework for Numerically Inverting Laplace

Transforms (INFORMS Journal on Computing 18(4), 2006).

• Relates scale functions directly to (σ2, λ, µ)c̃ in a probabilistically
meaningful way; they become one limit process, rather than a
Laplace exponent, and then an inversion, away from (σ2, λ, µ)c̃.

• Only one parameter to vary (h), whilst e.g. in the (o/w very robust
and fast, albeit quite complicated) Filon’s method (with FFT) one
has also to decide on the cut-off in the Bromwich integral.

• No evaluations of the Laplace exponent ψ (at complex values of its
argument) — so complements existing methods, when ψ is not
easily computable in terms of elementary/special functions!
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Part I: Introduction Part II: Results

Conclusions

Conclusions

Current state-of-the-art for computing scale functions: Laplace inversion
techniques (except in special cases).
How does our algorithm compare/what is the value-added?
• Drawback: # of necessary operations to achieve given precision.
• Efficiency of algorithm sensitive to tail of Lévy measure at 0, rather
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Part I: Introduction Part II: Results

Conclusions

Conclusions

Current state-of-the-art for computing scale functions: Laplace inversion
techniques (except in special cases).
How does our algorithm compare/what is the value-added?
• Drawback: # of necessary operations to achieve given precision.
• Efficiency of algorithm sensitive to tail of Lévy measure at 0, rather
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Part I: Introduction Part II: Results

Conclusions

Conclusions

Current state-of-the-art for computing scale functions: Laplace inversion
techniques (except in special cases).
How does our algorithm compare/what is the value-added?
• Drawback: # of necessary operations to achieve given precision.
• Efficiency of algorithm sensitive to tail of Lévy measure at 0, rather
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