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Abstract. We formulate a massively general framework for optimal dynamic stochastic control

problems which allows for a control-dependent informational structure. The issue of informational

consistency is brought to light and investigated. Bellman’s principle is formulated and proved. In

a series of related results, we expound on the informational structure in the context of (completed)

natural filtrations of (stochastic) processes.

1. Introduction: motivation – literature overview – structure of paper &

informal summary of results

Optimal dynamic stochastic control, is (i) stochastic, in the sense that the output of the system

is random; it is (ii) optimal control, to the extent that, with the goal of optimizing its expectation,

said output is subject to exogenous influence; and it is (iii) dynamic, in that this control, at any

one instant of time, is adapted to the current and past state of the system. In general, however,

the controller in a dynamic stochastic control problem can observe some part only of all of the

“universal” information which is being accumulated (e.g. he may only be able to observe the

controlled process, or, worse, some (non one-to-one) function thereof). Moreover, this “observed

information” may depend on the chosen control.

It is therefore only reasonable to insist a priori on all the admissible controls (as processes) to be

adapted (or even predictable with respect) to what is thus a control-dependent-informational-flow

that is being acquired by the controller. And while not doing so can emerge as having been (in

some sense) immaterial a posteriori (e.g. since the optimal control turned out to have been only a

function of the present (and past) state of an observable process), then this will, generally speaking,

only happen to have been the case, rather than it needing to have been so, which, presumably, is

the preferred of the two alternatives.

Some (informal) examples follow.
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(•) Job hunting. Consider an academic trying to optimize his choice of current institution.

The decision of whether or not to move, and where to move, will be based (in particular) on the

knowledge of the quality of the research and of the amenities of the various universities/institutes

that he can choose from. This knowledge itself will depend (at least partially) on the chosen

sequence of institutions that he has already affiliated himself with (indeed, since the quality of the

institutions changes over time, it will depend on it in a temporally local way – only once he has

chosen to move and has spent some time at his new location, will he be able to properly judge the

eventual ramifications of his choice). Costs are associated with moving, but also with staying for

too long at an institution, which hinders his academic development; rewards are associated with

the quality of the chosen institution; further, more or less resources can be devoted to determining

the quality of institutions before a (potential) move. (See Section 5 for a toy model reminiscent of

this situation.)

(•) Or consider quality control in a production line of light-bulbs. A fault with the machine

may cause all the bulbs from some time onwards to be faulty. Once this has been detected, the

machine can of course be fixed and the production of functioning bulbs restored. However, only the

condition of those light-bulbs which are taken out of the production line, and tested, can actually

be observed. A cost is associated with this process of testing (but, clearly, also with issuing faulty

light-bulbs). Conversely, rewards accrue from producing functioning bulbs.

(•) From the theory of controlled SDEs, a folklore example of loss of information is Tanaka’s

SDE: let X be a Brownian motion, Wt :=
∫ t

0 sgn(Xs)dXs, t ∈ [0,∞). Then the completed natural

filtration of W is strictly included in the completed natural filtration of X [11, p. 302].

(•) In economics the so-called class of bandit models is well-known (see the excellent literature

overview in [8]). These are “sequential decision problems where, at each stage, a resource like time,

effort or money has to be allocated strategically between several options, referred to as the arms

of the bandit.” And further: “The key idea in this class of models is that agents face a trade-

off between experimentation (gathering information on the returns to each arm) and exploitation

(choosing the arm with the highest expected value).” [8, p. 2].

(•) Miscellaneous other situations in which the control is non-trivially, and naturally, adapted, or

even previsible, with respect to an informational flow, which it itself influences and helps engender,

abound: controlling the movement of a probe in a stochastic field, only the local values of the field

being observable, and costs/rewards associated with the speed of movement/intensity of the field

(cf. Example 2.11); a similar situation for movement on a random graph, being only able to observe

the values attached to the vertices visited; additively controlling a process, but observing the sum

of the process itself and of the control etc.

In short, the phenomenon is ubiquitous; we suggest it is the norm, rather than the exception.
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In particular, then, one should like a general framework for stochastic control (equipped with

a suitable abstract version of Bellman’s principle) which makes such a control-dependent informa-

tional flow explicit and inherent in its machinery. The (seeming) circularity of the controls being

adapted to an informational structure which they themselves help engender, makes this a some-

what delicate point. Indeed, it would seem, this is the one aspect of general (abstract) dynamic

stochastic control which has not yet received due attention in existing literature. Hitherto, only

a single, non-control dependent, observable [5] informational flow [15, 14] appears to have been

allowed. (This is of course not to say that the phenomenon has not entered and been studied in

the literature in specific situations/problems, see e.g. [6, 8, 7, 16] [1, Chapter 8] and the refer-

ences therein; the focus there having been (for the most part) on reducing (i.e. a priori proving a

suitable equivalence of) the original control problem, which is based on partial control-dependent

observation, to an associated ‘separated ’ problem, which is based on complete observation.)

In the present paper we attempt to fill this gap in the literature, by putting forward a general

stochastic control framework which explicitly allows for a control-dependent informational flow – as

it were ‘embracing it’, rather than trying to circumvent it in some or another manner. (Recognizing

that it may not always be advantageous, or indeed possible, to work with an equivalent (but more

complex) ‘separated’ formulation.) In particular, we provide a fully general (modulo the relevant

(technical) condition, see Assumption 4.3) abstract version of Bellman’s principle in such a setting.

This is the content of Part 1. Specifically, Section 2 formally defines a system of stochastic control

(in which observed information is an explicit function of control); Section 3 discusses its conditional

payoff and ‘Bellman’ system; Section 4 formulates Bellman’s principle – Theorem 4.6 is our main

result. Lastly, Section 5 contains the solution to a formal (but artificial) example, illustrating some

of the main ideas of this paper; several other (counter)examples are also given along the way.

Now, a crucial requirement for the above programme to be successful is that of informational

consistency over controls (cf. Assumption 2.9): if two controls agree up to a certain time, then

what we have observed up to that time should also agree. Especially at the level of random (stop-

ping) times, this becomes a non-trivial statement – for example, when the observed information

is that generated by a (controlled) process, which is often the case. We expound on this issue of

informational consistency in the context of (completed) natural filtrations of processes in Part 2.

Specifically, we consider there, amongst others relevant, the following natural and pertinent ques-

tion, which is interesting in its own right: if X and Y are two processes, and S a stopping time of

one or both of their (possibly completed) natural filtrations, with the stopped processes agreeing,

XS = Y S (possibly only with probability one), must the two (completed) natural filtrations at

the time S agree also? To answer this question (with proofs) is non-trivial in the temporally non-

discrete case, and several related findings are obtained along the way (see the introductory remarks

to Part 2, on p. 21, for a more detailed account). In essence they are (consequences of/connected

with) a generalization (Theorem 6.6) of (a part of) Galmarino’s test, available in literature for
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coordinate processes on canonical spaces [4, p. 149, Theorem IV.100] [11, p. 320, Lemma 4.18],

and extended here to a not necessarily canonical setting.

Conventions. Throughout this paper, for a probability measure P on Ω and A ⊂ Ω, some

property in ω ∈ A will be said to hold P-a.s. on A, if the set of ω ∈ A for which the property does

not hold is first measurable (i.e. belongs to the domain of P), and second is of P-measure zero.

When A = Ω, we shall of course just say that the property holds P-a.s. Finally, for L ⊂ 2Ω and

A ⊂ Ω, L|A := {L ∩A : L ∈ L} is the trace of L on A.

Part 1. Optimal dynamic stochastic control with control-dependent information

As announced in the Introduction, we provide and analyze in this part, a framework for optimal

dynamic stochastic control, in which information is explicitly control-dependent. The informational

flow itself is modeled using filtrations, and this can be done in one of the following two, essentially

different, ways:

(1) Dealing with events ‘with certainty’, irrespective of the presence of probability.

(2) Dealing with events ‘up to a.s. equality’, insisting that the filtrations be complete relative

to the underlying probability measure(s).

We develop the second ‘probabilistic’ approach – of complete filtrations – in parallel to the default

first – for lack of a better word, ‘measure-theoretic’ – setting. Indeed, the formal differences between

the two approaches are minor. For the most part one has merely to add, in the ‘complete’ setting,

a number of a.s. qualifiers. We will put these, and any other eventual differences of the second

approach as compared to the first, in {} braces. This will enforce a strict separation between the

two settings, while still allowing us to repeat ourselves as little as possible.

2. Stochastic control systems

We begin by specifying the formal ingredients of a system of optimal dynamic stochastic control.

Setting 2.1 (Stochastic control system). A stochastic control system consists of:

(i) A set T with a linear (antisymmetric, transitive & total) ordering ≤. We will assume (for

simplicity) either T = N0, or else T = [0,∞), with the usual order. T is the time set.

(ii) A set C. The set of admissible controls. (These might be {equivalence classes of} processes

or stopping times, or something different altogether.)

(iii) A set Ω endowed with a collection of σ-algebras (Fc)c∈C. Ω is the sample space and Fc

is all the information accumulated (but not necessarily acquired by the controller) by the

“end of time” or, possibly, by a “terminal time”, when c is the chosen control. For example,

in the case of optimal stopping, when there is given a process X, and it is stopped, the set

of controls C would be the {equivalence classes of the} stopping times of the {completed}
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natural filtration of X, and for any S ∈ C, FS = σ(XS), the σ-field generated by the

stopped process {or its completion}. We understand here optimal stopping in the strict

sense: the exogenous act is that of stopping, not sampling ; after the process has been

stopped, it ceases to change.

(iv) (Pc)c∈C, a collection of {complete} probability measures, each Pc having domain which

includes the {Pc-complete} σ-field Fc (for c ∈ C). The controller chooses a probability

measure from the collection (Pc)c∈C. This allows for incorporation of the Girsanov approach

to control, wherein the controller is seen as affecting the probability measure, rather than

the random payoff. From the point of view of information, being concerned with laws rather

than random elements, it is of course somewhat unnatural. Nevertheless, we will formally

allow for it – it costs us nothing.

(v) A function J : C → [−∞,+∞]Ω, each J(c) being Fc measurable (as c runs over C) {and

defined up to Pc-a.s. equality}. We further insist EPcJ(c)− < ∞ for all c ∈ C. Given the

control c ∈ C, J(c) is the random payoff. Hence, in general, we allow both the payoff, as

well as the probability law, to vary.

(vi) A collection of filtrations1 (Gc)c∈C on Ω. It is assumed Gc∞ := ∨t∈TGct ⊂ Fc, and (for

simplicity) that Gc0 is Pc-trivial (for all c ∈ C) {and contains all the Pc-null sets}, while

Gc0 = Gd0 {i.e. the null sets for Pc and Pd are the same} and Pc|Gc0 = Pd|Gd0 for all {c, d} ⊂ C.

Gct is the information acquired by the controller by time t ∈ T , if the control chosen is

c ∈ C (e.g. Gc may be the {completed} natural filtration of an observable process Xc which

depends on c). Perfect recollection is thus assumed.

Definition 2.2 (Optimal expected payoff). We define v := supc∈C EPcJ(c) (sup ∅ := −∞), the

optimal expected payoff. Next, c ∈ C is said to be optimal if EPcJ(c) = v. Finally, a C-valued

net is said to be optimizing if its limit is v.

Remark 2.3.

(1) It is, in some sense, no restriction, to have assumed the integrability of the negative parts

of J in Setting 2.1(v). For, allowing any extra controls c for which EPcJ(c)− = ∞, but

for which EPcJ(c) would still be defined, would not change the value of v (albeit it could

change whether or not C is empty, but this is a trivial consideration).

(2) It is not natural a priori to insist on each J(c) being Gc∞-measurable (for c ∈ C). The

outcome of our controlled experiment need not be known to us (the controller) at all – not

even by the end of time; all we are concerned with is the maximization of its expectation.

(3) In the case C is a collection of processes, the natural requirement is for each such process

c ∈ C to be adapted (perhaps even previsible with respect) to Gc. If it is a collection of

1All filtrations will be assumed to have the parameter set T .
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random times, then each such c ∈ C should presumably be a (possibly predictable) stopping

time of Gc. But we do not formally insist on this.

We now introduce the concept of a controlled time, a (we would argue, natural) generalization

of the notion of a stopping time to the setting of control-dependent filtrations.

Definition 2.4 (Controlled times). A collection of random times S = (Sc)c∈C is called a con-

trolled time, if Sc is a {defined up to Pc-a.s. equality} stopping time of Gc for every c ∈ C.

Example 2.5. A typical situation to have in mind is the following. What is observed is a process

Xc, its values being contingent on the chosen control c (this may, but need not, be the controlled

process, e.g. it might be some non one-to-one function of it). Then Gc is the {completed} natural

filtration of Xc. Letting, for example, for each c ∈ C, Sc be the first entrance time of Xc into some

fixed set, the collection (Sc)c∈C would constitute a controlled time (as long as one can formally

establish the stopping time property). �

Definition 2.6 (Deterministic and control-constant times). If there is some a ∈ T ∪ {∞}, such

that Sc(ω) = a for {Pc-almost} all ω ∈ Ω, and every c ∈ C, then S is called a deterministic time.

More generally, if there is a random time S, which is a stopping time of Gc and Sc = S {Pc-a.s}
for each c ∈ C, then S is called a control-constant time.

As yet, C is an entirely abstract set with no dynamic structure attached to it. The following

establishes this structure. The reader should think of D(c,S) as being the controls “agreeing {a.s.}
with c up to time S”. (Example 2.11 and Section 5 contain definitions of the collections D(c,S) in

the (specific) situations described there.)

Setting 2.7 (Stochastic control system (cont’d) – control dynamics). There is given a collection

G of controlled times. Further, adjoined to the stochastic control system of Setting 2.1, is a family

(D(c,S))(c,S)∈C×G of subsets of C for which:

(1) c ∈ D(c,S) for all (c,S) ∈ C×G.

(2) For all S ∈ G and {c, d} ⊂ C, d ∈ D(c,S) implies Sc = Sd {Pc & Pd-a.s}.
(3) If {S, T } ⊂ G, c ∈ C and Sc = T c {Pc-a.s}, then D(c,S) = D(c, T ).

(4) If {S, T } ⊂ G and c ∈ C for which Sd ≤ T d {Pd-a.s.} for d ∈ D(c, T ), then D(c, T ) ⊂
D(c,S).

(5) For each S ∈ G, {D(c,S) : c ∈ C} is a partition of C.

(6) For all (c,S) ∈ C ×G: D(c,S) = {c} (resp. D(c,S) = C), if Sc is identically {or Pc-a.s.}
equal to ∞ (resp. 0).2

Definition 2.8. Pursuant to Setting 2.7(5), we write ∼S for the equivalence relation induced by

the partition {D(c,S) : c ∈ C}.

2This is not really a restriction; see Remark 4.4(ii).
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Using this dynamical structure, a natural assumption on the temporal consistency of the filtra-

tions (Gc)c∈C and the measures (Pc)c∈C — indeed a key condition on whose validity we shall insist

throughout — is as follows:

Assumption 2.9 (Temporal consistency). For all {c, d} ⊂ C and S ∈ G satisfying c ∼S d, we

have GcSc = GdSd and Pc|GcSc = Pd|Gd
Sd

.

Several remarks are now in order.

(•) First, when S is a non-control-constant time (e.g. when Sc is the first entrance time into some

fixed set of an observed controlled process Xc, as c runs over C), then already the provisions of

Setting 2.7 (leaving aside, for the moment, Assumption 2.9) are far from being entirely innocuous,

viz. condition Setting 2.7(2) (which, e.g. would then be saying that controls agreeing with c up

to the first entrance time Sc of the observed controlled process Xc, will actually leave the latter

invariant). They are thus as much a restriction/consistency requirement on the familyD, as they are

on which controlled times we can put into the collection G. Put differently, G is not (necessarily)

a completely arbitrary, if non-specified, collection of controlled times. For, a controlled time is just

any family of Gc-stopping times, as c runs over the control set C. The members of G, however,

enjoy the further property of “agreeing between two controls, if the latter coincide prior to them”.

This is of course trivially satisfied for deterministic times (and, more generally, control-constant

stopping times), but may hold of other controlled times as well.

(•) Second, the choice of the family G is guided by the specific problem at hand: not all con-

trolled times are of interest. For example, sometimes the deterministic times may be relevant, the

others not. On the other hand, it may be possible to effect the act of “controlling” only at some

collection of (possibly non-control-constant) stopping times – then these times may be particularly

worthy of study. The following example illustrates this point already in the control-independent

informational setting (anticipating somewhat certain concepts, like the Bellman system, and con-

ditional optimality, which we have not yet formally introduced; the reader might return to it once

he has studied Sections 3 and 4).

Example 2.10. Given: a probability space (Ω,F ,P); on it an N0-valued càdlàg Poisson process

N of unit intensity with arrival times (Sn)n∈N0 , S0 := 0, Sn < ∞ for all n ∈ N; an independent

independency of random signs (Rn)n∈N0 with values in {−1,+1}, P(Rn = +1) = 1−P(Rn = −1) =

2/3.

The “observed process” is

W := N +

∫ ·
0

∑
n∈N0

Rn1[Sn,Sn+1)dLeb

(so to N is added a drift of Rn during the random time interval [Sn, Sn+1), n ≥ 0). Let G be the

natural filtration of W . Remark the arrival times of N are stopping times of G.
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The set of controls C, on the other hand, consists of real-valued, measurable processes, starting

at 0, which are adapted to the natural filtration of the bivariate process (W1{∆N 6=0}, N) (where

∆N is the jump process of N ; intuitively, we must decide on the strategy for the whole of [Sn, Sn+1)

based on the information available at time Sn already, n ≥ 0). For X ∈ C consider the penalty

functional

J(X) :=

∫
[0,∞)

e−αt1(0,∞) ◦ |Xt −Wt|dt

(continuous penalization with discounting rate α ∈ (0,+∞) of any deviation from the process W

by the control X). Let v := infX∈C EJ(X) be the optimal expected penalty; clearly an optimal

control is the process X̂ which takes the value of W at the instances which are the arrival times of

N and assumes a drift of +1 in between those instances, so that v = 1/(3α). Next, for X ∈ C, let

V X
S := P-essinfY ∈C,Y S=XSE[J(Y )|GS ], S a stopping time of G,

be the Bellman system. We shall say Y ∈ C is conditionally admissible at time S for the control

X (resp. conditionally optimal at time S), if Y S = XS (resp. V Y
S = E[J(Y )|GS ] P-a.s.). Denote

V := V X̂ for short.

(1) We maintain first that the process (Vt)t∈[0,∞) (the Bellman process (i.e. system at the

deterministic times) for the optimal control), is not mean nondecreasing (in particular, is not a

submartingale, let alone a martingale with respect to G) and admits no a.s. right-continuous

version.

For, V0 = v; while for t ∈ (0,∞), the following control, denoted X?, is, apart from X̂, also

conditionally admissible at time t for X̂: It assumes the value of W at the instances of the arrival

times of N , and a drift of +1 in between those intervals, until before (inclusive of) time t; strictly

after time t and until strictly before the first arrival time of N which is ≥ t, denoted St, it takes

the values of the process which starts at the value of W at the last arrival time of N strictly

before t and a drift of −1 thereafter; and after (and inclusive of) the instance St, it resumes

to assume the values of W at the arrival times of N and a drift of +1 in between those times.

Notice also that Rt1(t is not an arrival time of N) ∈ Gt, where Rt =
∑

n∈N0
Rn1[Sn,Sn+1)(t), i.e.

Rt1(t is not an arrival time of N) is the drift at time t, on the (almost certain) event that t is not

an arrival time of N , zero otherwise. It follows that, since X̂ is conditionally admissible for X̂ at

time t:

Vt ≤ E[J(X̂)|Gt],

so EVt1{Rt=+1} ≤ EJ(X̂)1{Rt=+1}; whereas since X? is also conditionally admissible at time t for

X̂:

Vt ≤ E[J(X?)|Gt],

so EVt1{Rt=−1} ≤ EJ(X?)1{Rt=−1} = EJ(X̂)1{Rt=−1} − E
∫

(t,St)
e−αtdt1{Rt=−1} =

EJ(X̂)1{Rt=−1} − 1
αe
−αt(1 − 1

1+α)1
3 (properties of marked Poisson processes). Summing the two
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inequalities we obtain

EVt ≤ v −
1

3(1 + α)
e−αt,

implying the desired conclusion (for the nonexistence of a right continuous version, assume the

converse, reach a contradiction via uniform integrability).

(2) We maintain second that the process (V X
Sn

)n∈N0 , however, is a discrete-time submartingale

(and martingale with X = X̂) with respect to (GSn)n∈N0 , for all X ∈ C.

For X = X̂, this follows at once from the obvious observation that X̂ is conditionally optimal

at each of the arrival instances of N . On the other hand, for arbitrary X ∈ C, n ∈ N0, G ∈ GSn ,

and {Y,Z} ⊂ C with Y Sn = XSn = ZSn , the control which coincides with Y (hence Z) on [0, Sn]

and then with Y (resp. Z) on (resp. the complement of) G strictly after Sn, is conditionally

admissible at time Sn for X. The desired conclusion then follows through a general argument, see

Theorem 4.6. Specifically, one finds that the family {E[J(Y )|GSn ] : Y ∈ C, Y Sn = XSn} is directed

downwards for each n ∈ N0 (cf. proof of Proposition 4.2), hence can apply Lemma A.3 (cf. proofs

of Proposition 4.5 and Theorem 4.6). �

In light of this example it is important to note that it will not matter to our general analysis,

which controlled times are actually put into G: as long as the explicit provisions that we (will,

viz. Assumption 4.3) have made, are in fact met. This generality allows to work with/choose, in a

given specific situation, such a family G, as can be/is most informative of the problem.

(•) Finally, as already remarked, a typical example of an observed filtration is that of an observed

process, i.e. for c ∈ C, Xc is a process whose values (in some measurable space) we can observe,

and Gct := σ(Xc|[0,t]) = σ(Xc
s : s ∈ [0, t]), t ∈ T , is the natural filtration of Xc {or possibly

its Pc-completion}. Let c and d be two controls, agreeing up to a controlled time S, c ∼S d.

Then, presumably, Xc and Xd do, also, i.e. (Xc)S
c

= (Xd)S
d {Pc-a.s. and Pd-a.s.} (where, a

priori, Sc = Sd {Pc-a.s. and Pd-a.s.}), and hence we should like to have (viz. Assumption 2.9)

GcSc = GdSd . In other words, abstracting only slightly, and formulated without the unnecessary

stochastic control-picture in the background, the following is a natural, and an extremely important,

question. Suppose X and Y are two processes, defined on the same sample, and with values in

the same measurable, space; S a stopping time of both (or possibly just one) of their {completed}
natural filtrations. Suppose furthermore the stopped processes agree, XS = Y S {with probability

one}. Must we have FXS = FYS {FXS = FY S} for the {completed} natural filtrations FX and FY

{FX and FY } of X and Y ? Intuitively: yes, of course (at least when there are no completions in

play). Formally, in the non-discrete case, it is not so straightforward. We obtain partial answers

in Part 2.

We conclude this section with a rather general example illustrating the concepts introduced

thusfar, focusing on the control-dependent informational flows, and with explicit references made

to Settings 2.1 and 2.7.
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Example 2.11. The time set is [0,∞) (Setting 2.1(i); T = [0,∞)). Given are: a probability space

(Ω,F ,P) (Settings 2.1(iii) and 2.1(iv); Fc = F and Pc = P for each c, Ω is itself); an open subset

O ⊂ Rd of Euclidean space; and a random (time-dependent) field (Ro)o∈O – each Rot being an

F-measurable random variable, and the random map ((o, t) 7→ Rot ) being assumed continuous from

O× [0,∞) into R /so that the map ((ω, o, t) 7→ Rot (ω)) is automatically F⊗B(O)⊗B([0,∞))/B(R)-

measurable3/. Think of, for example, the local times of a Markov process, the Brownian sheet,

solutions to SPDEs [3] etc.

Now, the idea is to control the movement in such a random field, observing only the values of

the field at the current space-time point determined by the control c. Rewards accrue as a function

of the value of the field at the location of the control, penalized is the speed of movement.

To make this formal, fix a discount factor α ∈ (0,∞), an initial point o0 ∈ O, a measurable

reward function f : O → R and a nondecreasing penalty function g : [0,∞)→ R.

The controls (members of C of Setting 2.1(ii)) are then specified as being precisely all the

O-valued, F ⊗ B([0,∞))/B(O)-measurable, differentiable (from the right at zero), processes c,

starting at o0 (i.e. with c0 = o0), adapted to the natural filtration (denoted Gc; as in Set-

ting 2.1(vi)) of the process Rc, and satisfying (cf. definition of J in the paragraph following)

E
∫∞

0 e−αt [f− ◦Rctt + g+ ◦ |ċt|] dt < ∞. (Clearly the observed information Gc depends in a highly

non-trivial way on the chosen control.)

Next, the payoff functional J from Setting 2.1(v) is given as:

J(c) :=

∫ ∞
0

e−αt [f ◦Rctt − g ◦ |ċt|] dt, c ∈ C.

Finally, with regard to Setting 2.7, define for any c ∈ C and controlled time S,

D(c,S) := {d ∈ C : dS
c

= cS
c},

and then let

G := {controlled times S such that ∀c∀d(d ∈ D(c,S)⇒ Sc = Sd &GcSc = GdSd)}.

We will indeed see (Corollary 6.7) that G = {controlled times S such that ∀c∀d(dS
c

= cS
c ⇒ Sc =

Sd)}, as long as (Ω,F) is Blackwell (which can typically be taken to be the case). Regardless of

whether or not (Ω,F) is in fact Blackwell, however, all the provisions of Settings 2.1 and 2.7, as

well as those of Assumption 2.9, are in fact met. �

3. The conditional payoff and the Bellman system

Definition 3.1 (Conditional payoff & Bellman system). We define for c ∈ C and S ∈ G:

J(c,S) := EPc [J(c)|GcSc ], and then V (c,S) := Pc|GcSc -esssupd∈D(c,S)J(d,S);

3For simplicity (so as not to be preoccupied with technical issues) we make all the processes in this example

continuous.
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and say c ∈ C is conditionally optimal at S ∈ G, if V (c,S) = J(c,S) Pc-a.s. (J(c,S))(c,S)∈C×G

is called the conditional payoff system and (V (c,S))(c,S)∈C×G the Bellman system.

Remark 3.2.

(i) Thanks to Assumption 2.9, the essential suprema appearing in the definition of the condi-

tional payoff system are well-defined (up to the relevant a.s. equalities).

(ii) Also, thanks to Setting 2.7(3), V (c,S) only depends on S through Sc, in the sense that

V (c,S) = V (c, T ) as soon as Sc = T c {Pc-a.s.}. Clearly the same holds true (trivially) of

the system J .

Some further properties of the systems V and J follow. First,

Proposition 3.3. V (c,S) is GcSc-measurable and its negative part is Pc-integrable for each (c,S) ∈
C×G. Moreover if c ∼S d, then V (c,S) = V (d,S) Pc-a.s. and Pd-a.s.

Proof. The appropriate measurability of V (c,S) follows from its definition. Moreover, since each

D(c,S) is non-empty, the integrability condition on the negative parts of V is also immediate (from

the assumed integrability of the negative parts of J). Finally, the last claim follows from the fact

that D(c,S) = D(d,S) (partitioning property) and Pc|GcSc = Pd|Gd
Sd

(consistency), when c ∼S d. �

Second, Proposition 3.9, will (i) establish that in fact (J(c,S))(c,S)∈C×G is a (C,G)-system in

the sense of the definition which follows, and (ii) will also give sufficient conditions for the Pc-a.s.

equality J(c,S) = J(d,S) to obtain on an event A ∈ GcSc , when c ∼S d (addressing the situation

when the two controls c and d agree “for all times” on A). Some auxiliary definitions and results

are needed to this end; they precede Proposition 3.9.

Definition 3.4 ((C,G)-system). A collection X = (X(c, T ))(c,T )∈C×G of functions from

[−∞,+∞]Ω is a (C,G)-system, if (i) X(c, T ) is GcT c-measurable for all (c, T ) ∈ C × G and

(ii) X(c,S) = X(c, T ) Pc-a.s. on the event {Sc = T c}, for all c ∈ C and {S, T } ⊂ G.

Definition 3.5 (Times accessing infinity). For a sequence (tn)n∈N of elements of T , we say it

accesses infinity, if for all t ∈ T , there exists an n ∈ N with t ≤ tn.

Lemma 3.6. Suppose H is a {P-complete} filtration on Ω {P being a complete probability measure}
and (Sn)n≥1 a sequence of its stopping times {each defined up to P-a.s. equality}, which accesses

infinity pointwise {or P-a.s.} on A ⊂ Ω, i.e. (Sn(ω))n∈N accesses infinity for {P-almost} every

ω ∈ A. Then H∞|A = ∨n∈NHSn |A.

Proof. The inclusion ⊃ is manifest. For the reverse inclusion, let t ∈ T and B ∈ Ht (noting that

for any L ⊂ 2Ω and A ⊂ Ω, σΩ(L)|A = σA(L|A)). Then {P-a.s.} B ∩ A = ∪∞n=1(B ∩ {Sn ≥ t}) ∩ A
with B ∩ {Sn ≥ t} ∈ HSn . �
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Lemma 3.7. Let {c, d} ⊂ C and A ⊂ Ω. Let furthermore (Sn)n∈N be a sequence in G accessing

infinity {a.s.} on A for the controls c and d (i.e. (Shn(ω))n∈N accesses infinity for {Ph-almost}
every ω ∈ A, each h ∈ {c, d}), and for which c ∼Sn d for each n ∈ N. Then Gc∞|A = Gd∞|A.

If further, A ∈ GcScn for all n ∈ N, and the sequence (Sn)n∈N is {a.s.} nondecreasing on A and

for the controls c and d (i.e. (Shn(ω))n∈N is nondecreasing for {Ph-almost} every ω ∈ A, each

h ∈ {c, d}), then Pc|Gc∞ and Pd|Gd∞ agree when traced on A.

Remark 3.8. We mean to address here abstractly the situation when the two controls c and d agree

for all times on A.

Proof. By the consistency properties, certainly Pc|GcScn agrees with Pd|Gd
Sdn

for each n ∈ N, while

(Scn = Sdn)n∈N accesses infinity {Pc-a.s. and Pd-a.s.} on A. Then apply Lemma 3.6 to obtain

Gc∞|A = σA(∪n∈NGcScn |A) = σA(∪n∈NGdSdn |A) = Gd∞|A. If, moreover A ∈ GcScn for all n ∈ N, then

the traces of Pc and Pd on A agree on ∪n∈NGcScn |A. Provided in addition (Scn)n∈N is {Pc-a.s.}
nondecreasing on A, the latter union is a π-system (as a nondecreasing union of σ-fields, so even an

algebra) on A. This, coupled with the fact that two finite measures of the same mass, which agree

on a generating π-system, agree (by a monotone class argument), yields the second claim. �

Proposition 3.9. (J(c,S))(c,S)∈C×G is a (C,G)-system. Moreover, if

(i) c ∼S d, A ∈ GcSc;
(ii) there exists a sequence (Sn)n∈N from G {a.s.} nondecreasing and accessing infinity on A for

the controls c and d, and for which c ∼Sn d and A ∈ GcScn for each n ∈ N;

(iii) EPc [J(c)|Gc∞] = EPd [J(d)|Gd∞] Pc-a.s. and Pd-a.s. on A;

then J(c,S) = J(d,S) Pc-a.s. and Pd-a.s. on A.

Proof. By definition, J(c, T ) is GcT c-measurable. Next, if c ∈ C, then GcSc = GcT c when traced

on {T c = Sc} ∈ GcSc ∩ GcT c , whence J(c, T ) = J(c,S) Pc-a.s. thereon (applying Lemma A.1).

Finally, to show that J(c,S) = J(d,S) Pc-a.s. (or Pd-a.s., it is the same) on A under the indicated

conditions, we need only establish that:

Pc-a.s. 1AE
Pc [J(c)|GcSc ] = 1AE

Pd [J(d)|GdSd ]⇔ (since GdSd = GcSc , A ∈ GcSc)

∀B ∈ GcSc EPc [J(c)1A1B] = EPc [EPd [J(d)1A1B|GdSd ]]⇔ (since Pc|GcSc = Pd|Gd
Sd

)

∀B ∈ GcSc EPc [J(c)1A1B] = EPd [J(d)1A1B]⇔ (conditioning)

∀B ∈ GcSc EPc [EPc [J(c)|Gc∞]1A1B] = EPd [EPd [J(d)|Gd∞]1A1B]⇔

(since EPc [J(c)|Gc∞] = EPd [J(d)|Gd∞] Pc-a.s. on A)

∀B ∈ GcSc EPc [EPd [J(d)|Gd∞]1A1B] = EPd [EPd [J(d)|Gd∞]1A1B],

where finally one can apply Lemma 3.7. �
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4. Bellman’s principle

Definition 4.1 ((C,G)-super/-/sub-martingale systems). A collection X = (X(c,S))(c,S)∈(C,G)

of functions from [−∞,+∞]Ω is a (C,G)- (resp. super-, sub-) martingale system, if for each

(c,S) ∈ C×G (i) X(c,S) is GcSc-measurable, (ii) X(c,S) = X(d,S) Pc-a.s. and Pd-a.s., whenever

c ∼S d, (iii) (resp. the negative, positive part of) X(c,S) is integrable and (iv) for all {S, T } ⊂ G

and c ∈ C with Sd ≤ T d {Pd-a.s.} for d ∈ D(c, T ),

EPc [X(c, T )|GcSc ] = X(c,S)

(resp. EPc [X(c, T )|GcSc ] ≤ X(c,S), EPc [X(c, T )|GcSc ] ≥ X(c,S)) Pc-a.s.

In order to be able to conclude the supermartingale property of the Bellman system (Bellman’s

principle), we shall need to make a further assumption (see Assumption 4.3 below; cf. Lemma A.3).

The following proposition gives some guidance as to when it may be valid.

Proposition 4.2. Let c ∈ C, S ∈ G and ε ∈ [0,∞), M ∈ (0,∞]. Then (1)⇒(2)⇒(3).

(1) (i) For all d ∈ D(c,S), Pd = Pc . AND

(ii) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc, there is a d′′ ∈ D(c,S) such that J(d′′) ≥
M ∧ [1GJ(d) + 1Ω\GJ(d′)]− ε Pc-a.s.

(2) For all {d, d′} ⊂ D(c,S) and G ∈ GcSc, there is a d′′ ∈ D(c,S) such that J(d′′,S) ≥
M ∧ [1GJ(d,S) + 1Ω\GJ(d′,S)]− ε Pc-a.s.

(3) (J(d,S))d∈D(c,S) has the “(ε,M)-upwards lattice property”:

For all {d, d′} ⊂ D(c,S) there exists a d′′ ∈ D(c,S) such that

J(d′′,S) ≥ (M ∧ J(d,S)) ∨ (M ∧ J(d′,S))− ε

Pc-a.s.

Proof. Implication (1)⇒(2) follows by conditioning on GcSc under Pc. Implication (2)⇒(3) follows

by taking G = {J(d,S) > J(d′,S)} ∈ GcSc . �

Assumption 4.3 (Upwards lattice property). For all c ∈ C, S ∈ G and {ε,M} ⊂ (0,∞),

(J(d,S))d∈D(c,S) enjoys the (ε,M)-upwards lattice property (as in Proposition 4.2, Property (3)).

(We shall make it explicit in the sequel when this assumption will be in effect.)

Remark 4.4.

(i) The upwards lattice property of Assumption 4.3 represents a direct connection between the

set of controls C on the one hand and the collection of observable filtrations (Gc)c∈C and set

of controlled times G on the other. It is weaker than insisting that every system (J(c,S))c∈C

be upwards-directed (Proposition 4.2, Property (3) with ε = 0, M =∞), but still sufficient

to allow one to conclude Bellman’s (super)martingale principle (Theorem 4.6). A more
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precise investigation into the relationship between the validity of Bellman’s principle, and

the linking between C, G and the collection (Gc)c∈C remains open to future research.

(ii) It may be assumed without loss of generality (in the precise sense which follows) that

{0,∞} ⊂ G. Specifically, we can always simply extend the family D, by defining D(c,∞) :=

{c} and D(c, 0) := C for each c ∈ C – none of the provisions of Section 2.1 (Setting 2.1

and 2.7, Assumption 2.9), nor indeed the validity or non-validity of Assumption 4.3, being

thus affected.

(iii) Assumption 4.3 is of course trivially verified when the filtrations G all consist of (proba-

bilistically) trivial σ-fields alone.

Example 2.11 continued. We verify that in Example 2.11, under the assumption that in fact the

base (Ω,F) therein is Blackwell, Property (1) from Proposition 4.2 obtains with M =∞, ε = 0.

Let G ∈ GcSc , {d, d′} ⊂ D(c,S). It will suffice to show that d′′ := d1G + d′1Ω\G ∈ C (for, then, in

fact, we will have J(d′′) = J(d)1G + J(d′)1Ω\G). Now, Sd = Sc = Sd′ are all stopping times of Gc,
and dS

c
= cS

c
= d′S

c

; by Theorem 6.6, Proposition 6.5, and Proposition 6.9 to follow in Part 2, all

the events {Sc > t}, {Sc ≤ t} ∩G and {Sc ≤ t} ∩ (Ω\G) belong to σ((Rc)S
c∧t) = σ((Rd

′′
)S

c∧t) ⊂
σ((Rd

′′
)t) = Gd′′t . Next, for sure, d′′ is a F ⊗ B([0,∞))/B(O)-measurable, differentiable O-valued

process with initial value o0, satisfying the requisite integrability condition on f− and g+. So

it remains to check d′′ is Gd′′-adapted; let t ∈ [0,∞). Then d′′t 1{Sc>t} = ct1{Sc>t} ∈ Gct , hence

d′′t 1{Sc>t} ∈ Gd
′′
t , since Gd′′t = Gct on {Sc > t}. On the other hand, d′′t 1{Sc≤t}∩G = dt1{Sc≤t}∩G ∈ Gdt ,

hence d′′t 1{Sc≤t}∩G ∈ Gd
′′
t , since Gd′′t = Gdt on {Sc ≤ t} ∩G; similarly for Ω\G in place of G. �

Proposition 4.5. [Cf. [5, p. 94, Lemma 1.14].] Under Assumption 4.3, for any c ∈ C, T ∈ G

and any sub-σ-field A of GcT c, Pc-a.s.:

EPc [V (c, T )|A] = Pc|A-esssupd∈D(c,T )E
Pd [J(d)|A].

In particular, EPcV (c, T ) = supd∈D(c,T ) E
PdJ(d).

Proof. By Lemma A.3, we have, Pc-a.s.:

EPc [V (c, T )|A] = Pc|A-esssupd∈D(c,T )E
Pc [EPd [J(d)|GdT d ]|A]

= Pc|A-esssupd∈D(c,T )E
Pd [EPd [J(d)|GcT c ]|A], since GcT c = GdT d & Pc|GcT c = Pd|Gd

T d
,

for d ∼T c, where from the claim follows at once. �

Theorem 4.6 (Bellman’s principle). We work under the provisions of Assumption 4.3 and insist

{0,∞} ⊂ G (recall Remark 4.4(ii)).

(V (c,S))(c,S)∈C×G is a (C,G)-supermartingale system. Moreover, if c∗ ∈ C is optimal, then

(V (c∗, T ))T ∈G has a constant Pc
∗
-expectation (equal to the optimal value v = EPc

∗
J(c∗)). If further

EPc
∗
J(c∗) < ∞, then (V (c∗, T ))T ∈G is a G-martingale in the sense that (i) for each T ∈ G,
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V (c∗, T ) is Gc∗T c∗ -measurable and Pc
∗
-integrable and (ii) for any {S, T } ⊂ G with Sd ≤ T d {Pd-

a.s.} for d ∈ D(c∗, T ), Pc
∗
-a.s.,

EPc
∗
[V (c∗, T )|Gc∗Sc∗ ] = V (c∗,S).

Furthermore, if c∗ ∈ C is conditionally optimal at S ∈ G and EPc
∗
J(c∗) < ∞, then c∗ is

conditionally optimal at T for any T ∈ G satisfying T d ≥ Sd {Pd-a.s.} for d ∈ D(c∗, T ). In

particular, if c∗ is optimal, then it is conditionally optimal at 0, so that if further EPc
∗
J(c∗) <∞,

then c∗ must be conditionally optimal at any S ∈ G.

Conversely, and regardless of whether Assumption 4.3 holds true, if G includes a sequence

(Sn)n∈N0 for which (i) S0 = 0, (ii) the family (V (c∗,Sn))n≥0 has a constant Pc
∗
-expectation and is

uniformly integrable, and (iii) V (c∗,Sn)→ V (c∗,∞), Pc
∗
-a.s. (or even just in Pc

∗
-probability), as

n→∞, then c∗ is optimal.

Proof. Let {S, T } ⊂ G and c ∈ C with Sd ≤ T d {Pd-a.s.} for d ∈ D(c, T ). Then, since Sc ≤ T c

{Pc-a.s.}, GcSc ⊂ GcT c , and D(c, T ) ⊂ D(c,S), so that we obtain via Proposition 4.5, Pc-a.s.,

EPc [V (c, T )|GcSc ] = Pc|GcSc -esssupd∈D(c,T )E
Pd [J(d)|GcSc ]

≤ Pc|GcSc -esssupd∈D(c,S)E
Pd [J(d)|GcSc ] = V (c,S),

since GcSc = GdSd for s ∼S d, which establishes the first claim. The second follows at once from the

final conclusion of Proposition 4.5. Then let c∗ be optimal and {S, T } ⊂ G with Sd ≤ T d {Pd-
a.s.} for d ∈ D(c∗, T ). Note that by the supermartingale property, v = EPc

∗
EPc

∗
[V (c∗, T )|Gc∗Sc∗ ] ≤

EPc
∗
V (c∗,S) = v. So, if furthermore v < ∞ (remark that then v ∈ R), we conclude that V (c∗, T )

is Pc
∗
-integrable, and the martingale property also follows.

Next, if c∗ is conditionally optimal at S, EPc
∗
J(c∗) < ∞, and Sd ≤ T d {Pd-a.s.} for

d ∈ D(c∗, T ), then since V is a (C,G)-supermartingale system, EPc
∗
J(c∗) = EPc

∗
J(c∗,S) =

EPc
∗
V (c∗,S) ≥ EPc

∗
V (c∗, T ). On the other hand, for sure, V (c∗, T ) ≥ J(c∗, T ), Pc

∗
-a.s., so

EPc
∗
V (c∗, T ) ≥ EPc

∗
J(c∗, T ) = EPc

∗
J(c∗) hence we must have V (c∗, T ) = J(c∗, T ), Pc

∗
-a.s., i.e. c∗

is conditionally optimal at T . The penultimate claim is then also evident.

For the final claim notice that V (c∗,Sn) → V (c∗,∞) in L1(Pc
∗
), as n → ∞, and so v =

supc∈C EPcJ(c) = EPc
∗
V (c∗, 0) = EPc

∗
V (c∗,Sn)→ EPc

∗
V (c∗,∞) = EPc

∗
J(c∗), as n→∞. �

Proposition 4.7. Under Assumption 4.3 and insisting that ∞ ∈ G, V is the minimal (C,G)-

supermartingale system W satisfying the terminal condition

W (c,∞) ≥ EPc [J(c)|Gc∞], Pc-a.s. for each c ∈ C.

Proof. That V is a (C,G)-supermartingale system satisfying the indicated terminal condition is

clear from the definition of V and Theorem 4.6. Next, let W be a (C,G)-supermartingale system

satisfying said terminal condition. Then for all (c, T ) ∈ C×G and d ∈ D(c, T ), Pc-a.s. and Pd-a.s.



ON THE INFORMATIONAL STRUCTURE IN OPTIMAL DYNAMIC STOCHASTIC CONTROL 16

W (c, T ) = W (d, T ) ≥ EPd [W (d,∞)|GdT d ] ≥ EPd [EPd [J(d)|Gd∞]|GdT d ] = J(d, T ). Thus W (c, T ) ≥
V (c, T ), Pc-a.s. �

5. A solved formal example

Recall the notation of Section 2. The time set will be [0,∞) (Setting 2.1(i); T = [0,∞)).

Fix next a discount factor α ∈ (0,∞), let (Ω,H,P) be a probability space supporting two

independent, sample-path-continuous, Brownian motions B0 = (B0
t )t∈[0,∞) and B1 = (B1

t )t∈[0,∞),

starting at 0 and −x ∈ R, respectively (Setting 2.1(iii) and 2.1(iv); Fc = H, Pc = P for all c, Ω

is itself). We may assume (Ω,H) is Blackwell. By F denote the natural filtration of the bivariate

process (B0, B1). Then for each càdlàg, F-adapted, {0, 1}-valued process c, let Gc be the natural

filtration of Bc, the observed process (Setting 2.1(vi); the Gcs are themselves); let (Jck)∞k=0 be the

jump times of c (with Jc0 := 0; Jck =∞, if c has less than k jumps); and define:

C :=
⋃
ε>0

{
F-adapted, càdlàg, {0, 1}-valued, processes c, with c0 = 0,

that are Gc-predictable and such that Jck+1 − Jck ≥ ε on {Jck <∞} for all k ∈ N
}

(Setting 2.1(ii); C is itself). The insistence on the “ε-separation” of the jumps of the controls

appears artificial – our intention is to emphasize the salient features of the control-dependent

informational flow, not to be preoccupied with the technical details.

For c ∈ C, define next:

• for each t ∈ [0,∞) (with the convention sup ∅ := 0) σct := sup{s ∈ [0, t] : cs 6= ct} and

τ ct := t− σct , the last jump time of c before time t and the lag since then, respectively;

• Zc := Bc−B1−c
σc , the current distance of the observed Brownian motion to the last recorded

value of the unobserved Brownian motion;

• J(c) :=
∫∞

0 e−αtZct dt−
∫

(0,∞) e
−αtK(Zct−, τ

c
t−)|dct|, whereK : R×[0,∞)→ R is a measurable

function with polynomial growth, to be specified later (Setting 2.1(v); J is itself; remark

|Zc| ≤ B0 + B1 (where a line over a process denotes its running supremum), so there are

no integrability issues (due to the ‘ε’-separation of the jumps of c)).

Notice that E
[∫∞

0 e−αtZct dt
]

= E
[∫∞

0 e−αt
(
Bc
t −B1−c

t

)
dt
]
. Define V (x) := supc∈C EJ(c).

Finally, with regard to Setting 2.7, introduce for every c ∈ C and controlled time S,

D(c,S) := {d ∈ C : dS
c

= cS
c}.

Then let:

G := {controlled times S such that ∀c∀d(d ∈ D(c,S)⇒ Sc = Sd &GcSc = GdSd)};

all the provisions of Section 2 (specifically, those of Setting 2.1, Setting 2.7, as

well as Assumption 2.9) being thus satisfied. Thanks to Corollary 6.7, G =

{controlled times S such that ∀c∀d(dS
c

= cS
c ⇒ Sc = Sd)}.



ON THE INFORMATIONAL STRUCTURE IN OPTIMAL DYNAMIC STOCHASTIC CONTROL 17

Moreover, Assumption 4.3 can also be verified, as follows (here, the interplay between the nature

of the controls, and the observed information, will be crucial to the argument). Let {c1, c2} ⊂ C,

S ∈ G, assume c1 ∼S c2, define P := Sc1 = Sc2 , take A ∈ Gc1P = Gc2P . Consider the process

c := c11A + c21Ω\A. We claim c ∈ C (then, since J(c) = J(c1)1A + J(c2)1Ω\A, the condition

of Proposition 4.2(1) will follow). For sure, c is a {0, 1}-valued, càdlàg process, vanishing at

zero. Furthermore, if the jumps of c1 and c2 are temporally separated by ε1 > 0 and ε2 > 0,

respectively, then the jumps of c are temporally separated by ε := ε1 ∧ ε2 > 0. Finally, c is Gc-
predictable. To see this, note first that for all t ∈ [0,∞), Gct |{t≤P} = Gc1t |{t≤P} = Gc2t |{t≤P}, whilst

Gct |{P<t}∩A = Gc1t |{P<t}∩A and Gct |{P<t}∩(Ω\A) = Gc2t |{P<t}∩(Ω\A) (also, by Theorem 6.6, Proposi-

tion 6.5 and Proposition 6.9, from Part 2, {{t ≤ P}, A∩{P < t}, (Ω\A)∩{P < t}} ⊂ σ((Bc1)P∧t) =

σ((Bc2)P∧t) = σ((Bc)P∧t) ⊂ Gct ). Then it will suffice to argue that c1J0,P K = c11J0,P K = c21J0,P K,

c1LP,∞M1A = c11LP,∞M1A and c1LP,∞M1Ω\A = c21LP,∞M1Ω\A are all Gc-predictable. To see this,

one need only consider the class of Gc1 or Gc2 , respectively Gc1 , Gc2 , predictable processes V , for

which V 1J0,P K, respectively, V 1LP,∞M1A, V 1LP,∞M1Ω\A, are Gc-predictable. Then one establishes

that this is a monotone class, containing the multiplicative class of all the left continuous, Gc1 or

Gc2 , respectively Gc1 , Gc2 , adapted processes. The Functional Monotone Class Theorem allows to

conclude.

Now, we shall:

(a) Identify an instance of K for which any control in C is optimal. It will emerge that

K(z, t) = −2z/α, (z, t) ∈ R× [0,∞), fits this bill, and then V (x) = x/α.

(b) Provide a class of functions K for which V (x) is a symmetric function of the parameter x.

Here K will have the form:

K(z, t) =

∫
R

(
|
√
tu− z| − |z|

α
+
e−γ|

√
tu−z| − e−γ|z|

αγ

)
N(0, 1)(du) + 1(0,∞)(z)L(z, t), (z, t) ∈ R× [0,∞),

with L nonnegative, measurable, bounded in polynomial growth; γ :=
√

2α. We will see,

letting cε be the control, which waits an ε ∈ (0,∞) amount of time each time it has jumped

(also at time zero), and thereafter jumps at the first entrance time of Zc into (−∞, 0] –

we are witnessing here, finally, an example of a whole sequence of non-control-constant

controlled times, members of G — that for any such K, EJ(cε) → V (x) = γ|x|+e−γ|x|
αγ , as

ε ↓ 0.

Indeed, according to Bellman’s principle (Theorem 4.6), and the strong Markov property, for

each c ∈ C, the following process (where V is, by a slight abuse of notation, the would-be value

function4):

Sct :=

∫ t

0
e−αsZcsds−

∫
(0,t]

e−αsK(Zcs−, τ
c
s−)|dcs|+ e−αtV (Zct , τ

c
t ), (5.1)

4More precisely, for z ∈ R, u ∈ [0,∞), V (z, u) is the optimal payoff of the related optimal control problem in

which, ceteris paribus, B1 = z +Hu+·, for a Brownian motion H independent of B0.
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should be a (Gc,P)-supermartingale (in t ∈ [0,∞)). Moreover, if an optimal strategy c∗ exists, then

Sc
∗

should be a (Gc∗ ,P)-martingale (or, when dealing with a sequence/net of optimizing controls,

it should, in expectation, ‘be increasingly close to being one’).

Guided by (5.1), let us now consider the semimartingale decomposition of Sc, assuming K is

such that in fact (i) for z ∈ R, s ∈ [0,∞) (again with a slight abuse of notation) V (z, s) = V (z) (i.e.

no explicit lag dependence in the value function); (ii) V is of class C1, and also twice differentiable,

with second derivative continuous, except possibly at finitely many points, wherein still the left

and right derivatives exist and remain continuous from the left, respectively right; and (iii) V and

V ′ are bounded in polynomial growth.

The semimartingale decomposition (for which we require, in principle, the “usual conditions”)

may then be effected relative to the completed measure P and the usual augmentation Gc+ of Gc,
with respect to which Zc is a semimartingale (indeed, its jump part is clearly of finite variation,

whilst its continuous part is, in fact, a Brownian motion relative to the augmentation of the natural

filtration of (B0, B1)).

We thus obtain, by the Itô-Tanaka-Meyer formula [12, p. 214, Theorem IV.70, p. 216, Corol-

lary IV.1], P-a.s. for all t ∈ [0,∞):

Sct = V (x) +

∫ t

0
e−αsZcs−ds︸ ︷︷ ︸

=:C1

+

∫
(0,t]

e−αs(−K(Zcs−, τ
c
s−))|dcs|︸ ︷︷ ︸

=:J1

+

∫ t

0
e−αs(−α)V (Zcs−)ds︸ ︷︷ ︸

=:C2

(5.2)

+

(∗)︷ ︸︸ ︷∫ t

0
e−αsV ′(Zcs−)dZcs +

∫ t

0
e−αs

1

2
V ′′(Zcs−)d

s︷ ︸︸ ︷
[Zc]cts

s︸ ︷︷ ︸
=:C3

+
∑

0<s≤t
e−αs

 (∗∗)︷ ︸︸ ︷
∆V (Zcs)

(∗)︷ ︸︸ ︷
−V ′(Zcs−)∆Zcs



Note that the starred parts combine into:

(∗)︷ ︸︸ ︷∫ t

0
e−αsV ′(Zcs−)d(Zc)cts

s︸ ︷︷ ︸
=:M1

, (5.3)

which is a (Gc+,P)-martingale in t ∈ [0,∞) (since |Zc| ≤ B0 + B1). On the other hand, the

compensator of the double-starred term is:

(∗∗)︷ ︸︸ ︷∫
(0,t]
|dcs|e−αs

[∫
R
N(0, 1)(du)

(
V (
√
τ cs−u− Zcs−)− V (Zcs−)

)]
︸ ︷︷ ︸

=:J2

, (5.4)
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making:

(∗∗)︷ ︸︸ ︷∫
(0,t]
|dcs|e−αs

[
∆V (Zcs)−

∫
R
N(0, 1)(du)

(
V (
√
τ cs−u− Zcs−)− V (Zcs−)

)]
︸ ︷︷ ︸

=:M2

(5.5)

into a (Gc,P)-martingale (in t ∈ [0,∞)). For, if τ is a predictable stopping time with respect to

some filtration (in continuous time) Z, U is a Zτ -measurable random variable, and Q a probability

measure with Q[|U |1[0,t] ◦ τ ] < ∞ for each t ∈ [0,∞), then the compensator of U1Jτ,∞M (relative

to (Z,Q)) is Q[U |Zτ−]1Jτ,∞M. This fact may be applied to each jump time of the Gc-predictable

process c (since |Zc| ≤ B0 +B1), whence linearity allows to conclude (due to the ‘ε-separation’ of

the jumps of c).

Remark now that the properties of being a càdlàg (super)martingale [13, p. 173, Lemma II.67.10]

or predictable process (of finite variation) are preserved when passing to the usual augmentation

of a filtered probability space. Therefore it follows that, relative to (Gc+,P), M := M1 + M2 is

a martingale, whilst J = J1 + J2 (respectively C = C1 + C2 + C3) is a pure-jump (respectively

continuous) predictable process of finite variation. On the other hand, the process Sc is supposed

to be a (Gc+,P)-supermartingale. But then, we have obtained in this manner nothing but the

Doob-Meyer decomposition of Sc = V (x) + M + J + C, so that J and C are both, respectively

continuous and pure-jump, nonincreasing processes of finite variation [9, p. 32, Corollary 3.16] [10,

p. 412, Theorem 22.5].

Now assume furthermore that an optimizing (as ε ↓ 0) net of optimal controls is to wait for a

period of ε after each jump of c and also at the start, and then each time change the observed Brow-

nian motion precisely at the first entrance time of Zc into the set (−∞,−l] /for some prespecified

level l ∈ [0,∞)/. Remark such a control is previsible with respect to Gc.
Then we should like to have (the first two conditions follow from the supermartingale property,

the last two from the ‘near martingale’/‘limiting martingale’ condition; the presence of the a.e.

qualifiers being a reflection of the Occupation Time Density Formula [12, p. 216, Corollary IV.1]):

[from C] z − αV (z) +
1

2
V ′′(z) ≤ 0, for a.e. z ∈ R; (5.6)

[from J ] −K(z, t) +

∫
R

[V (
√
tu− z)− V (z)]N(0, 1)(du) ≤ 0, for all z ∈ R, t ∈ [0,∞); (5.7)

[from C] z − αV (z) +
1

2
V ′′(z) = 0, for a.e. z ≥ −l; (5.8)

[from J ] −K(z, t) +

∫
R

[V (
√
tu− z)− V (z)]N(0, 1)(du) = 0, for all z ≤ −l, t ∈ (0,∞).(5.9)

This concludes the first part of the analysis, deriving what ought to hold of V . In the second part

we flip, as is usual, the argument upside-down. V will be specified a priori (along with K); Sc

remains defined in terms of this prespecified V , viz. Eq. (5.1); and then it is shown that V (x) is
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the optimal payoff, via the semimartingale decomposition of Sc which the latter will continue to

enjoy in the form (5.2)-(5.3)-(5.4)-(5.5).

Indeed, as regards (a), we may take K(z, t) = −2z/α and V (z) = z/α, for z ∈ R, in which case

(5.6)-(5.7)-(5.8)-(5.9) are all satisfied with equality. Taking expectations in (5.1)-(5.2), and passing

to the limit t → ∞ via dominated convergence, we see that V (x) is the optimal payoff, and any

control from C realizes it.

For a less degenerate case, let us solve (5.8) on z ∈ [−l,∞) and in the general solution throw

away the exponentially increasing part. Then V (z) = ψ(z) for z ≥ −l, where ψ(u) := u
α + Ae−γu

(u ∈ R, A ∈ R, γ :=
√

2α). To obtain a symmetric function of V it is natural to take l = 0 and then

V (z) = ψ(|z|), z ∈ R. For such a V , (5.6) is in fact satisfied by a strict inequality on z ∈ (−∞, 0);

and V is C1 for A = 1/(γα) (and then it is even C2). Then (5.9) and (5.7) essentially necessitate

taking the form of K as specified in (b) on p. 17.

Now, to see that cε (as described in (b)) is in fact an optimizing net of controls (as ε ↓ 0), first

take expectations in (5.1)-(5.2), and pass to the limit as t → ∞ (via dominated and monotone

convergence), in order to see that V (x) ≥ EJ(c) for each c ∈ C; second apply (5.1)-(5.2) to c = cε,

pass to the limit t→∞, and note that

E

∫ ∞
0

e−αs
(
Zc

ε

s− − αV (Zc
ε

s−) +
1

2
V ′′(Zc

ε

s−)

)
ds = 2E

∫ ∞
0

e−αsZc
ε

s 1(−∞,0) ◦ Zc
ε

s ds→ 0

as ε ↓ 0. To convince the reader of this, it will suffice to check:

E

∫ T

0
e−αsZc

ε

s 1(−∞,0) ◦ Zc
ε

s ds→ 0, as ε ↓ 0,

for each T ∈ (0,∞). Fix such a T . Further, it will be sufficient to argue that:

E

∫ T

0
e−αsZc

ε

s 1(−∞,−a) ◦ Zc
ε

s ds→ 0, as ε ↓ 0,

for each a ∈ (0,∞). Fix such an a. It will now be enough to demonstrate that P-a.s. the Lebesgue

measure of the set of times Aε := {s ∈ [0, T ] : Zc
ε

s < −a} converges to 0, as ε ↓ 0. Call the intervals

of time Ak := [Jc
ε

k , J
cε

k + ε), k ∈ N0, holding periods for the control cε. Remark the holding periods

constitute a pairwise disjoint cover of Aε. Moreover, if s ∈ Aε ∩ Ak for k ∈ N, then (denoting

t0 := Jc
ε

k , j0 := cεt0 and T0 := Jc
ε

k−1) −a > Zc
ε

s = Bj0
s −B1−j0

t0
, whilst 0 ≥ Zcε

t−0
= B1−j0

t0
−Bj0

T0
, hence

−a > Bj0
s −Bj0

T0
. Thus, if s ∈ Aε belongs to the k-th holding period for cε (and k ≥ 1), then in the

time interval between the start of the (k − 1)-th holding period and the end of the k-th holding

period, one of the Brownian motions B0 and B1 must have moved by more than a. However,

thanks to the continuity of the sample paths of B0 and B1, the infimum over the amounts of time

required for either B0 or B1 to move by more than a (on the interval [0, T ]) is strictly positive

(albeit dependent on the sample point). It follows that the number of k ≥ 1 for which there can

be an s ∈ Aε with s ∈ Ak is bounded by some number, depending on the sample point, but not on

ε, and this establishes the claim.
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Part 2. Stopping times, stopped processes and natural filtrations at stopping times –

informational consistency

Recall from p. 9 the contents of the third, final, bullet point remark following Assumption 2.9

– it is to the questions posed and motivated there, that we now turn our attention. Along the

way, we shall (be forced to) investigate (i) the precise relationship between the sigma-fields of the

stopped processes, on the one hand, and the natural filtrations of the processes at these stopping

times, on the other and (ii) the nature of the stopping times of the processes and of the stopped

processes, themselves. Here is an informal statement of the kind of results that we will /seek to/

formally establish (FX denotes the natural filtration of a process X):

If X is a process, and S a time, then S is a stopping time of FX , if and only if it is a

stopping time of FXS
. When so, then FXS = σ(XS). In particular, if X and Y are

two processes, and S is a stopping time of either FX or of FY , with XS = Y S , then

S is a stopping time of FX and FY both, moreover FXS = σ(XS) = σ(Y S) = FYS .

Further, if U ≤ V are two stopping times of FX , X again being a process, then

σ(XU ) = FXU ⊂ FXV = σ(XV ).

We will perform this investigation into the nature of information generated by processes in the

two ‘obvious’ settings: first the ‘measure-theoretic’ one, without reference to probability measures

(Section 6) and then the ‘probabilistic’ one, involving a complete probability measure, under which

all the filtrations and σ-fields are completed (Section 7). This will also dovetail nicely with the

parallel development of the two frameworks for stochastic control – the ‘measure-theoretic’ and the

‘probabilistic’ one – from Part 1.

Now, the most important findings of this part are as follows:

• Lemma 6.2, Proposition 6.5, Theorem 6.6, Theorem 6.7 and Proposition 6.9, in the

‘measure-theoretic’ case;

• Corollaries 7.2 and 7.3 (in discrete time) and Proposition 7.6, Corollaries 7.7, 7.9 and 7.10

(in continuous time), for the case with completions.

(Indeed, we have already referenced many of these results in Part 1 – which fact further demon-

strates their relevance to this study.) It emerges that everything that intuitively ought to hold,

does hold, if either the time domain is discrete, or else the underlying space is Blackwell (and,

when dealing with completions, the stopping times are predictable; but see the negative results

of Examples 7.4 and 7.5). While we have not been able to drop the “Blackwell assumption”, we

believe many of the results should still hold true under weaker conditions – this remains open to

future research.

Finally, we note that the whole of the remainder of this part is in fact independent from the rest

of the paper (in particular, from Part 1).
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6. The ‘measure-theoretic’ case

We begin by fixing quite a bit of notation and by enunciating a couple of well-known (and some

less well-known) measure-theoretic facts along the way – we ask the reader to bear with us.

(•) T = N0 or T = [0,∞), with the usual linear order, Ω is some set and (E, E) a measurable

space. By a process (on Ω, with time domain T and values in E), we mean simply a collection

X = (Xt)t∈T of functions from Ω into E. With FXt := σ(Xs : s ∈ [0, t]) (for t ∈ T ), FX = (FXt )t∈T

is then the natural filtration of X.5 Remark that for every t ∈ T , FXt = σ(X|[0,t]), with

X|[0,t](ω) = (Xs(ω))s∈[0,t] for ω ∈ Ω; X|[0,t] is an FXt /E⊗[0,t]-measurable mapping. The ω-sample

path of X, X(ω), is the mapping from T into E, given by (t 7→ Xt(ω)), ω ∈ Ω. In this sense, X

may of course be viewed as an FX∞/E⊗T -measurable mapping, indeed FX∞ = σ(X). Then ImX will

denote the range (image) of the mapping X : Ω→ ET .

(•) If further S : Ω → T ∪ {∞} is a time and G is a filtration on Ω, then GS := {A ∈ G∞ :

A∩ {T ≤ t} ∈ Gt for all t ∈ T} is the filtration G at (the time) S, whilst the stopped process

XS (of a process X) is defined via XS
t (ω) := XS(ω)∧t(ω), (ω, t) ∈ Ω×T . Note, that if T = N0, X is

a G-adapted process and S is a G-stopping time, then XS is automatically adapted to the stopped

filtration (Gn∧S)n∈N0 . For, if n ∈ N0, Z ∈ E , then (XS
n )−1(Z) =

(
∪N03m≤nX

−1
m (Z) ∩ {S = m}

)
∪(

X−1
n (Z) ∩ {n < S}

)
∈ GS∧n. On the other hand, in continuous-time, when T = [0,∞), if X is

G-progressively measurable and S is a G-stopping time, then XS is also adapted to the stopped

filtration (Gt∧S)t∈[0,∞) (and is G-progressively measurable) [11, p. 9, Proposition 2.18]. Remark

also that every right- or left-continuous Euclidean space-valued G-adapted process is automatically

G-progressively measurable.

(•) Next, for a σ-field F on Ω, the measurable space (Ω,F) is said to be (i) separable or

countably generated, when it admits a countable generating set; (ii) Hausdorff, or separated,

when its atoms6 are the singletons of the members of Ω [4, p. 10]; and finally (iii) Blackwell

when its associated Hausdorff space ((Ω,F) quotiented out by ∼ of Footnote 6) (Ω̇, Ḟ) is Souslin

[4, p. 50, III.24]. Furthermore, a Souslin space is a measurable space, which is Borel isomorphic

to a Souslin topological space. The latter in turn is a Hausdorff topological space, which is also a

continuous image of a Polish space (i.e. of a completely metrizable separable topological space).

Every Souslin measurable space is necessarily separable and separated. [4, p. 46, III.16; p. 76,

III.67] For a measurable space, clearly being Souslin is equivalent to being simultaneously Blackwell

and Hausdorff. The key result for us, however, will be Blackwell’s Theorem [4, p. 51 Theorem III.26]

(repeated here for the reader’s convenience – we shall use it time and again):

Blackwell’s Theorem. Let (Ω,F) be a Blackwell space, G a sub-σ-field of F and

S a separable sub-σ-field of F . Then G ⊂ S, if and only if every atom of G is a

5[0, t] is to be understood throughout as the set {0, . . . , t} when t ∈ T = N0.
6Equivalence classes for the equivalence relation ∼ on Ω, given by (ω ∼ ω′) ⇔ (for all A ∈ F ,1A(ω) = 1A(ω′)),

{ω, ω′} ⊂ Ω.
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union of atoms of S. In particular, a F-measurable real function g is S-measurable,

if and only if g is constant on every atom of S.

(•) Remark finally that if Y is a mapping from A into some Hausdorff (resp. separable) mea-

surable space (B,B), then Y is constant on the atoms of σ(Y ) (resp. σ(Y ) is separable). For, if

{ω1, ω2} ⊂ A, A being an atom of σ(Y ), with per absurdum (under the hypothesis that (B,B)

is Hausdorff) Y (ω1) 6= Y (ω2), then there is a W ∈ B with 1W (Y (ω1)) 6= 1W (Y (ω2)), hence

1Y −1(W )(ω1) 6= 1Y −1(W )(ω2), a contradiction. Conversely, if Y is a surjective mapping from A

onto some measurable space (B,B), constant on the atoms of σ(Y ), then (B,B) is Hausdorff. For,

if {b, b′} ⊂ B and 1W (b) = 1W (b′) for all W ∈ B, then if {a, a′} ⊂ A are such that Y (a) = b

and Y (a′) = b′, 1Z(a) = 1Z(a′) for all Z ∈ σ(Y ), so that a and a′ belong to the same atom of

(A, σ(Y )) and consequently b = b′. Furthermore, any measurable subspace (with the trace σ-field)

of a separable (resp. Hausdorff) space is separable (resp. Hausdorff). Lastly, if f : A → (B,B) is

any map into a measurable space, then the atoms of σ(f) always ‘respect’ the equivalence relation

induced by f , i.e., for {ω, ω′} ⊂ A, if f(ω) = f(ω′), then ω and ω′ belong to the same atom of σ(f):

for all Σ ∈ B, 1f−1(Σ)(ω) = 1Σ(f(ω)) = 1Σ(f(ω′)) = 1f−1(Σ)(ω
′).

Now, a key result in this section will establish that, for a process X and a stopping time S

thereof, σ(XS) = FXS , i.e. that the initial structure (with respect to E⊗T ) of the stopped process

coincides with the filtration of the process at the stopping time – under suitable conditions.

Indeed, our first lemma towards this end tells us that elements of FXS are functions (albeit not

(as yet) necessarily measurable functions) of the stopped process XS .

Lemma 6.1 (Key lemma). Let X be a process (on Ω, with time domain T and values in E), S an

FX-stopping time, A ∈ FXS . Then the following holds for every {ω, ω′} ⊂ Ω: If Xt(ω) = Xt(ω
′)

for all t ∈ T with t ≤ S(ω) ∧ S(ω′), then S(ω) = S(ω′), XS(ω) = XS(ω′) and 1A(ω) = 1A(ω′).

Proof. Define t := S(ω) ∧ S(ω′). If t = ∞, for sure S(ω) = S(ω′). If not, then {S ≤ t} ∈ FXt , so

that there is a U ∈ E⊗[0,t] with {S ≤ t} = X|−1
[0,t](U). Then at least one of ω and ω′ must belong to

{S ≤ t}, hence to X|−1
[0,t](U). Consequently, since by assumption X|[0,t](ω) = X|[0,t](ω′), both do.

It follows that S(ω) = S(ω′). In particular, XS(ω) = XS(ω′).

Similarly, since A ∈ FXS , A ∩ {S ≤ t} ∈ FXt , so that there is a U ∈ E⊗[0,t] (resp. U ∈ E⊗T ),

with A ∩ {S ≤ t} = X|−1
[0,t](U) (resp. A ∩ {S ≤ t} = X−1(U)), when t < ∞ (resp. t = ∞).

Then 1A(ω) = 1A∩{S≤t}(ω) = 1U (X|[0,t](ω)) = 1U (X|[0,t](ω′)) = 1A∩{S≤t}(ω
′) = 1A(ω′) (resp.

1A(ω) = 1A∩{S≤t}(ω) = 1U (X(ω)) = 1U (X(ω′)) = 1A∩{S≤t}(ω
′) = 1A(ω′)). �

Our second lemma will allow to handle the discrete case.

Lemma 6.2 (Stopping times). Let X be a process (on Ω, with time domain N0 and values in E).

For a time S : Ω→ N0 ∪ {∞} the following are equivalent:

(1) S is an FX-stopping time.

(2) S is an FXS
-stopping time.
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Proof. Suppose first S is an FXS
-stopping time. Let n ∈ N0. Then for each m ∈ [0, n], {S ≤

m} ∈ FXS

m , so there is an Em ∈ E⊗[0,m] with {S ≤ m} = (XS |[0,m])
−1(Em). Then {S = m} ⊂

X|−1
[0,m](Em) ⊂ {S ≤ m}. Consequently {S ≤ n} = ∪m∈[0,n]X|−1

[0,m](Em) ∈ FXn .

Conversely, suppose S is an FX -stopping time. Let n ∈ N0. For each m ∈ [0, n], {S ≤ m} ∈ FXm ,

hence there is an Em ∈ E⊗[0,m] with {S ≤ m} = X|−1
[0,m](Em). Then {S = m} ⊂ (XS |[0,m])

−1(Em) ⊂
{S ≤ m}. Consequently {S ≤ n} = ∪m∈[0,n](X

S |[0,m])
−1(Em) ∈ FXS

n . �

The next step establishes that members of FXS are, in fact, measurable functions of the stopped

process XS – at least under certain conditions (but always in the discrete case).

Proposition 6.3. Let X be a process, S an FX-stopping time. If any one of the conditions (1)-

(2)-(3) below is fulfilled, then FXS ⊂ σ(XS) (where XS is viewed as assuming values in (ET , E⊗T )).

(1) T = N0.

(2) ImXS ⊂ ImX.

(3) (a) (Ω,G) is Blackwell for some σ-field G ⊃ FXS ∨ σ(XS).

(b) σ(XS) is separable (in particular, this obtains if (ImXS , E⊗T |ImXS ) is separable).

(c) XS is constant on the atoms of σ(XS), i.e. (ImXS , E⊗T |ImXS ) is Hausdorff.

Remark 6.4.

(1) Condition (2) is clearly not very innocuous, but will typically be met when X is the coor-

dinate process on a canonical space.

(2) Condition ((3)b) is verified, if there is a D ⊂ ET , with ImXS ⊂ D, such that the trace

σ-field E⊗T |D is separable. For example (when T = [0,∞)) this is the case if E is a second

countable (e.g. separable metrizable) topological space endowed with its (then separable)

Borel σ-field, and the sample paths of XS are, say, all left- or all right-continuous (take D
to be all the left- or all the right-continuous paths from E[0,∞)).

(3) Finally, condition ((3)c) follows, if (E, E) is Hausdorff and so, in particular, when the

singletons of E belong to E .

Proof. Assume first (1). Let A ∈ FXS and n ∈ N0 ∪ {∞}. Then A ∩ {S = n} ∈ FXn , so A ∩ {S =

n} = (X|[0,n])
−1(Z) (resp. A ∩ {S = n} = X−1(Z)) for some Z ∈ E⊗[0,n] (resp. Z ∈ E⊗N0),

when n < ∞ (resp. n = ∞). But then A ∩ {S = n} = (XS |[0,n])
−1(Z) ∩ {S = n} (resp.

A∩{S = n} = (XS)−1(Z)∩{S = n}). Thanks to Lemma 6.2, {S = n} ∈ σ(XS), and we are done.

Assume next (2). Let A ∈ FXS . Then 1A = F ◦X for some E⊗T /B({0, 1})-measurable mapping

F . Since ImXS ⊂ ImX, for any ω ∈ Ω, there is an ω′ ∈ Ω with X(ω′) = XS(ω), and then thanks

to Lemma 6.1 XS(ω′) = XS(ω), moreover, F ◦XS(ω) = F ◦X(ω′) = 1A(ω′) = 1A(ω). It follows

that 1A = F ◦XS .

Assume now (3). We apply Blackwell’s Theorem. Specifically, on account of ((3)a) (Ω,G) is a

Blackwell space and FXS is a sub-σ-field of G; on account of ((3)b), σ(XS) is a separable sub-σ-field
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of G. Finally, thanks to ((3)c) and Lemma 6.1, every atom (equivalently, every element) of FXS is

a union of atoms of σ(XS). It follows that FXS ⊂ σ(XS). �

The continuous-time analogue of Lemma 6.2 is now as follows:

Proposition 6.5 (Stopping times). Let X be a process (on Ω, with time domain [0,∞) and values

in E), S : Ω→ [0,∞] a time. Suppose:

(1) σ(X|[0,t]) and σ(XS∧t) are separable, (ImX|[0,t], E⊗[0,t]) and (ImXS∧t, E⊗T |ImXS∧t) Haus-

dorff for each t ∈ [0,∞).

(2) XS and X are both measurable with respect to a Blackwell σ-field G on Ω.

Then the following are equivalent:

(a) S is an FX-stopping time.

(b) S is an FXS
-stopping time.

Proof. Suppose first S is an FXS
-stopping time. Let t ∈ [0,∞). Then {S ≤ t} ∈ FXS

t . But

FXS

t = σ(XS |[0,t]) ⊂ σ(X|[0,t]) = FXt . This follows from the fact that every atom of σ(XS |[0,t]) is a

union of atoms of σ(X|[0,t]) (whence one can apply Blackwell’s Theorem). To see this, note that if ω

and ω′ belong to the same atom of σ(X|[0,t]), then X|[0,t](ω) = X|[0,t](ω′) (since (ImX|[0,t], E⊗[0,t]) is

Hausdorff). But then XS
s (ω) = XS

s (ω′) for all s ∈ [0, (S(ω)∧ t)∧ (S(ω′)∧ t)], and so by Lemma 6.1

(applied to the process XS and the stopping time S ∧ t of FXS
), (XS)S∧t(ω) = (XS)S∧t(ω′), i.e.

XS |[0,t](ω) = XS |[0,t](ω′). We conclude that ω and ω′ belong to the same atom of σ(XS |[0,t]).
Conversely, assume S is an FX -stopping time. Let t ∈ [0,∞). Then {S ≤ t} ∈ FXS∧t, S ∧ t is an

FX -stopping time and thanks to Proposition 6.3, FXS∧t ⊂ σ(XS∧t) = σ(XS |[0,t]). �

What finally follows is the main result of this section. As mentioned in the Introduction, it

generalizes canonical-space results already available in literature.

Theorem 6.6 (Generalized Galmarino’s test). Let X be a process, S an FX-stopping time. If

T = N0, then σ(XS) = FXS . Moreover, if XS is FXS /E⊗T -measurable (in particular, if it is adapted

to the stopped filtration (FXt∧S)t∈T ) and either one of the conditions:

(1) ImXS ⊂ ImX.

(2) (a) (Ω,G) is Blackwell for some σ-field G ⊃ FX∞.

(b) σ(XS) is separable.

(c) (ImXS , E⊗T |ImXS ) is Hausdorff.

is met, then the following statements are equivalent:

(i) A ∈ FXS .

(ii) 1A is constant on every set on which XS is constant and A ∈ FX∞.

(iii) A ∈ σ(XS).
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Proof. The first claim, which assumes T = N0, follows from Proposition 6.3 and the fact that

automatically XS is FXS /E⊗T -measurable in this case.

In general, implication (i)⇒(ii) follows from Lemma 6.1. Implication (ii)⇒(iii) proceeds as

follows.

Suppose first (1). Let 1A be constant on every set on which XS is constant, A ∈ FX∞. Then

1A = F ◦ X for some E⊗T /B({0, 1})-measurable mapping F . Next, from ImXS ⊂ ImX, for any

ω ∈ Ω, there is an ω′ ∈ Ω with X(ω′) = XS(ω), and then thanks to Lemma 6.1, XS(ω′) = XS(ω),

so that by assumption, 1A(ω) = 1A(ω′), also. Moreover, F ◦XS(ω) = F ◦X(ω′) = 1A(ω′) = 1A(ω).

It follows that 1A = F ◦XS .

Assume now (2). Again apply Blackwell’s Theorem. Specifically, on account of (2)(a) (Ω,G) is a

Blackwell space and FXS is a sub-σ-field of G; on account of (2)(b), σ(XS) is a separable sub-σ-field

of G. Finally, if 1A is constant on every set on which XS is constant and A ∈ FX∞, then 1A is a

G-measurable function (by (2)(a)), constant on every atom of σ(XS) (by (2)(c)). It follows that

1A is σ(XS)-measurable.

The implication (iii)⇒(i) is just one of the assumptions. �

As for our original motivation into this investigation, we obtain:

Corollary 6.7 (Observational consistency). Let X and Y be two processes (on Ω, with time domain

T and values in E), S an FX and an FY -stopping time. Suppose furthermore XS = Y S. If any

one of the conditions

(1) T = N0.

(2) ImX = ImY .

(3) (a) (Ω,G) (resp. (Ω,H)) is Blackwell for some σ-field G ⊃ FX∞ (resp. H ⊃ FY∞).

(b) σ(XS) (resp. σ(Y S)) is separable and contained in FXS (resp. FYS ).

(c) (ImXS , E⊗T |ImXS ) (resp. (ImY S , E⊗T |ImY S )) is Hausdorff.

is met, then FXS = FYS .

Remark 6.8. If T = N0, then in place of S being a stopping time of both FX and FY , it is sufficient

(ceteris paribus) to insist on S being a stopping time of just one of them. It is so by Lemma 6.2.

The same is true when (3) obtains, as long as the conditions of Proposition 6.5 are met for the

time S and the processes X and Y alike.

Proof. If (1) or (3) hold, then the claim follows immediately from Theorem 6.6.

If (2) holds, let A ∈ FXS , t ∈ T ∪ {∞}. Then 1A∩{S≤t} = F ◦X|[0,t] (resp. 1A∩{S≤t} = F ◦X)

for some E⊗[0,t]/B({0, 1})-measurable (resp. E⊗T /B({0, 1})-measurable) F , when t < ∞ (resp.

t =∞). Moreover, if ω ∈ Ω, there is an ω′ ∈ Ω with X(ω′) = Y (ω), hence X(ω) agrees with Y (ω)

and X(ω′) on T ∩ [0, S(ω)], and thus thanks to Lemma 6.1, S(ω) = S(ω′) and 1A(ω) = 1A(ω′).

We obtain F ◦ Y |[0,t](ω) = F ◦X|[0,t](ω′) = 1A∩{S≤t}(ω
′) = 1A∩{S≤t}(ω), i.e. 1A∩{S≤t} = F ◦ Y |[0,t]

(resp. F ◦ Y (ω) = F ◦X(ω′) = 1A∩{S≤t}(ω
′) = 1A∩{S≤t}(ω), i.e. 1A∩{S≤t} = F ◦ Y ). �
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We also have:

Proposition 6.9 (Monotonicity of information). Let Z be a process (on Ω, with time domain T

and values in E), U ≤ V two stopping times of FZ . If either T = N0 or else the conditions:

(1) (Ω,G) is Blackwell for some σ-field G ⊃ σ(ZV ) ∨ σ(ZU ).

(2) (ImZV , E⊗T |ImZV ) is Hausdorff.

(3) σ(ZV ) is separable.

are met, then σ(ZU ) ⊂ σ(ZV ).

Proof. In the discrete case the result follows at once from Theorem 6.6. In the opposite instance, we

claim that the assumptions imply that every atom of σ(ZU ) is a union of the atoms of σ(ZV ): Let

ω and ω′ belong to the same atom of σ(ZV ); then since (ImZV , E⊗T |ImZV ) is Hausdorff ZV (ω) =

ZV (ω′), hence by Lemma 6.1 V (ω) = V (ω′) and U(ω) = U(ω′), and so a fortiori ZU (ω) = ZU (ω′),

which implies that ω and ω′ belong to the same atom of σ(ZU ). Apply Blackwell’s Theorem. �

7. The case with completions

We have studied in the previous section natural filtrations proper — it is sometimes convenient

to augment the latter by sets of probability zero7 — we turn our attention to their completions.

Notation-wise, for a filtration G on Ω and a complete probability measure P, whose domain includes

G∞, thereon, we denote by GP the completed filtration given by (for t ∈ T ) GPt = Gt
P

= Gt ∨N ;

N being the collection of precisely all P-null sets; likewise if the domain of P includes a σ-field A on

Ω, then AP
:= A∨N . For any other unexplained notation, that we shall use, we refer the reader to

the beginning of Section 6. And while /for ease of language/ we will continue to work in the sequel

with processes/stopping times, their equivalence classes (with respect to indistinguishability/a.s.

equality), would of course (as appropriate) suffice.

First, all is well in the discrete case.

Lemma 7.1. Let T = N0, G a filtration on Ω. Let furthermore P be a complete probability measure

on Ω, whose domain includes G∞; S a GP-stopping time. Then S is P-a.s. equal to a stopping time

S′ of G; and for any G-stopping time U , P-a.s. equal to S, GU
P

= GPS. Moreover, if U is another

random time, P-a.s equal to S, then it is a GP-stopping time, and GPS = GPU .

Proof. For each n ∈ N0, we may find an An ∈ Gn, such that {S = n} = An, P-a.s. Then

S′ := (∪n∈N0An×{n})∪ ((Ω\ ∪m∈N0 Am)×{∞}) is a G-stopping time, P-a.s. equal to S. Let now

7Making them also (in the temporally continuous case, if they are not automatically already) right-continuous, is

less interesting from the point of view of stochastic control, since the stopping times one is really interested in are

(usually) foretellable/predictable, anyway. In general, this is also less of an innocuous operation. For, one might well

concede to being unable to act on a null set; one cannot but feel apprehensive about having to ‘peak infinitesimally

into the future’ before being able to act in the present. Indeed, we will see in the sequel that even the act of completion

alone is less harmless than might seem at first glance.
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U be any time with these two properties of S′. To show GU
P ⊂ GPS , it suffices to note that (i) N ,

the collection of all P-null sets, is contained in GPS and (ii) GU ⊂ G
P
S , both of which are easy to see.

Conversely, if A ∈ GPS , then for each n ∈ N0 ∪ {∞}, A ∩ {S = n} = Bn, P-a.s., for some Bn ∈ Gn,

and hence the event ∪n∈N0∪{∞}Bn ∩ {U = n} belongs to GU , and is P-a.s. equal to A.

Finally, let U be another random time, P-a.s equal to S. For each n ∈ N0 ∪ {∞}, there is then

a Cn ∈ Gn with {U = n} = {S = n} = Cn, P-a.s., whence U is a GP-stopping time. It follows, by

what we have shown already, that we can find Z, a G-stopping time, P-a.s. equal to S, hence U ,

and thus with GPS = GZ
P

= GPU . �

Corollary 7.2. Let T = N0; X and Y processes (on Ω, with time domain N0 and values in E); PX

and PY be complete probability measures on Ω whose domains contain FX∞ and FY∞, respectively,

and sharing their null sets. Suppose furthermore S is an FX
PX

and an FY
PY

stopping time, with

XS = Y S, PX and PY -a.s. Then FX
PX

S = σ(XS)
PX

= σ(Y S)
PY

= FY
PY

S .8

Proof. From Lemma 7.1 we can find stopping times U and V of FX and FY , respectively, both

PX and PY -a.s. equal to S. The event {XU = Y V } is PX and PY -almost certain. It then follows

further from Theorem 6.6 and Lemma 7.1 again, that FX
PX

S = FXU
PX

= σ(XU )
PX

= σ(XS)
PX

=

σ(Y S)
PY

= σ(Y V )
PY

= FYV
P

= FY
PY

S , as desired. �

Corollary 7.3. Let T = N0, X a process (on Ω, with time domain N0 and values in E), P a

complete probability measure on Ω whose domain contains FX∞ ∨FX
S

∞ , S : Ω→ T ∪ {∞} a random

time. Then the following are equivalent:

(1) S is an FX
P

-stopping time.

(2) S is an FXS
P

-stopping time.

Proof. That the first implies the second is clear from Lemma 7.1, Lemma 6.2 and the fact that

two processes, which are versions of each other, generate the same filtration, up to null sets. For

the converse, one resorts to re-doing the relevant part of the proof of Lemma 6.2, adding P-a.s.

qualifiers as appropriate; the details are left to the reader. �

The temporally continuous case is much more involved. Indeed, we have the following significant

negative results.

Example 7.4. Let Ω = (0,∞)×{0, 1}; F be the product of the Lebesgue σ-field on (0,∞) and of the

power set on {0, 1}; thereon P = Exp(1)×Unif({0, 1}) be the product law (which is complete; any

law on the first coordinate with a continuous distribution function would also do); e (respectively

a) be the projection onto the first (respectively second) coordinate. Define the process Nt =

a(t − e)1[0,t](e), t ∈ [0,∞) (starting at zero, the process N departs from zero at time e with unit

8Of course, all these completions really only depend on the null sets, which the two measures PX and PY share

by assumption.
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positive drift, or remains at zero, for all times, with equal probability, independently of e). Its

completed natural filtration, FN
P
, is already right-continuous.

For, if t ∈ [0,∞), FN
P

t+ = FNt+
P
; so let A ∈ FNt+, we show A ∈ FNt

P
. (i) A ∩ {e = t} is

P-negligible. (ii) For sure A = N−1(G), for some G ⊂ R[0,∞), measurable. Then define for each

natural n ≥ 1/t (when t > 0), Ln : R[0,t] → R[0,+∞), by demanding

Ln(ω)(u) =

ω(u), for u ≤ t

ω(t) + (u− t)ω(t)−ω(t−1/n)
1/n , for u > t

(u ∈ [0,∞), ω ∈ R[0,t]), a measurable mapping. It follows that for t > 0, for each natural

n ≥ 1/t, N−1(G) ∩ {e ≤ t − 1/n} = N |−1
[0,t](L

−1
n (G)) ∩ {e ≤ t − 1/n} ∈ FNt . (iii) For each natural

n, A ∩ {e > t + 1/n} = N |−1
[0,t+1/n](Gn) ∩ {e > t + 1/n} for some measurable Gn ⊂ R[0,t+1/n],

so A ∩ {e > t + 1/n} is ∅ or {e > t + 1/n} according as 0 is an element of Gn or not (note

this is a “monotone” condition, in the sense that as soon as we once get a non-empty set for

some natural n, we subsequently get {e > t + 1/m} for all natural m ≥ n). It follows that

A ∩ {e > t} = ∪n∈N(A ∩ {e > t+ 1/n}) ∈ {∅, {e > t}} ⊂ FNt .

Let further U be the first entrance time of the process N to (0,∞). By the Début Theorem, this

is a stopping time of FN
P
, but is P-a.s. equal to no stopping time of FN at all.

For, suppose that it were P-a.s. equal to a stopping time V of FN . Then there would be a

set Ω′, belonging to F , of full P-measure, and such that V = U on Ω′. Tracing everything (F ,

P, N , a, e, V ) onto Ω′, we would obtain (F ′, P′, N ′, a′, e′, V ′), with (i) V ′ equal to the first

entrance time of N ′ to (0,∞) and (ii) V ′ a stopping time of FN ′ , the natural filtration of N ′.

Still N ′t = a′(t − e′)1[0,t](e
′), t ≥ 0. Take now {ω, ω′} ⊂ Ω′ with a(ω) = 1, a(ω′) = 0, denote

t := e(ω). Then H|[0,t](ω) = H|[0,t](ω′), so ω and ω′ should belong to the same atom of FN ′t ; yet

{V ′ ≤ t} ∈ FN ′t , with 1{V ′≤t}(ω) = 1 and 1{V ′≤t}(ω
′) = 0, a contradiction.

Moreover, FN
P

U 6= σ(NU )
P
, since the event A := {U < ∞} = {a = 1} that N ever assumes a

positive drift belongs to FN
P

U (which fact is clear), but not to σ(NU )
P

= σ(0)
P
, the trivial σ-field

(it is also obvious; P(a = 1) /∈ {0, 1}). �

Example 7.5. It is worse, still. Let Ω = (0,∞) × {−2,−1, 0} be endowed with the law P =

Exp(1) × Unif({−2,−1, 0}), defined on the tensor product of the Lebesgue σ-field on (0,∞) and

the power set of {−2,−1, 0}. Denote by e, respectively I, the projection onto the first, respectively

second, coordinate. Define the process Xt := I(t − e)1[0,t](e) , t ∈ [0,∞), and the process Yt :=

(−1)(t−e)1[0,t](e)1{−1,−2} ◦I, t ∈ [0,∞). The completed natural filtrations of X and Y are already

right-continuous. The first entrance time S of X into (−∞, 0) is equal to the first entrance time

of Y into (−∞, 0), and this is a stopping time of FX
P

as it is of FY
P

(but not of FX and not of

FY ). Moreover, XS = 0 = Y S .

Consider now the event A := {I = −1}. Then A ∈ FX
P

S (it is clear). However, A /∈ FY
P

S . For,

assuming the converse, we should have, P-a.s., 1A∩{S≤1} = F ◦ Y |[0,1] for some, measurable, F . In
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particular, since A ∩ {S ≤ 1} has positive probability, there should be an ω ∈ A ∩ {S ≤ 1} with

F (Y |[0,1](ω)) = 1. But also the event {I = −2} ∩ {S ≤ 1} has positive probability and is disjoint

from A ∩ {S ≤ 1}, so there should be an ω′ ∈ {I = −2} ∩ {S ≤ 1} having F (Y |[0,1](ω
′)) = 0. A

contradiction, since nevertheless Y |[0,1](ω
′) = Y |[0,1](ω). �

The problem here, as it were, is that in completing the natural filtration the (seemingly innocu-

ous) operation of adding all the events negligible under P is done uncountably many times (once

for every deterministic time). In particular, this cannot be recovered by a single completion of the

sigma-field generated by the stopped process. Completions are not always harmless.

Furthermore, it does not appear immediately clear to us, what a sensible direct ‘probabilistic’

analogue of Lemma 6.1 should be /nor, indeed, how to go about proving one, and then using it to

produce the relevant counter-parts to the results of Section 6/.

However, the situation is not so bleak, since positive results can be got at least for fore-

tellable/predictable stopping times: As in the case of discrete time – by an indirect method;

reducing the ‘probabilistic’ to the ‘measure-theoretic’ case. We use here the terminology of [4,

p. 127, Definitions IV.69 & IV.70]; given a filtration G and a probability measure Q on Ω, whose

domain includes G∞:

A random time S : Ω → [0,∞] is predictable relative to G if the stochastic

interval JT,∞J is predictable. It is Q-foretellable relative to G if there exists a

Q-a.s. nondecreasing sequence (Sn)n≥1 of G-stopping times with Sn ≤ S, Q-a.s for

all n ≥ 1 and such that, again Q-a.s.,

lim
n→∞

Sn = S, Sn < S for all n on {S > 0};

foretellable, if the a.s. qualifications can be omitted.

Note that in a P-complete filtration (P itself assumed complete), the notions of predictable, fore-

tellable and P-foretellable stopping times coincide [4, p. 127, IV.70; p. 128, Theorem IV.71 & p.

132, Theorem IV.77].

The following is now a complement to [4, p. 120, Theorem IV.59 & p. 133, Theorem IV.78] [9,

p. 5, Lemma 1.19], and an analogue of the discrete statement of Lemma 7.1:

Proposition 7.6. Let T = [0,∞), G be a filtration on Ω. Let furthermore P be a complete

probability measure on Ω, whose domain includes G∞; S a predictable stopping time relative to GP.

Then S is P-a.s. equal to a predictable stopping time P of G. Moreover, if U is any G-stopping

time, P-a.s. equal to S, then GPS = GU
P

. Finally, if S′ is another random time, P-a.s equal to S,

then it is a GP-stopping time, and GPS = GPS′.

Proof. The first claim is contained in [4, p. 133, Theorem IV.78].

Now let U be any G-stopping time, P-a.s. equal to S. The inclusion GPS ⊃ GU
P

is obvious. Then

take A ∈ GPS . Since A ∈ GP∞ = G∞
P
, there is an A′ ∈ G∞, such that A′ = A, P-a.s. Furthermore,
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since S is foretellable,

SA :=

S on A

∞ on Ω\A
is foretellable also (if (Sn)n≥1 P-foretells S, then ((Sn)A ∧ n)n≥1 P-foretells SA). Hence, by what

we have already shown, there exists V , a G-stopping time, with V = SA, P-a.s. So, P-a.s., A =

(A′ ∩ {U =∞}) ∪ {V = U <∞} ∈ GU .

Finally let S′ be a random time, P-a.s. equal to S. Clearly, it is a GP-stopping time. Moreover,

we have found P , a G-stopping time, P-a.s. equal to S and (by way of corollary) S′. It follows from

what we have just shown that GPS = GP
P

= GPS′ . �

From this we can obtain easily a couple of useful counter-parts to the findings of Section 6 in the

continuous case. They (Corollaries 7.7, 7.9 and 7.10 that follow) should be used in conjunction with

(in this order) (i) the fact that a standard Borel space9-valued random element measurable with

respect to the completed domain of the probability measure Q, is Q-a.s. equal to a random element

measurable with respect to the uncompleted domain of Q (Q being the completion of Q) [10, p. 13,

Lemma 1.25] and (ii) the existence part of Proposition 7.6. Loosely speaking one imagines working

on the completion of a nice (Blackwell) space. Then the quantities measurable with respect to

the completed sigma-fields are a.s. equal to quantities measurable with respect to the uncompleted

sigma-fields, and to them the ‘measure-theoretic’ results apply. Taking completions again, we arrive

at the relevant ‘probabilistic’ statements. The formal results follow.

Corollary 7.7. Let T = [0,∞), Z a process and P a complete probability measure on Ω, whose

domain includes FZ∞, P an FZ
P

predictable stopping time. If further for some process X P-

indistinguishable from Z and a stopping time S of FX , P-a.s. equal to P :

(1) (Ω,G) is Blackwell for some σ-field G ⊃ FXS ∨ σ(XS).

(2) σ(XS) is separable.

(3) (ImXS , E⊗[0,∞)|ImXS ) is Hausdorff.

then FZ
P

P ⊂ σ(ZP )
P

.

Remark 7.8. The reverse inclusion σ(ZP ) ⊂ FZ
P

is usually trivial (compare the remarks on this

in the second bullet point entry of Section 6, p. 22).

Proof. According to Proposition 6.3, FXS ⊂ σ(XS). Also FX
P

= FZ
P

and σ(XS)
P

= σ(ZP )
P
.

Taking completions in FXS ⊂ σ(XS), we obtain by Proposition 7.6, as applied to the stopping time

P of FX
P
, P-a.s. equal to the stopping time S of FX :

FZ
P

P = FX
P

P = FXS
P
⊂ σ(XS)

P
= σ(ZP )

P
,

9One that is Borel isomorphic to a Borel subset of [0, 1] [10, p. 7], equivalently a Borel subset of a Polish space [2,

p. 12, Definition 6.2.10]. Recall the spaces of Euclidean space-valued càdlàg (resp. continuous) paths endowed with

the Skorohod topology [9, Section VI.1] (resp. the topology of locally uniform convergence [11, p. 60]) are Polish,

hence standard Borel, spaces.
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as desired. �

Corollary 7.9. Let Z and W be two processes (on Ω, with time domain [0,∞) and values in

E); PZ and PW probability measures on Ω, sharing their null sets, and whose domain includes

FZ∞ and FW∞ , respectively; P a predictable FZ
PZ

and FW
PW

-stopping time. Suppose furthermore

ZP = WP , PZ and PW -a.s. If for two processes X and Y , PZ and PW -indistinguishable from

Z and W , respectively, and some stooping times S and U of FX and FY , respectively, PZ and

PW -a.s. equal to P :

(1) (Ω,G) (resp. (Ω,H)) is Blackwell for some σ-field G ⊃ FX∞ (resp. H ⊃ FY∞).

(2) σ(XS) (resp. σ(Y U )) is separable and contained in FXS (resp. FYU ).

(3) (ImXS , E⊗[0,∞)|ImXS ) (resp. (ImY U , E⊗[0,∞)|ImY U )) is Hausdorff.

then FZ
PZ

P = σ(ZP )
PZ

= σ(WP )
PW

= FW
PW

P .

Proof. The claim follows from Corollary 7.7, and the fact that again (similarly as in the proof of

Corollary 7.7) σ(XS) ⊂ FXS implies σ(ZP )
PZ

⊂ FZ
PZ

P ; likewise for W . �

Corollary 7.10. Let X be a process (on Ω, with time domain [0,∞) and values in E); P a complete

probability measure on Ω, whose domain includes FX∞; S and P two predictable stopping times of

FX
P

with S ≤ P . Let U and V be two stopping times of the natural filtration of a process Z, P-

indistinguishable from X, P-a.s. equal to S and P , respectively, with U ≤ V , and such that: (Ω,G)

is Blackwell for some σ-field G ⊃ σ(ZV ) ∨ σ(ZU ), (ImZV , E⊗T |ImZV ) is Hausdorff and σ(ZV ) is

separable. Then σ(XS)
P
⊂ σ(XP )

P
.

Remark 7.11. the existence part of Proposition 7.6 here, is as follows: There are U and V ′,

stopping times of FX , P-a.s. equal to S and P , respectively. Then, true, U ≤ V ′ only P-a.s. But

V := V ′1(U ≤ V ′) + U1(U > V ′) is also a stopping time of FX , P-a.s. equal to P , and it satisfies

U ≤ V with certainty.

Proof. We find that σ(XS)
P

= σ(ZU )
P

and σ(XP )
P

= σ(ZV )
P
. Then apply Proposition 6.9. �

We are not able to provide a (in conjunction with Proposition 7.6) useful counter-part to Propo-

sition 6.5. (True, Proposition 7.6 says that given a predictable stopping time P of FXP
P
, there is

a predictable stopping time U of FXP
, P-a.s. equal to P . But this is not to say U is a stopping

time of FXU
, so one cannot directly apply Proposition 6.5.) This is open to future research.

References

1. A. Bensoussan. Stochastic Control of Partially Observable Systems. Cambridge University Press, 2004.

2. V. I. Bogachev. Measure Theory, volume 2 of Measure Theory. Springer, 2007.

3. Z. Brzeźniak and S. Peszat. Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process.

Studia Mathematica, 137(3):261–299, 1999.

4. C. Dellacherie and P. A. Meyer. Probabilities and Potential A. North-Holland Mathematics Studies. Herman

Paris, 1978.



ON THE INFORMATIONAL STRUCTURE IN OPTIMAL DYNAMIC STOCHASTIC CONTROL 33

5. N. El Karoui. Les Aspects Probabilistes Du Contrôle Stochastique. In P. L. Hennequin, editor, Ecole d’Eté de
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Appendix A. Miscellaneous technical results

Throughout this appendix (Ω,F ,P) is a probability space; E denotes expectation with respect

to P.

Lemma A.1 (On conditioning). Let X : Ω → [−∞,+∞] be a random variable, and Gi ⊂ F ,

i = 1, 2, two sub-σ-fields of F agreeing when traced on A ∈ G1 ∩G2. Then, P-a.s. on A, E[X|G1] =

E[X|G2], whenever X has a P-integrable positive or negative part.

Proof. 1AZ is G2-measurable, for any Z G1-measurable, by an approximation argument. Then,

P-a.s., 1AE[X|G1] = E[1AX|G2], by the very definition of conditional expectation. �

Lemma A.2 (Generalised conditional Fatou and Beppo Levi). Let G ⊂ F be a sub-σ-field and

(fn)n≥1 a sequence of [−∞,+∞]-valued random elements, whose negative parts are dominated P-a.s

by a single P-integrable random variable. Then, P-a.s.,

E[lim inf
n→∞

fn|G] ≤ lim inf
n→∞

E[fn|G].

If, moreover, (fn)n≥1 is P-a.s. nondecreasing, then, P-a.s.,

E[ lim
n→∞

fn|G] = lim
n→∞

E[fn|G].
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Proof. Just apply conditional Fatou (resp. Beppo Levi) to the P-a.s. nonnegative (resp. non-

negative nondecreasing) sequence fn + g where g is the single P-integrable random variable which

P-a.s. dominates the negative parts of f . Then use linearity and subtract the P-a.s. finite quantity

E[g|G]. �

The following is a slight generalization of [15, Theorem A2].

Lemma A.3 (Essential supremum and the upwards lattice property). Let G ⊂ F be a sub-σ-field

and X = (Xλ)λ∈Λ a collection of [−∞,+∞]-valued random variables with integrable negative parts.

Assume furthermore that for each {ε,M} ⊂ (0,∞), X has the “(ε,M)-upwards lattice property”,

i.e. for all {λ, λ′} ⊂ Λ, one can find a λ′′ ∈ Λ with Xλ′′ ≥ (M ∧Xλ) ∨ (M ∧Xλ′)− ε P-a.s. Then,

P-a.s.,

E[P-esssupλ∈ΛXλ|G] = P-esssupλ∈ΛE[Xλ|G], (A.1)

where on the right-hand side the essential supremum may of course equally well be taken with respect

to the measure P|G.

Proof. It is assumed without loss of generality that Λ 6= ∅, whence remark that P-esssupλ∈ΛXλ has

an integrable negative part. Then the “≥-inequality” in (A.1) is immediate.

Conversely, we show first that it is sufficient to establish the “≤-inequality” in (A.1) for each

truncated (Xλ ∧N)λ∈Λ family, as N runs over N. Indeed, suppose we have P-a.s.

E[P-esssupλ∈ΛXλ ∧N |G] ≤ P-esssupλ∈ΛE[Xλ ∧N |G]

for all N ∈ N. Then a fortiori P-a.s. for all N ∈ N,

E[P-esssupλ∈ΛXλ ∧N |G] ≤ P-esssupλ∈ΛE[Xλ|G]

and generalised conditional monotone convergence (Lemma A.2) allows to pass to the limit:

E[ lim
N→∞

P-esssupλ∈ΛXλ ∧N |G] ≤ P-esssupλ∈ΛE[Xλ|G]

P-a.s. But clearly, P-a.s., limN→∞ P-esssupλ∈ΛXλ ∧ N ≥ P-esssupλ∈ΛXλ, since for all λ ∈ Λ, we

have, P-a.s., Xλ ≤ limN→∞Xλ ∧N ≤ limN→∞ P-esssupµ∈ΛXµ ∧N .

Thus it will indeed be sufficient to establish the “≤-inequality” in (A.1) for the truncated families,

and so it is assumed without loss of generality (take M = N) that X enjoys, for each ε ∈ (0,∞),

the “ε-upwards lattice property”: for all {λ, λ′} ⊂ Λ, one can find a λ′′ ∈ Λ with Xλ′′ ≥ Xλ∨Xλ′−ε
P-a.s.

Then take (λn)n≥1 ⊂ Λ such that, P-a.s., P-esssupλ∈ΛXλ = supn≥1Xλn and fix δ > 0. Recur-

sively define (λ′n)n≥1 ⊂ Λ so that, Xλ′1
= Xλ1 while for n ∈ N, P-a.s., Xλ′n+1

≥ Xλ′n ∨Xλn+1 − δ/2n.

Prove by induction that P-a.s. for all n ∈ N, Xλ′n ≥ max1≤k≤n(Xλk −
∑n−1

l=1 δ/2
l), so that

lim infn→∞Xλ′n ≥ supn∈NXλn − δ, P-a.s. Note next that the negative parts of (Xλ′n)n∈N are

dominated P-a.s. by a single P-integrable random variable. By the generalised conditional Fatou’s

lemma (Lemma A.2) we therefore obtain, P-a.s., P-esssupλ∈ΛE[Xλ|G] ≥ lim infn→∞ E[Xλ′n |G] ≥



ON THE INFORMATIONAL STRUCTURE IN OPTIMAL DYNAMIC STOCHASTIC CONTROL 35

E[lim infn→∞Xλ′n |G] ≥ E[P-esssupλ∈ΛXλ|G] − δ. Finally, let δ descend to 0 (over some sequence

descending to 0). �
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