Exercise Sheet 1, ST213

Let Ω be a sample space. In the sequel (unless otherwise indicated) algebra will mean algebra on Ω . Prove the following statements:

- 1) The power set $\mathcal{P}(\Omega)$, that is the set of precisely all subsets of Ω , is an algebra.
- 2) $\{\emptyset, \Omega\}$ is an algebra (the trivial algebra).
- 3) Let A_1 and A_2 be two algebras. Then $A_1 \cap A_2$ is an algebra. If $(A_j)_{j \in \mathcal{J}}$ is a family of algebras, then $\bigcap_{j \in \mathcal{J}} A_j$ is an algebra.
- 4) Let \mathcal{C} be a set of subsets of Ω , i.e. $\mathcal{C} \subseteq \mathcal{P}(\Omega)$. Then

$$a(\mathcal{C}) := \bigcap_{\mathcal{A} \text{ algebra}, \ \mathcal{C} \subseteq \mathcal{A}} \mathcal{A}$$

is an algebra, the algebra generated by C.

- 5) If $A \subseteq \Omega$ and $C = \{A\}$, then $a(C) = \{\emptyset, A, A^c, \Omega\}$.
- 6) If for some $n \in \mathbb{N}$, $C = \{A_1, \dots, A_n\}$ where $A_i \subseteq \Omega$ for $1 \le i \le n$, $A_i \cap A_j = \emptyset$ for $1 \le i, j \le n$ with $i \ne j$, and $A_1 \cup \dots \cup A_n = \Omega$; then:

$$a(\mathcal{C}) = \{\emptyset\} \cup \{A_{i_1} \cup \dots \cup A_{i_m} : 1 \le i_k \le n; k = 1, 2, \dots, m; m = 1, 2, \dots, n\}.$$

In other words if $\mathcal{R} \subseteq \mathcal{P}(\Omega)$ is a finite partition of Ω then $a(\mathcal{R})$ consists of the empty set and the collection of all finite unions of elements in \mathcal{R} . Recall that \mathcal{R} is a partition of Ω if and only if $\mathcal{R} \subseteq \mathcal{P}(\Omega)$; $\bigcup_{R \in \mathcal{R}} R = \Omega$; $\emptyset \notin \mathcal{R}$; and $V, U \in \mathcal{R}$, $V \neq U$, implies that $V \cap U = \emptyset$.

- 7) Let $\Omega = \mathbb{R}$. Write out explicitly $a(\{(1,2],[2,3)\})!$
- 8) Let \mathcal{A} be an algebra of subsets of \mathbb{R} and $X : \Omega \to \mathbb{R}$. Then $\{X^{-1}(A) : A \in \mathcal{A}\}$ is an algebra, where, for $A \in \mathcal{A}$, $X^{-1}(A) = \{X \in A\} = \{\omega \in \Omega : X(\omega) \in A\}$.