Exercise Sheet 2, ST213

In the following, $a(\mathcal{C})$ will denote the algebra generated by \mathcal{C} (on the sample space Ω), while $\sigma(\mathcal{C})$ will denote the σ-algebra generated by \mathcal{C} (on the sample space Ω).

1) Assume $A_{1}, \ldots, A_{n} \in \mathcal{A}$ where \mathcal{A} is an algebra of subsets of a sample space Ω. Set

$$
B_{i}=A_{i} \backslash\left(A_{1} \cup \ldots \cup A_{i-1}\right), \quad i=1, \ldots, n
$$

a) Only using the properties stated in our definition of an algebra, show that $B_{i} \in \mathcal{A}$ for $i=1, \ldots, n$.
b) Show that $\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n} B_{i}$.
2) Let $\mathbf{P}_{n}, n=1,2, \ldots$, be a sequence of contents on (Ω, \mathcal{A}), where \mathcal{A} is an algebra of subsets of a sample space Ω. Define $\mathbf{P}: \mathcal{A} \rightarrow[0,+\infty]$ by setting for $A \in \mathcal{A}$:

$$
\mathbf{P}(A)=\left\{\begin{array}{cl}
\sum_{n=1}^{\infty} \mathbf{P}_{n}(A), & \text { if this series converges; } \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

Show that \mathbf{P} is a content on (Ω, \mathcal{A}). For short, we write $\sum_{n=1}^{\infty} \mathbf{P}_{n}$ for this content.
3) Let \mathcal{C} be a set of subsets of a sample space Ω. Show that $a(\mathcal{C}) \subseteq \sigma(\mathcal{C})$, while $\sigma(a(\mathcal{C}))=\sigma(\mathcal{C})$.
4) Establish that any finite algebra is automatically a σ-algebra (on a given space Ω).
5) Let (Ω, \mathcal{F}) be a measurable space.
a) Show that if $\left\{A_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F}$ then $\bigcap_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
b) Show that a measure \mathbf{P} on (Ω, \mathcal{F}) is sub-additive, that is $\mathbf{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mathbf{P}\left(A_{i}\right)$ for every $\left\{A_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F}$.

Complements.

(i) Let Ω be any set. Find an explicit description for $\rho:=\sigma(\{\{\omega\}: \omega \in \Omega\})$. In particular, decide whether $\rho=\mathcal{P}(\Omega)$ depending on whether or not Ω is denumerable.
(ii) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. Show that:

$$
\sigma(\mathcal{A})=\bigcup_{\mathcal{I} \subseteq \mathcal{A}, \mathcal{I} \text { denumerable }} \sigma(\mathcal{I})
$$

(iii) Let \mathbf{P} be a finite content on an algebra \mathcal{A} of subsets of Ω. Prove the inclusion-exclusion (Bonferroni in-) equalities, i.e. show that ${ }^{1}$:
(a) For any $n \in \mathbb{N}$, any sequence A_{1}, \ldots, A_{n} of members of \mathcal{A}, and any $0 \leq k \leq n$:

$$
\left(\mathbf{P}\left(\bigcup_{i=1}^{n} A_{i}\right)-\sum_{i=1}^{k}(-1)^{i+1} \sum_{1 \leq l_{1}<\cdots<l_{i} \leq n} \mathbf{P}\left(A_{l_{1}} \cap \cdots \cap A_{l_{i}}\right)\right)(-1)^{k} \geq 0
$$

with equality for $k=n$.

[^0](b) Conclude that, if Ω is finite, then for any $n \in \mathbb{N}, 0 \leq k \leq n$ and subsets A_{1}, \ldots, A_{n} of Ω :
$$
\left(\left|\bigcup_{i=1}^{n} A_{i}\right|-\sum_{i=1}^{k}(-1)^{i+1} \sum_{1 \leq l_{1}<\cdots<l_{i} \leq n}\left|A_{l_{1}} \cap \cdots \cap A_{l_{i}}\right|\right)(-1)^{k} \geq 0
$$
with equality for $k=n$.

[^0]: ${ }^{1}$ We always understand $\sum_{\emptyset}:=0$, while $\cup_{\emptyset}:=\emptyset$. In particular, $\sum_{i=1}^{0}:=0$ and $\cup_{i=1}^{0}:=\emptyset$.

