Jensen's inequality in \mathbb{R}

Matija Vidmar

November 4, 2013

Proposition 1 (Jensen's inequality). Let X be a random variable, $\mathrm{E}|X|<+\infty, X$ taking values in an interval $I \subset \mathbb{R}, \phi: I \rightarrow \mathbb{R}$ convex. Then $\phi \circ X$ is a random variable, $\mathrm{E} X \in I, \mathrm{E}[\phi \circ X] \in$ $(-\infty,+\infty]$ is well-defined, and

$$
\mathrm{E}[\phi \circ X] \geq \phi(\mathrm{E} X) .
$$

Moreover, if $\mathrm{E} X \in I \backslash I$, or else if ϕ is strictly convex on some open interval containing $\mathrm{E} X$ and $\mathrm{E}[\phi \circ X]=\phi(\mathrm{E} X)$, then necessarily $X=\mathrm{E} X, \mathrm{P}-a . s \square_{\square}^{1}$

Proof. $\left.\phi\right|_{\stackrel{\circ}{I}}$ is continuous and $I \backslash \stackrel{\circ}{I}$ and $\stackrel{\circ}{I}$ are Borel subsets of \mathbb{R}. Thus ϕ is Borel measurable, and so $\phi \circ X$ a random variable. Next, let $a_{1}:=\inf I \in[-\infty,+\infty)$ and $a_{2}:=\sup I \in(-\infty,+\infty]$ (note that, necessarily, $I \neq \emptyset$). If $a_{1}=-\infty$ (resp. $a_{2}=+\infty$), clearly $\mathrm{E} X>a_{1}$ (resp. $\mathrm{E} X<a_{2}$), since, by assumption, $\mathrm{E}|X|<+\infty$. Otherwise, note that $\mathrm{E} X=a_{1}$ (resp. $\mathrm{E} X=a_{2}$) implies $X=a_{1}$ (resp. $X=a_{2}$), P-a.s., so that $a_{1} \in I$ (resp. $a_{2} \in I$). It follows that $\mathrm{E} X \in I$. Further to this, note that for some $\{a, b\} \subset \mathbb{R}, \phi \circ X \geq a X+b$, hence $(\phi \circ X)^{-} \leq(a X+b)^{-} \leq|a X+b| \leq|a||X|+|b|$, so that $\mathrm{E}(\phi \circ X)^{-}<+\infty$.

We next wish to prove $\mathrm{E}[\phi \circ X] \geq \phi(\mathrm{E} X)$. If $\mathrm{E} X \in I \backslash \stackrel{\circ}{I}$, this is clear, since then $X=\mathrm{E} X$, P-a.s. Otherwise, $\mathrm{E} X \in \stackrel{\circ}{I}$, and $\left.\phi\right|_{\circ}$ is the pointwise supremum of the restrictions to $\stackrel{\circ}{I}$ of the affine minorants of $\phi \bigcup^{2}$ Let the set of the latter be denoted \mathcal{A}. Then $\phi \circ X \geq a \circ X$, and hence $\mathrm{E}[\phi \circ X] \geq a(\mathrm{E} X)$ for all $a \in \mathcal{A}$. Now take the supremum over $a \in \mathcal{A}$ to obtain $\mathrm{E}[\phi \circ X] \geq \phi(\mathrm{E} X)$.

Finally, suppose that, in fact, $\mathrm{E}[\phi \circ X]=\phi(\mathrm{E} X)$ and $\mathrm{E} X \in \stackrel{\circ}{I}$, with ϕ strictly convex on an open interval containing $\mathrm{E} X$. Then there exists some $a \in \mathcal{A}$, such that the only zero of $\phi-a$ is $\mathrm{E} X$. We obtain $\mathrm{E}[\phi \circ X-a \circ X]=\phi(\mathrm{E} X)-a(\mathrm{E} X)=0$, hence $\phi \circ X=a \circ X$, and so $X=\mathrm{E} X$, P-a.s.

[^0]
[^0]: ${ }^{1} I$ is the interior of I, i.e. it is the interval I without its endpoints.
 ${ }^{2}$ This is a consequence of the fact that ϕ has "nondecreasing difference quotients", in the precise sense that $\frac{\phi(t)-\phi(s)}{t-s} \leq \frac{\phi(u)-\phi(s)}{u-s} \leq \frac{\phi(u)-\phi(t)}{u-t}$, whenever $\{s, t, u\} \subset I$ and $s<t<u$. Moreover, $\left.\phi\right|_{I}$ then admits a finite left and right derivative function, the latter pointwise no smaller than the former.

