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Introduction

A random measure ξ on a complete separable metric space (c.s.m.s.) X is

called strictly α-stable (StαS) if

t1/αξ′ + (1− t)1/αξ′′
D
= ξ ∀t ∈ [0, 1],

where ξ′ and ξ′′ are independent copies of ξ and D= denotes the equality in

distribution. This de�nition cannot be directly extended to point processes

because the scalar multiplication doesn't preserve the integer-valued nature

of point processes. We need a well-de�ned �multiplication� acting on point

processes. The simplest way to obtain it is to use a stochastic analogous of

multiplication: independent thinning, which we will denote by ◦. Thus we

say that a point process Φ on a c.s.m.s. X is discrete α-stable (DαS) if

t1/α ◦ Φ′ + (1− t)1/α ◦ Φ′′
D
= Φ ∀t ∈ [0, 1],

where Φ′ and Φ′′ are independent copies of Φ. Davidov, Molchanov and

Zuyev in [3] study DαS point processes and prove that they are Cox pro-

cesses (doubly stochastic point processes) directed by StαS random mea-

sures. Therefore DαS point processes inherit properties from StαS random

measures, like spectral and LePage representations. They also provide a

cluster representation for such processes based on Sibuya point processes. In

the second chapter of the present work, after having provided basic notions

of point process theory in the �rst chapter, we go through the main results

of their article.
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In the third chapter we propose a generalization of discrete stability for point

processes considering a stochastic operation which is more general then thin-

ning. We allow every point to be replaced by a random number of points

rather than just being deleted or retained as in the thinning case. We refer to

this operation as branching. Every branching operation is constructed from

a subcritical Markov branching process
(
Y (t)

)
t>0

with generator semigroup

F = (Ft)t≥0 and satisfying Y (0) = 1. We denote this operation by ◦F as

Steutel and Van Harn did for the integer-valued random variables case in

[4]. In this setting when a point process is �multiplied� by a real number

t ∈ (0, 1] every point is replaced by a bunch of points located in the same

position of their progenitor. The number of points in the bunch is stochasti-

cally distributed according to the distribution of Y (− ln(t)). This operation

preserves distributivity and associativity with respect to superposition and

generalize thinning.

Then we characterize stable point processes with respect to branching oper-

ations ◦F , which we call F-stable point processes. Let Y∞ denote the limit

distribution of the branching process
(
Y (t)

)
t>0

conditional to the survival

of the process. We prove that if we replace every point of a DαS point pro-

cess with a stochastic number of points on the same location according to

Y∞ we obtain an F-stable point process. Vice versa every F-stable point

process can be constructed in this way. Further we deduce some properties

of F-stable point processes.

In order to move to a broader context we asked ourselves which class of oper-

ations is the appropriate one to study stability. Given a stochastic operation

◦ on point processes the associative and distributive properties are enough

to prove that Φ is stable with respect to ◦ if and only if

∀n ∈ N ∃cn ∈ [0, 1] : Φ
D
= cn ◦ (Φ(1) + ...+ Φ(n)),

where Φ(1), ...,Φ(n) are independent copies of Φ. In such a context stable

point processes arise inevitably in various limiting schemes similar to the
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central limit theorem involving superposition of point processes. That's why

in the fourth chapter we study and characterize this class of stochastic op-

erations. We prove that a stochastic operation on point processes satis�es

associativity and distributivity if and only if it presents a branching struc-

ture: �multiplying� by t a point process is equivalent to let the process evolve

for − ln(t) time according to some general Markov branching process (there-

fore including di�usion and general branching of particles).
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Chapter 1

Preliminaries

1.1 De�nition of a Point Process

Spaces of measures

This �rst chapter follows Daley and Vere-Jones approach ([1] and [2]).

In the whole chapter X will be a complete separable metric space (c.s.m.s.),

B(X ) its Borel σ-algebra, and µ will denote a measure on B(X ).

De�nition 1. 1. MX is the space of all �nite measures on B(X ), i.e.

measures µ such that µ(X ) < +∞;

2. NX is the space of all �nite, integer-valued measures on B(X ), i.e.

�nite measures µ such that µ(A) ∈ N for every A ∈ B(X );

3. M#
X is the space of all boundedly �nite measure on B(X ), i.e. measures

µ such that µ(A) < +∞ for every A bounded, A ∈ B(X );

4. N#
X is the space of all boundedly �nite, integer-valued measure (count-

ing measures for short) on B(X );

5. N#∗
X is the space of all simple counting measures on B(X ), i.e. count-

ing measure µ such that µ(x) = 0 or 1 for every x ∈ X .
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Counting measures play a central role in this work, we therefore give the

following results.

Proposition 1. A boundedly �nite measure µ on B(X ) is a counting measure

i�

µ =
∑
i∈I

kiδxi (1.1)

where {xi}i∈I is a set of countable many distinct points indexed by I, with

at most �nitely many in every bounded set, ki are positive integers and δxi

represents the Dirac measure with center in xi.

De�nition 2. Let µ be a counting measure written in the form of equation

(1.1): µ =
∑

i∈I kiδxi . The support counting measure of µ is

µ∗ =
∑
i∈I

δxi

Proposition 2. Let µ be a counting measure on X . µ is simple (i.e. µ ∈

N#∗
X ) i� µ = µ∗ a.s..

Topologies and σ-alebras

In order to de�ne random elements on M#
X and N#

X we need to de�ne σ-

algebras.

De�nition 3. (w#-convergence) Let {µn}n∈N, µ ∈ M#
X . Then µn → µ

weakly# if
∫
fdµn →

∫
fdµ for all f bounded and continuous on X that

vanishes outside a bounded set.

Remark 1. The w#-convergence can be seen as metric convergence thanks

to the Prohorov metric, which is de�ned as follows. Given µ, ν ∈MX

d(µ, ν) = inf
{
ε > 0 : µ(F ) < ν(F ε) + ε and

ν(F ) < µ(F ε) + ε ∀F ⊆ X closed subset
}
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where F ε = {x ∈ X : ρ(x, F ) < ε}. The Prohorov metric d, whose conver-

gence is equivalent to the weak convergence, can be extended to a metric d#

onM#
X . Given µ, ν ∈M

#
X

d#(µ, ν) =

∫ +∞

0
e−r

d(µ(r), ν(r))

1 + d(µ(r), ν(r))
dr

where, having �xed a point O ∈ X to be the origin of the space X , µ(r) (and

analogously ν(r)) is de�ned as

µ(r)(A) = µ(A ∩ S(O, r)) ∀A ∈ B(X )

and S(O, r) denotes the open sphere with radius r and centre O.

Proposition 3. Let {µn}n∈N, µ ∈M#
X . µn → µ weakly# i� d#(µn, µ)→ 0.

We call B(M#
X ) the Borel σ-algebra onM#

X induced by the w#-topology.

It is a very natural σ-algebra, as the next proposition shows.

Proposition 4. B(M#
X ) is the smallest σ-algebra such that the mappings

µ→ µ(A) fromM#
X to (R,B(R)) are measurable for every A∈ B(X ).

Since N#
X is a measurable (indeed closed) subset of M#

X , we have an

analogous result for the Borel σ-algebra of N#
X : B(N#

X ).

Proposition 5. 1. A∈ B(N#
X ) i� A∈ B(M#

X ) and A⊆ N#
X ;

2. B(N#
X ) is the smallest σ-algebra such that the mappings µ → µ(A)

from N#
X to (R,B(R)) are measurable for every A∈ B(X ).

Random measures and point processes

We can now de�ne the main notions of this section.

De�nition 4. 1. A random measure ξ with phase space X is a measurable

mapping from a probability space (Ω,F ,P) to (M#
X ,B(M#

X ));

8



2. A point process (p.p.) Φ with phase space X is a measurable mapping

from a probability space (Ω,F ,P) to (N#
X ,B(N#

X )). A point process Φ

is simple if Φ ∈ N#∗
X a.s. (i.e. Φ = Φ∗ a.s.).

From this de�nition and Propositions 4 and 5 we obtain the following

result.

Proposition 6. A mapping ξ
[
Φ
]
from a probability space (Ω,F ,P) toM#

X[
N#
X
]
is a random measure

[
point process

]
i� ξ(A, ·)

[
Φ(A, ·)

]
is a random

variable for every bounded A ∈ B(X ).

We conclude this section by proving that a random measure is uniquely

characterized by its �nite dimensional distributions.

De�nition 5. Let Φ be a point process on X . The �nite dimensional distri-

butions (�di distributions) of Φ are the distributions of the random variables(
Φ(A1), ...,Φ(Ak)

)
. For every �nite family of bounded Borel sets {A1, ..., Ak}

and nonnegative integers {n1, ..., nk}

Pk(A1, ..., Ak;n1, ..., nk) = Pr
(
Φ(A1) = n1, ...,Φ(Ak) = nk

)
.

Proposition 7. The distribution of a random measure on X is totally deter-

mined by the �nite dimensional distributions of all �nite families {A1, ..., Ak}

of bounded disjoint Borel sets.

1.2 Intensity Measure and Covariance Measure

We �rstly introduce the notion of moment measures.

Lemma 1. Given a point process Φ, the map M : B(X )→ R de�ned by

M(A) = E(Φ(A)) (1.2)

is a measure on B(X ).
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Proof. M inherits the �nite additivity from the �nite additivity of Φ and of

the expectation. Moreover M is continuous from below because if An ↑ A

then Φ(An) ↑ Φ(A) pointwise and for the monotone convergence M(An) ↑

M(A).

De�nition 6. Given a point process Φ, M de�ned as in equation (1.2) is the

�rst-order moment measure of Φ.

There exist also higher order moment measures.

De�nition 7. Let Φ be a point process. We denote by Φ(n) the n-th fold

product measure of Φ, i.e. the (random) measure Φ(n) on B(X × ...× X ) =

B(X n) de�ned by

Φ(n)(A1 × ...×An) = Φ(A1) · ... · Φ(An)

with Ai ∈ B(X ) for i=1,...,n.

The de�nition is well-posed and the measure is uniquely determined be-

cause the semiring of the rectangles generates the product σ-algebra B(X n).

De�nition 8. Let Φ be a point process. The k-th order moment measure,

Mn, is the expected value of Φ(n)

Mn(A) = E(Φ(n)(A)) ∀A ∈ B(X n).

We now turn to the intensity and correlation measures. In order to

introduce the notion of intensity measure we need the de�nition of dissecting

system.

De�nition 9. A dissecting system for X is a sequence {τn}n≥1 of partitions

of X , τn = {Ani}i∈In, that satis�es the following properties:

• Nesting property: An−1,i ∩Anj = ∅ or Anj;

• Separating property: given x, y ∈ X , x 6= y there exists an n = n(x, y)

and an i ∈ In such that x ∈ Ani and y /∈ Ani.
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De�nition 10. The intensity measure of a point process Φ is a measure Λ

on B(X ) de�ned as

Λ(A) = sup
n≥1

∑
i∈In

P (Φ(Ani) ≥ 1) ∀A ∈ B(X )

where {τn}n≥1 is a dissecting system for A.

We can give also another characterization of the intensity measure, which

will guarantee the intensity measure to be a well-de�ned measure, not de-

pending on the choice of the dissecting system.

Theorem 1. (Khinchin's existence theorem)

Given a point process Φ on X , and its intensity measure Λ it holds

Λ(A) = M∗(A) ∀A ∈ B(X )

where M∗ is the �rst-order moment measure of the support Φ∗.

The next proposition follows as an immediate consequence of Khinchin's

existence theorem and Proposition 2.

Proposition 8. Let Φ be a simple point process. Then M(A) = Λ(A) for

every A ∈ B(X ).

We now de�ne the notion of covariance measure.

De�nition 11. Given a point process Φ, its covariance measure C2 is a

measure on B(X × X ). For every Borel sets A and B

C2(A×B) = M2(A×B)−M(A) ·M(B).

1.3 Probability Generating Functional

Dealing with random measures a useful tool is the Laplace functional.
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De�nition 12. Let ξ be a random measure. For every f ∈ BM+(X ), the

space of positive, bounded and measurable functions with compact support

de�ned over X , the Laplace functional is de�ned as

Lξ[f ] = E[exp
{∫
X
f(x)ξ(dx)

}
].

The distribution of a random measure is uniquely �xed by its Laplace

functional. An analogous instrument that is more appropriate for point

processes is the probability generating functional.

De�nition 13. V(X ) denotes the set of all measurable real-valued functions

de�ned on (X ,B(X )) such that 0 ≤ h(x) ≤ 1 for every x ∈ X and 1 − h

vanishes outside a bounded set.

De�nition 14. Let Φ be a point process on X . The probability generating

functional (p.g.�.) of Φ is the functional

G[h] = E
[

exp
( ∫
X

log h(x)dΦ(x)
)]
,

de�ned for every h ∈ V(X ). Since h ≡ 1 outside a bounded set this expression

can be seen as the expectation of a �nite product

G[h] = E
[∏

i

h(xi)
]
,

where the product runs over the points of Φ belonging to the support of 1−h.

In case no point of Φ falls into the support of 1 − h the product's value is

one.

Theorem 2. Let G be a real-valued functional de�ned on V(X ). G is a

p.g.�. of a point process Φ if and only if the following three condition hold.

1. For every h of the form

1− h(x) =

n∑
k=1

(1− zk)1Ak(x),

where A1, ..., An are disjoint Borel sets and |zk| < 1 for every k, the

p.g.�. G[h] reduces to the joint p.g.f. Pn(A1, ..., An; z1, ..., zn) of an

n-dimensional integer-valued random variable;
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2. if {hn}n∈N ⊂ V(X) and hn ↓ h ∈ V(X ) pointwise then G[hn]→ G[h];

3. G[1] = 1, where 1 denotes the function identically equal to unity in X .

Moreover, whether these conditions are satis�ed, the p.g.�. G uniquely de-

termines the distribution of Φ.

1.4 Some examples: Poisson, Cluster and Cox pro-

cesses

1.4.1 Poisson Process

De�nition 15. Let Λ be a boundedly �nite measure on (X ,B(X )), X being

a complete separable metric space (c.s.m.s.). The Poisson point process Φ

with parameter measure Λ is a point process on X such that for every �nite

collection of disjoint Borel sets {Ai}i=1,...,k

Pr
(
Φ(Ai) = ni : i = 1, ..., n

)
=

n∏
i=1

e−Λ(Ai)Λ(Ai)
ni

ni!
.

We give now a �rst result about Poisson process characterization.

Theorem 3. Let Φ be a point process. Φ is a Poisson process i� there

exists a boundedly �nite measure Λ on B(X ) such that Φ(A) has a Poisson

distribution with parameter Λ(A) for every bounded Borel set A.

Remark 2. A Poisson process Φ can have �xed atoms, i.e. points x ∈ X

such that Pr
(
Φ({x}) > 0

)
> 0. x is a �xed atom for a Poisson process Φ if

and only if Λ({x0}) > 0.

There is another property of p.p. which will be fundamental for the next

results: the orderliness.

De�nition 16. A p.p. Φ is said to be orderly if for every x ∈ X

Pr
(
Φ(S(x, ε)) > 1

)
= o
(
Pr(Φ(S(x, ε)) > 0)

)
ε→ 0,

where S(x, ε) denotes the open sphere of centre x and radius ε.
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It can be shown that for a Poisson process to be orderly is equivalent to

have no �xed point. Under hypothesis of orderliness we can give two more

results regarding Poisson process characterization.

Theorem 4. Let Φ be an orderly p.p.. Then Φ is a Poisson process i� there

exists a boundedly �nite measure Λ with no atoms (Λ({x}) = 0 ∀x ∈ X )

such that

P0(A)
.
= Pr

(
Φ(A) = 0

)
= e−Λ(A) ∀A ∈ B(X ).

The Poisson process can also be identi�ed using the complete indepen-

dence property.

Theorem 5. Let Φ be a p.p. with no �xed atoms. Φ is Poisson process i�

the following conditions hold.

(i) Φ is orderly;

(ii) for every �nite collection A1, ..., Ak of disjoint, bounded Borel sets the

random variables Φ(A1), ...,Φ(Ak) are independent (complete indepen-

dence property).

The p.g.�. of a Poisson process Φ with parameter measure Λ is

GΦ[h] = exp{−
∫
X

1− h(x)Λ(dx)}. (1.3)

1.4.2 Cox Process

In order to de�ne the Cox process, also called doubly stochastic Poisson

process, we need some instruments.

De�nition 17. A family {Φ(·|y) : y ∈ Y} of p.p. on the c.s.m.s. X , indexed

by the elements of a c.s.m.s. Y, is a measurable family of p.p. if P(A|y)
.
=

Pr
(
Φ(·|y) ∈ A

)
is a B(Y)-measurable function of y for every bounded set

A ∈ B(N#
X ).

14



Proposition 9. If we have a measurable family of point processes on X

{Φ(·|y) : y ∈ Y}, and a random measure ξ on the c.s.m.s. Y with distribution

Π then

P(A) =

∫
Y
P(A|y)Π(dy). (1.4)

de�nes a probability on N#
X and therefore a point process Φ on X .

When the relation (1.4) holds, we say that P(·|y) is the distribution of

Φ conditional to the realization y of ξ. We can now de�ne the Cox process.

De�nition 18. Given a random measure ξ, a Cox Process directed by ξ is

a point process Φ such that the distribution of Φ conditional on ξ, Φ(·|ξ), is

the one of a Poisson point process with intensity measure ξ.

Proposition 9 may be used to guarantee that the last de�nition is well

posed if it is ensured that the indexed family of p.p. we're using is a mea-

surable family.

Lemma 2. A necessary and su�cient condition for a family of p.p. on X in-

dexed by the elements of Y to be a measurable family is that the �nite dimen-

sional distributions Pk(B1, ..., Bk;n1, ..., nk|y) are B(Y)-measurable functions

of y for all the �nite collections {B1, ..., Bk} of disjoint sets of B(X ), and for

all the choices of the nonnegative integers n1, ..., nk.

In the de�nition of Cox process we have Y = N#
X and the �nite dimen-

sional distributions are the ones of a Poisson process directed by ξ, which are

measurable functions of
(
ξ(Bi)

)
i=1,...,n

, which themselves are random vari-

ables. Therefore we can apply the lemma.

Using Proposition 9 we can evaluate the �di probabilities for a Cox Process.

For example, given B ∈ B(X ) and k ∈ N

P (B, k) = Pr(Φ(B) = k) = E
(ξ(B)ke−ξ(B)

k!

)
=

∫ +∞

0

xke−x

k!
FB(dx)
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where FB is the distribution function for ξ(B).

A Cox point process Φ directed by ξ has p.g.�.

GΦ[h] = E
[

exp{−
∫
X

(
1− h(x)

)
ξ(dx)}

]
= Lξ[1− h]. (1.5)

1.4.3 Cluster Process

De�nition 19. A point process Φ on a c.s.m.s. X is a cluster process with

centre process Φc on the c.s.m.s. Y and component processes (or daughter

processes) the measurable family of point processes {Φ(·|x) : y ∈ Y} if for

every bounded set A ∈ B(X )

Φ(A) =

∫
Y

Φ(A|y)Φc(dy) =
∑
y∈Φc

Φ(A|y).

The component processes are often required to be independent. In that

case we have an indipendent cluster process and if Φ({yi}) > 1 multilpe

indipendent copies of Φ(A|yi) are taken.

We give an existence result for indipendent cluster processes.

Proposition 10. An independent cluster process exists i� for any bounded

set A ∈ B(X )∫
Y
pA(y)Φc(dy) =

∑
yi∈Φc

pA(yi) < +∞ Πc − a.s.,

where pA(y) = Pr(Φ(A|y) > 0) and Πc is the distribution of the centre

process Φc.

From now on we will deal only with independent cluster processes, and

we will just call them cluster processes. Using the independence property

we obtain that

G[h] = E
(
G[h|Φc]

)
=E
(

exp
{
−
∫
Y

(− logGd[h|y])Φc(dy)
})

=

= Gc
[
Gd[h|·]

] (1.6)

16



1.5 Campbell Measure and Palm Distribution

De�nition 20. Given a p.p. Φ on a c.s.m.s. X and the associated distribu-

tion P on B(N#
X ), we can de�ne the Campbell measure CP as a measure on

B(X ) � B(N#
X ) such that

CP(A× U) = E
(
Φ(A)1U (Φ)

)
∀A ∈ B(X ), U ∈ B(N#

X ). (1.7)

Remark 3. The set function de�ned in equation (1.7) is clearly σ-additive,

and it can be shown to be always σ-�nite. Therefore, being the rectangles

a semiring generating B(X ) � B(N#
X ), the set function extends to a unique

σ-�nite measure. Thus CP is well-de�ned.

Lemma 3. Let P be a probability measures on B(N#
X ) and ∅ denote the

zero measure on X . Then P is uniquely determined on B(N#
X \{∅}) by its

Campbell measure CP .

Remark 4. There is a strong relationship between Campbell measure and the

�rst-order moment measure. In fact from the de�nition of Campbell measure

it follows that M is the marginal distribution of CP :

CP(A×N#
X ) = E(Φ(A)) = M(A) ∀A ∈ B(X ).

From this remark it follows that given a point process Φ, its Campbell

measure CP and a �xed set U ∈ B(N#
X ) the measure CP(· ×U) is absolutely

continuous with respect to M(·). Therefore we can de�ne a Radon-Nikodin

derivative, Px(U) : X → R, such that

CP(A× U) =

∫
A
Px(U)dM(x) ∀A ∈ B(X ).

For every U ∈ B(N#
X ) Px(U) is �xed up to sets which have zero measure

with respect to M. We can chose a family
{
Px(U) : x ∈ X , U ∈ B(N#

X )
}

such that the following conditions hold.

1. ∀U ∈ B(N#
X ), Px(U) is a measurable real-valued, M-integrable func-

tion de�ned on (X ,B(X ));
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2. ∀x ∈ X , Px(·) is a probability measure on B(N#
X ).

De�nition 21. Given a point process Φ, a family
{
Px(U)

}
x∈X de�ned as

above and satis�ng condition 1) and 2) is called Palm kernel for Φ. For each

point x ∈ X the probability measure Px(·) is called local Palm distribution.

Proposition 11. Let Φ be a p.p. with �nite �rst moment measure M. Then

Φ admitts a Palm kernel
{
Px(U)

}
x∈X . Every local Palm distribution Px(·)

is uniquely �xed up to zero measure sets with respect to M. Moreover for

any function g measurable with respect to B(X ) �B(N#
X ), that is positive or

CP-integrable

E
(∫
X
g(x,Φ)Φ(dx)

)
=

∫
X×M#

X

g(x,Φ)CP(dx×dΦ) =

∫
X
Ex
(
g(x,Φ)

)
M(dx),

(1.8)

where for every x ∈ X

Ex
(
g(x,Φ)

)
=

∫
M#
X

g(x,Φ)Px(dΦ).

1.6 Slivnyak Theorem

Lemma 4. Let Φ be a poisson process with �rst moment measure M �nite.

Let L[f ] be the Laplace functional associated to Φ, and Lx[f ] the ones as-

sociated to the Palm kernel
{
Px(U)

}
x∈X . Then for every f, g ∈ BM+(X )

lim
ε↓0

L[f ]− L[f + εg]

ε
=

∫
X
g(x)Lx[f ]M(dx). (1.9)

Theorem 6. (Slivnyak, 1962). Let Φ be a p.p. with �nite �rst moment

measure M. P denotes the distribution of Φ and Px its Palm kernel. Then

Φ is a Poisson process i�

Px = P ∗ δx (1.10)

where ∗ denotes the convolution of distributions, which corresponds to the su-

perposition of point processes, and δx denotes the random measure identically

equal to the Dirac measure with centre x.
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Proof. Let Φ be a Poisson process with parameter measure µ. The Laplace

functional for a Poisson process has the following form

logL[f ] = −
∫
X

(1− e−f(x))µ(dx).

Then

−dL[f + εg]

dε
= L[f + εg]

d

dε

(∫
X

(1− e−f(x)−εg(x))µ(dx)
)

= L[f + εg]
(∫
X
g(x)e−f(x)−εg(x)µ(dx)

)
→ L[f ]

∫
X
g(x)e−f(x)µ(dx) as ε→ 0.

(1.11)

Comparing with (1.9) we notice that the left-hand terms are the same, and

using that M(·) = µ(·) we deduce

Lx[f ] = L[f ]e−f(x) = L[f ]Lδx [f ] Λ− a.s..

Thanks to Laplace functional properties this relation is equivalent to (1.10).

We now prove the converse. Suppose P and Px satisfy (1.10). Then, using

equation (1.9), we obtain

dL[εf ]

dε
= −L[εf ]

∫
X
f(x)e−εf(x)M(dx).

Since log
(
L[0]

)
= log(1) = 0

− log
(
L[0]

)
=

∫
X

∫ 1

0
f(x)e−εf(x)dεM(dx) =

∫
X

(1− e−f(x))M(dx),

which is the Laplace functional of a Poisson process with parameter measure

equal to M.

1.7 In�nitely Divisibile Point Processes and KLM

Measures

In the proceding of the work the notion of in�nite disibility will be of great

importance.
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De�nition 22. A point process Φ is said to be in�nitely divisible if for

every positive integer k, there exists k independent and identically distributed

(i.i.d.) point processes {Φ(k)
i }i=1,...,k such that

Φ = Φ
(k)
1 + ...+ Φ

(k)
k . (1.12)

If we move to p.g.�. condition (1.12) becomes

G[h] =
(
G1/k[h]

)k
,

where G1/k denotes the p.g.�. of one of the i.i.d. point processes Φ
(k)
i . There-

fore being in�nitely divisible for a point process means that for every positive

integer k the positive k-th root of the p.g.�. G, we call it G1/k, is a p.g.�.

itself.

We give a characterization for the in�nite divisible p.p. in the case of �nite

point processes.

Theorem 7. Let Φ be a p.p. with p.g.�. GΦ[h]. Then Φ is a.s. �nite and

in�nitely divisible i� there exist a point process Φ̃, a.s. �nite and nonnull,

and c > 0 such that

GΦ[h] = exp{−c(1−G
Φ̃

[h])}, (1.13)

where G
Φ̃
is the p.g.�. of Φ̃.

Remark 5. By Poisson randomization of a p.p. Φ̃ we mean the superpo-

sition of a Poisson distributed random number of independent copies of Φ̃.

The expression was introduced by Milne in [6]. Representation (1.13) has

a probabilistic interpretation. It means that every �nite and in�nitely divis-

ible p.p. Φ can be obtained as a Poisson randomization of a �nite p.p. Φ̃,

and conversely that every Poisson randomization of a �nite p.p. Φ̃ is a �nite

and in�nitely divisible p.p. Φ. Using (1.6) and recalling that the p.g.f. of a

Poisson random variable with mean c > 0 is

F (z) = exp{−c(1− z)},
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it is immediate to deduce that the p.g.�. expresses in (1.13) is exactly the one

of the Poisson randomization of Φ̃. In such a context the in�nite divisibility

of Φ follows immediately from the in�nite divisibility of Poisson distributed

random variables.

This result can be generalized to the case of in�nite divisible p.p. (not

necessarily �nite) using KLM measures.

De�nition 23. A KLM measure Q(·) is a boundedly �nite measure on the

space of nonnull counting measures N#
X \{0} (see De�nition 1) such that

Q
(
{ϕ ∈ N#

X \{0} : ϕ(A) > 0}
)
< +∞ ∀A measurable and bounded.

(1.14)

Theorem 8. A p.p. Φ is in�nitely divisible if and only if its p.g.�. can be

represented as

GΦ[h] = exp
{
−
∫
N#
X \{0}

[
1− e〈log(h),ϕ〉]Q(dϕ)

}
, (1.15)

where 〈log(h), ϕ〉 is a short notation for
∫
X log

(
h(x)

)
ϕ(dx) and Q(·) is a

KLM measure. The KLM measure satisfying (1.15) is unique.

Example 1. The Poisson p.p. is in�nitely divisible, therefore there must

exist a KLM measure Q(·) such that (1.15) reduces to (1.3). If we consider

counting measures consisting of one point (ϕ = δx with x ∈ X ) then

1− e〈log(h),ϕ〉 = 1− h(x).

Let us consider a KLM measure Q(·) which is concentrated only on such

counting measures, which means that

Q
(
{ϕ ∈ N#

X : ϕ(A) 6= 1}
)

= 0,

and such that

Q
(
{ϕ ∈ N#

X : ϕ(A) = 1}
)

= Λ(A) ∀A measurable,
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where Λ is a boundedly �nite measure on X . With this KLM measure Q(·)

(1.15) becomes

GΦ[h] = exp
{
−
∫
X

(
1− h(x)

)
Λ(dx)

}
,

which is exactly the p.g.�. of a Poisson point process with intensity measure

Λ.

Using the association with KLM measures it is possible to de�ne regular

and singular in�nite divisible point processes.

De�nition 24. An in�nitely divisible point process Φ is called regular if its

KLM measure Q(·) is concentrated on the set

Nf = {ϕ ∈ N#
X \{0} : ϕ(X ) < +∞},

and singular if it is concentrated on

N∞{ϕ ∈ N#
X \{0} : ϕ(X ) = +∞}.

Theorem 9. Every in�nitely divisible p.p. Φ can be written as

Φ = Φr + Φs,

where Φr and Φs are independent and in�nitely divisible point processes, the

�rst one being regular and the second one singular.
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Chapter 2

Stability for random measures

and point processes

2.1 Strict stability

A random vector X is called strictly α-stable (StαS) if

t1/αX ′ + (1− t)1/αX ′′
D
= X ∀t ∈ [0, 1],

where X ′ and X ′′ are independent copies of X and D= denotes the equality

in distribution. It is well-known ([13] Ch 6.1) that non-trivial StαS random

variables exist only for α ∈ (0, 2]. Moreover if X is nonnegative α must

belong to (0, 1].

If we provide a de�nition of sum and multiplication for a scalar in the context

of random measures on complete separable metric spaces, then we can extend

the de�nition of stability to that context. Let

(µ1 + µ2)(·) = µ1(·) + µ2(·) ∀µ1, µ2 ∈M#
X ,

(tµ)(·) = tµ(·) ∀t ∈ R, ∀µ ∈M#
X .

(2.1)

De�nition 25. A random measure ξ on a c.s.m.s. X is said to be strictly

α-stable (StαS) if

t1/αξ′ + (1− t)1/αξ′′
D
= ξ ∀t ∈ [0, 1], (2.2)
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where ξ′ and ξ′′ are indipendent copies of ξ.

Remark 6. (2.2) implies that ξ(A) is a StαS random variable for every

measurable set A. Since ξ(A) is always nonnegative, non-trivial StαS random

measures exist only for α ∈ (0, 1].

De�nition 26. A Levy measure Λ is a boundedly �nite measure onM#
X \{0}

homogeneous of order −α
(
i.e. Λ(tA) = t−αΛ(A) for every A ∈ B(M#

X \{0})

and t > 0
)
, such that∫
M#
X \{0}

(1− e〈h,µ〉)Λ(dµ) < +∞ ∀h ∈ BM+(X ), (2.3)

where 〈h, µ〉 stands for
∫
X h(x)µ(dx).

Theorem 10. A random measure ξ is StαS if and only if there exists a Levy

measure Λ such that the Laplace functional of ξ has the form

Lξ[h] = exp
{
−
∫
M#
X \{0}

(1− e〈h,µ〉)Λ(dµ)
}

∀h ∈ BM+(X ). (2.4)

Since Λ is homogeneous we can decompose it into radial and direc-

tional components. To do that we have to de�ne a polar decomposition

forM#
X \{0}. Let B1, B2, ... be a countable base for the topology of X made

of bounded sets. Put B0 = X . Then for every µ ∈ M#
X the sequence

µ(B0), µ(B1), µ(B2), ... is �nite apart from µ(B0), which can be �nite or in-

�nite. Let i(µ) be the smallest integer such that 0 < µ(Bi(µ)) < +∞. We

de�ne now the set

S = {µ ∈M#
X : µ(Bi(µ)) = 1},

which can be easily proved to be measurable. There exists a unique mea-

surable mapping µ → µ̂ from M#
X \{0} to S such that µ = µ(Bi(µ))µ̂. The

measurable mapping µ→ (µ̂, µ(Bi(µ))) is a polar decomposition ofM#
X \{0}

into S× R+.

The Levy measure Λ of a StαS random measure ξ induces a measure σ̂ on S

σ̂(A)
.
= Λ

(
{tµ : µ ∈ A, t ≥ 1}

)
,
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for every A measurable subset of S. It is useful to de�ne a scaled version of

this measure: σ = Γ(1−α)σ̂, which is called spectral measure of ξ. Because

of the homogeneity of Λ, it holds that Λ(A×[a, b]) = σ̂(A)(a−α−b−α), which

means that Λ = σ̂ � θα, where θα is the unique measure on R+ such that

θα
(
[a,+∞)

)
= a−α. Condition (2.3) becomes∫

S
µ(B)ασ(dµ) < +∞ ∀B ∈ B(X ) bounded. (2.5)

The following Theorem regards the spectral measure σ.

Theorem 11. Let ξ be a StαS random measure with spectral measure σ and

Laplace functional Lξ. Then

Lξ[h] = exp
{
−
∫
S
〈h, µ〉ασ(dµ)

}
∀h ∈ BM+(X ). (2.6)

We now give a result which provides a LaPage representation of a StαS

random measure.

Theorem 12. A random measure ξ is StαS if and only if

ξ
D
=
∑
µi∈Ψ

µi,

where Ψ is a Poisson point process onM#
X with intensity measure Λ being a

Levy measure. The convergence is in the sense of the vague convergence of

measures. In this context Λ is the same Levy measure of (2.4).

2.2 Discrete Stability with respect to thinning

2.2.1 De�nition and characterization

In trying to extend the de�nition of stability to point processes we face the

problem of the de�nition of multiplication: if we de�ne multiplication of a

p.p. for a scalar as the multiplication of its values
(
see (2.1)

)
it would no

longer be a p.p., because it would no longer be integer-valued. We therefore

de�ne a stochastic multiplication called independent thinning.
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De�nition 27. Given a p.p. Φ and t ∈ [0, 1] the result of an independent

thinning operation on Φ is a p.p. t◦Φ obtained from Φ by retaining every point

with probability t and removing it with probability 1− t, acting independently

on every point.

The probability generating function of the thinned process is

Gt◦Φ[h] = GΦ[th+ 1− t] = GΦ[1 + t(h− 1)], (2.7)

where GΦ is the p.g.�. of Φ (see Daley and Vere-Jones, 2008, p.155 for

details). From (2.7) it is easy to deduce that the thinning operation ◦ is

associative, commutative and distributive with respect to the superposition

of point processes. Having such an operation we can give the following

de�nition.

De�nition 28. A p.p. Φ is said to be discrete α-stable or α-stable with

respect to thinning (DαS) if

t1/α ◦ Φ′ + (1− t)1/α ◦ Φ′′
D
= Φ ∀t ∈ [0, 1], (2.8)

where Φ′ and Φ′′ are indipendent copies of Φ.

The next result gives a straightforward characterization of DαS point

processes, showing the strong link occuring between DαS point processes

and StαS random measures.

Theorem 13. A point process Φ is DαS if and only if it is a Cox process

Πξ directed by a StαS intensity measure ξ.

Starting from Theorem 13 and using (1.5) and (2.6) we obtain the fol-

lowing result.

Corollary 1. A point process Φ with p.g.�. GΦ is DαS with α ∈ (0, 1] if

and only if

GΦ[h] = exp
{
−
∫
S
〈1− u, µ〉ασ(dµ)

}
∀ u ∈ V(X ), (2.9)

where σ is a boundedly �nite spectral measure de�ned on S and satisfying

(2.5).
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Another important consequence of Theorem 13 is that we can use the

LaPage representation for StαS random measures to obtain an analogous

result for DαS point processes.

Corollary 2. A DαS point process Φ with Levy measure Λ can be represented

as

Φ =
∑
µi∈Ψ

Πµi ,

where Ψ is a Poisson process onM#
X \{0} with intensity measure Λ.

2.2.2 Cluster representation with Sibuya point processes

Since every DαS p.p. is a Cox process Πξ directed by a StαS random measure

ξ, using (1.5) and (2.4) we obtain

GΠξ [h] = Lξ[1− h] = exp
{
−
∫
M#
X \{0}

(1− e−〈1−h,µ〉)Λ(dµ)
}
,

where Λ is the Levy measure of ξ. Using (1.3) and (1.6) we conclude that

every DαS p.p. can be represented as a cluster process with centre process

being a Poisson process on M#
X with intensity measure Λ and daughter

processes being Poisson processes with intensity measure µ ∈ supp(Λ).

We give now another cluster representation assuming that Λ is supported by

�nite measures.

De�nition 29. Let µ be a probability measure on X . A Sibuya point process

with exponent α and parameter measure µ is a point process Υ = Υ(µ) on

X such that

GΥ[h] = 1− 〈1− u, µ〉α ∀h ∈ V(X ), (2.10)

where GΥ is the p.g.�. of Υ. We will denote the distribution of such a process

by Sib(α, µ).

From this de�nition and from (2.9) it follows that given a DαS p.p. Φ

such that Λ is supported by �nite measure it holds

GΦ[h] = exp
{∫

M1

(GΥ(µ)[h]− 1)σ(dµ)
}

∀h ∈ V(X ), (2.11)
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where GΥ(µ) satis�es (2.10), M1 is the space of probability measure on X

and σ is the spectral measure of Λ. Together with (1.3) and (1.6) it implies

the following result.

Theorem 14. A DαS point process with Levy measure supported by �nite

measure can be represented as a cluster process driven by the spectral measure

σ on M1 and with daughter processes being distributed as Sib(α, µ) with

µ ∈ supp(σ).

Since Sibuya processes are almost surely �nite and di�erent from the zero

measure it follows that whether a DαS p.p. is �nite it depends only from the

centre process.

Corollary 3. A DαS p.p. is �nite if and only if its spectral measure σ is

�nite and supported by �nite measures.

2.2.3 Regular and singular DαS processes

Iterating 2.8 we obtain

t−1/α ◦ Φ(1) + ...+ t−1/α ◦ Φ(m) D= Φ,

where Φ is a DαS point process and Φ(1), ...,Φ(n) are independent copies of

it. Therefore DαS processes are in�nitely divisible.

Remark 7. We can obtain a KLM representation (equation (1.15)) for them.

From Theorem 13 every DαS process Φ is a Cox process driven by a StαS

random measure ξ. Therefore using (2.4) we have that

GΦ[h] = Lξ[1− h] = exp
{
−
∫
M#
X \{0}

(1− e〈1−h,µ〉)Λ(dµ)
}

which, using the expression for the p.g.�. of a Poisson p.p. Πµ (equation

(1.3)), becomes

exp
{
−
∫
M#
X \{0}

(1−GΠµ [h])Λ(dµ)
}

=
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= exp
{
−
∫
M#
X \{0}

(
1−

∫
N#
X

e〈log(h),ϕ〉Pµ(dϕ)
)
Λ(dµ)

}
=

= exp
{
−
∫
M#
X \{0}

∫
N#
X \{0}

1− e〈log(h),ϕ〉Pµ(dϕ)Λ(dµ)
}

=

= exp
{
−
∫
N#
X \{0}

[
1− e〈log(h),ϕ〉]Q(dϕ)

}
,

where Q(·) =
∫
M#
X \{0}

Pµ(·)Λ(dµ). The last expression is the KLM repre-

sentation for DαS processes we were looking for.

Starting from the decomposition for in�nitely divisible point processes

given in Theorem 9 we can obtain the following decomposition for DαS

point processes.

De�nition 30. Given a complete separable metric space (c.s.m.s.) X we

de�ne

Mf =
{
µ ∈M#

X \{0} : µ(X ) < +∞
}

and

M∞ =
{
µ ∈M#

X : µ(X ) = +∞
}
.

Theorem 15. A DαS p.p. Φ with Levy measure Λ can be represented as the

sum of two independent DαS processes

Φ = Φr + Φs,

the �rst one being regular and the second one being singular. The �rst one

is a DαS p.p. with Levy measure being Λ
∣∣
Mf

= Λ(·IMf
) and the second one

is a DαS p.p. with Levy measure Λ
∣∣
M∞ .

Remark 8. With the decomposition given in Theorem 19 we've separated

every DαS process into two components. The regular one which can be rep-

resented as a Sibuya cluster p.p. with p.g.�. given by (2.11) with spectral

measure being σ
∣∣
M1

, and the singular one is not a Sibuya cluster p.p. and

his p.g.�. is given by (2.9) with spectral measure being σ
∣∣
S\M1

.
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Chapter 3

F-stability for point processes

In this chapter we extend discrete stability of point processes to an operation

more general than thinning. We will consider an operation de�ned through

branching processes and we will characterize stable point processes with

respect to this operation. This has already been done in the context of

random variables, see e.g. Steutel and Van Harn [4], and random vectors,

see e.g. Bouzar [5], but not for point processes. Following Steutel and Van

Harn's notation we will denote the �branching� operation by ◦F and the

related class of stable point processes by F-stable processes (the reason to

use the letter F will become clear in the following).

3.1 Some remarks about branching processes

Before proceeding in this chapter we need to clarify which kind of branching

processes we will use and recall some useful properties (complete proofs for

this section can be found in the literature regarding branching processes).

We will consider a continuous-time Markov branching process {Y (s)}s≥0 on

N, with Y (0) = 1 a.s.. Such a branching process is governed by a family

of p.g.f.s F = (Fs)s≥0, where Fs is the p.g.f. of Y (s) for every s ≥ 0. The

transition matrix
(
pij(s)

)
i,j∈N of the Markov process can be obtained from
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F using the following equation:
∞∑
j=0

pij(s)z
j = {Fs(z)}i.

It is easy to prove that the family F is a composition semigroup, meaning

that

Fs+t(·) = Fs
(
Ft(·)

)
∀s, t ≥ 0. (3.1)

Throughout the whole chapter we will require the branching process {Y (s)}s≥0

to be subcritical, which in our case means E[Y (1)] < 1. We can also suppose

F ′s(1) = e−s without loss of generality (it can be obtain through a linear

transformation of the time coordinate). Moreover we require the following

conditions to hold:

lim
s↓0

Fs(z) = F0(z) = z, (3.2)

lim
s→∞

Fs(z) = 1. (3.3)

Some reasons for these requirements will be given in Remark 12. Equations

(3.1) and (3.2) implies the continuity Fs(z) with respect to s. It can be also

shown that Fs(z) is di�erentiable with respect to s and thus we can de�ne

U(z)
.
=

∂

∂s
Fs(z)

∣∣∣
s=0

0 ≤ z ≤ 1.

U(·) is continuous and it can be use to obtain the A-function relative to the

branching process

A(z)
.
= exp

[
−
∫ z

0

1

U(x)
dx
]

0 ≤ z ≤ 1, (3.4)

which is a continuous and strictly decreasing function such that A(0) = 1

and A(1) = 0. Since it holds that

U
(
Fs(z)

)
= U(z)F ′s(z) s ≥ 0, 0 ≤ z ≤ 1,

we obtain the �rst property of A-functions we're interested in:

A
(
Fs(z)

)
= e−sA(z) s ≥ 0, 0 ≤ z ≤ 1. (3.5)
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Moreover we de�ne

B(z)
.
= 1−A(z) = lim

s→+∞

Fs(z)− Fs(0)

1− Fs(0)
0 ≤ z ≤ 1. (3.6)

From the last expression it can be proved that B(·) is a p.g.f. of a Z+-valued

distribution, which is the limit conditional distribution of the branching pro-

cess {Y (s)}s≥0 (we condition on the survival of Y (s) and then we let the time

go to in�nity). We will call B(·) the B-function of the process {Y (s)}s≥0,

and the limit conditional distribution Y∞. Using B equation (3.5) becomes

B
(
Fs(z)

)
= 1− e−s + e−sB(z) 0 ≤ z ≤ 1. (3.7)

Remark 9. It is worth noticing that since both A and B are continuous,

strictly monotone, and surjective functions from [0, 1] to [0, 1] then they are

bijective and they can be inverted obtaining A−1 and B−1, which will be

continuous, strictly monotone and bijective functions from [0, 1] to [0, 1].

Moreover using (3.5) we obtain

d

dt

(
A(Ft(0)

)∣∣∣
t=0

=
d

dt
(e−t)

∣∣∣
t=0

= 1.

But at the same time

d

dt

(
A(Ft(0)

)∣∣∣
t=0

= A′
(
F0(0)

) d
dt

(
Ft(0)

)∣∣∣
t=0

= A′(0)
d

dt

(
Ft(0)

)∣∣∣
t=0

.

Therefore

A′(0) =
1

d
dt

(
Ft(0)

)∣∣∣
t=0

=
1

d
dt

(
Prob{Y (t) = 0}

)∣∣∣
t=0

.

From the fact that Y (t) is a subcritical Markov branching process and there-

fore that every particle branches after exponentially distributed time with a

non-null probability to die out it follows that

d

dt

(
Prob{Y (t) = 0}

)∣∣∣
t=0
∈ (0,+∞).

Thus A′(0) ∈ (0,∞).
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We give now two examples of branching processes where A and B have

known and explicit expressions.

Example 2. Let Y (·) be a continuous-time pure-death process starting with

one individual, meaning that

Y (s) =

1 if s < τ

0 if s ≥ τ
, (3.8)

where τ is an exponentially distributed random variable with parameter 1.

The composition semigroup F =
(
Fs
)
s≥0

driving the process {Y (s)}s≥0 is

Fs(z) = 1− e−s + e−sz 0 ≤ z ≤ 1. (3.9)

It is straightforward to see that F =
(
Fs
)
s≥0

satis�es the requirements pre-

viously listed
(
(3.1), (3.2), (3.3) and F ′s(1) = e−s

)
. The generator U(z) and

the A-function of Y (s) are given by

U(z) = A(z) = 1− z 0 ≤ z ≤ 1, (3.10)

while the B-function equals the identity function

B(z) = z 0 ≤ z ≤ 1. (3.11)

Example 3. Let the semigroup F =
(
Fs
)
s≥0

be de�ned by

Fs(z) = 1− 2e−s(1− z)
2 + (1− e−s)(1− z)

= (1− γs) + γs
z(1− ps)
1− psz

, (3.12)

where γs = 2e−s/(3 − e−s), ps = 1
3(1 − γs) and 0 ≤ z ≤ 1. The second ex-

pression for Fs can be recognized as the composition of two p.g.f.s, P1(P2(z)).

The �rst one is the p.g.f. of a binomial distribution with parameter γs

P1(z) = (1− γs) + γsz,

and the second one the p.g.f. of a geometric distribution with parameter ps

(number of trials to get the �rst success)

P2(z) =
z(1− ps)
1− psz

.
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This implies that Fs(z) is a p.g.f. itself. Using the �rst and the second ex-

pression for Fs(z) conditions (3.1), (3.2), (3.3) and F ′s(1) = e−s can be

easily proved. The functions U , A and B de�ned on [0, 1] have the following

expressions:

U(z) =
1

2
(1− z)(3− z), A(z) = 3

1− z
3− z

, B(z) =
2z

3− z
, (3.13)

where we can notice that B(·) is the p.g.f. of a geometric distribution on N

with parameter 1
3 .

3.2 F-stability for random variables

We can interpret a Z+-valued random variable X as a point process on a

space X reduced to a single point. Given t ∈ [0, 1] the thinning operation

works on X as a discrete multiplication. We can express the thinned process

t ◦X in the following way:

t ◦X D
=

X∑
i=1

Zi
D
=

X∑
i=1

Yi
(
− ln(t)

)
,

where {Zi}i∈N are independent and identically distributed (i.i.d.) random

variables with Binomial distribution B(1, t) and Yi(·) are i.i.d. pure-death

processes starting with one individual (see De�nition 3.8). We can now think

of a more general operation which acts on X by replacing every unit with a

more general branching process then the pure-death one.

De�nition 31. Let {Yi(·)}i∈N be a sequence of i.i.d. continuous-time Markov

branching processes driven by a semigroup F = (Fs)s≥0 satisfying the condi-

tions listed in the previous section. Given t ∈ (0, 1] and a Z+-valued random

variable X (independent of {Yi(·)}i∈N) we de�ne

t ◦F X
.
=

X∑
i=1

Yi
(
− ln(t)

)
. (3.14)
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Let P (z) be the p.g.f. of X and Pt◦FX(z) be the p.g.f. of t◦FX. It follows

from (3.14) and from the independence of the random variables {Yi(·)}i∈N
that

Pt◦FX(z) = P
(
F− ln(t)(z)

)
0 ≤ z ≤ 1. (3.15)

Remark 10. The ◦F operation for random variables includes thinning and

is more general. In fact if we consider the branching process driven by the

semigroup de�ned by (3.9) (i.e. the pure-death process) we obtain

Pt◦FX(z) = P
(
F− ln(t)(z)

)
= P (1− eln(t) + eln(t)z) =

= P (1− t+ tz) = Pt◦X(z),

which implies that in this case the F-operation, ◦F , reduces to thinning, ◦.

Example 3 shows that the ◦F operation involves also di�erent situation from

the thinning.

Remark 11. Let us recall equation (3.7) in a slightly di�erent form

B
(
F− ln(t)(z)

)
= 1− t+ tB(z) 0 ≤ z ≤ 1, 0 ≤ t ≤ 1,

where B(·) is the p.g.f. of Y∞, which is the limit conditional distribution of(
Y (t)

)
t≥0

. It is immediate to see that the left-hand side of the equation is the

p.g.f. of t◦F Y∞. The right-hand side is the p.g.f. of a random variable which

is equal to 0 with probability 1−t and takes values according to the distribution

of Y∞ (which is a.s. di�erent from 0) with probability t. Therefore we can

provide this equation with the following probabilistic interpretation

t ◦F Y∞
D
=

 0 with prob. 1− t

Y∞ with prob. t
.

This property will be very important in order to characterize F-stable point

processes (see section 3.3).

Using equation (3.15) it is easy to verify the following proposition.
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Proposition 12. The branching operation ◦F is associative, commutative

and distributive with respect to sum of random variables, i.e.

t1 ◦F (t2 ◦F X)
D
= (t1t2) ◦F X

D
= t2 ◦F (t1 ◦F X),

t ◦F (X +X ′)
D
= t ◦F X + t ◦F X ′′,

for t, t1, t2 ∈ [0, 1] and X,X ′ independent random variables.

Remark 12. As shown in [4], Section V.8, equations (3.2) and (3.3) turn

out to be good requirements to have some �multiplication-like� properties of

the operation ◦F . In particoular (3.2) implies (besides the continuity of the

semigroup) that limt↑1 t ◦F X = 1 ◦F X = X and (3.3) together with F ′s(1) =

e−s implies that, in case the expectation of X is �nite, E[t ◦F X] = tE[X].

Proceeding in the same way as for strict and discrete stability we can

de�ne the notion of F-stability.

De�nition 32. A Z+-valued random variable X is said to be F-stable with

exponent α if

t1/α ◦F X ′ + (1− t)1/α ◦F X ′′
D
= X ∀t ∈ [0, 1], (3.16)

where X ′ and X ′′ are independent copies of X.

Let P (z) be the p.g.f. ofX. Then (3.16) turns into the following condition

on P (z):

P (z) = P
(
F− ln(t)/α(z)

)
· P
(
F− ln(1−t)/α(z)

)
0 ≤ z ≤ 1. (3.17)

Remark 13. Iterating (3.16) m times we obtain

m−1/α ◦F X(1) + ...+m−1/α ◦F X(m) D= X, (3.18)

where
(
X(1), ..., X(m)

)
are independent copies of X. Thus an F-stable random

variable is in�nitely divisible. Equation (3.26) can be written as

P (z) =
[
P (Fln(m)/α(z))

]m
m ∈ N, 0 ≤ z ≤ 1, (3.19)
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where P (z) is the p.g.f. of X. As it is shown in [4], Section V.5, a p.g.f.

P(z) satis�es (3.19) if and only if it satis�es

P (z) =
[
P (F− ln(t)(z))

]t−α
t ∈ [0, 1], 0 ≤ z ≤ 1. (3.20)

Moreover equation (3.20) (or equivalently (3.19)) is not only a necessary

condition for a distribution to be F-stable but also su�cient. In fact using

the associativity of the operation ◦F it is easy to show that if a p.g.f. P (z)

satis�es condition (3.26) then it also satis�es condition (3.16), and thus is

F-stable. Therefore we can say that a distribution is F-stable if and only if

it satis�es (3.20).

The following theorem gives a characterization of F-stable distribution

through their probability generating functions.

Theorem 16. Let X be a Z+-valued random variable and P(z) its p.g.f.,

then X is F-stable with exponent α if and only if 0 < α ≤ 1 and

P (z) = exp
{
− cA(z)α

}
0 ≤ z ≤ 1, (3.21)

where A is the A-function associated to the branching process driven by the

semigroup F and c > 0.

Proof. See [4], Theorem V.8.6.

3.3 F-stability for point processes

3.3.1 De�nition and characterization

Let Y (·) be a continuous-time Markov branching process driven by a semi-

group F = (Fs)s≥0 satisfying conditions described in Section 3.1. We now

want to extend the branching operation ◦F to point processes. Given a point

process Φ and t ∈ (0, 1], t ◦F Φ will be a point process obtained from Φ by

replacing every point with a bunch of points located in the same position,
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where the number of points is given by an independent copy of Y
(
− ln(t)

)
.

A good way to provide a formal de�nition of t ◦F Φ is through a cluster

structure. We �rst de�ne the component processes.

De�nition 33. Given a continuous-time Markov branching process on N

{Y (s)}s≥0 and a point x ∈ X , Yx(s) is the point process having Y (s) points

in x and no points in X\{x}, or equivalently having p.g.�. de�ned by

GYx(s)[h] = E[h(x)Y (s)] = Fs
(
h(x)

)
. (3.22)

We can now de�ne the operation ◦F for point processes.

De�nition 34. Let Φ be a p.p. and t ∈ (0, 1]. Then t ◦F Φ is the (indepen-

dent) cluster point process with center process Φ and component processes{
Yx
(
− ln(t)

)
, x ∈ X

}
.

Equivalently t ◦F Φ can be de�ned as the p.p. having p.g.�.

Gt◦FΦ[h] = GΦ[F− ln(t)(h)], (3.23)

where GΦ is the p.g.�. of Φ. We are now ready to de�ne the F-stability for

point processes.

De�nition 35. A p.p. Φ is F-stable with exponent α (α-stable with respect

to ◦F) if

t1/α ◦F Φ′ + (1− t)1/α ◦F Φ′′
D
= Φ ∀t ∈ (0, 1], (3.24)

where Φ′ and Φ′′ are independent copies of Φ.

Condition (3.24) can be rewritten in the p.g.�. form obtaining

GΦ[h] = GΦ

[
F− ln(t)/α(h)

]
·GΦ

[
F− ln(1−t)/α(h)

]
∀t ∈ (0, 1], ∀h ∈ V(X ).

(3.25)

Iterating this formula m-times as done in Remark 13 we obtain

m−1/α ◦F Φ(1) + ...+m−1/α ◦F Φ(m) D= Φ, (3.26)
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where Φ(1), ...,Φ(m) are independent copies of Φ. Therefore an F-stable point

process is in�nitely divisible.

Remark 14. The branching operation ◦F for point processes is a general-

ization of the thinning operation. In fact if we take as a branching process

the pure-death process with semigroup F = (Fs)s≥0 de�ned by equation (3.9)

we obtain

Gt◦FΦ[h] = GΦ

[
F− ln(t)(h)

]
= GΦ[1− eln(t) + eln(t)h] =

GΦ[1− t+ th] = Gt◦Φ[h] ∀h ∈ V(X),

which implies that the process t◦F Φ has the same distribution as the thinned

process t ◦ Φ, meaning that the F-operation reduces to thinning. Therefore

DαS point processes can be seen as a particular case of F-stable point pro-

cesses, obtained by choosing F = (Fs)s≥0 as in equation (3.9).

We prove the following characterization of F-stable point processes.

Theorem 17. A functional GΦ[·] is the p.g.�. of an F-stable point process Φ

with exponent of stability α if and only if there exist a StαS random measure

ξ such that

GΦ[h] = Lξ
[
A(h)

]
= Lξ

[
1−B(h)

]
∀h ∈ V(X ), (3.27)

where A(z) and B(z) are the A-function and B-function of the branching

process driven by F .

Proof. Su�ciency: We suppose (3.27). Lξ
[
1− h

]
as a functional of h is the

p.g.�. of a Cox point process and B(z) is the p.g.f. of a random variable (the

limit conditional distribution of the branching process Y (t)). Therefore the

functional GΦ[h] = Lξ
[
1−B(h)

]
is the p.g.�. of a (cluster) point process, say

Φ. We need to prove that Φ is F-stable with exponent α. Given t ∈ (0, 1]

and h ∈ V(X ) it holds

GΦ

[
F− ln(t)/α(h)

]
·GΦ

[
F− ln(1−t)/α(h)

]
=
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= Lξ

[
A
(
F− ln(t)/α(h)

)]
· Lξ

[
A
(
F− ln(1−t)/α(h)

)] (3.5)
=

= Lξ
[
t1/αA(h)

]
· Lξ

[
(1− t)1/αA(h)

]
.

Since ξ is StαS we can use its spectral representation:

Lξ
[
t1/α ·A(h)

]
= exp

{
−
∫
S
〈t1/α ·A(h), µ〉ασ(dµ)

}
=

= exp
{
− t ·

∫
S
〈A(h), µ〉ασ(dµ)

}
=
(
Lξ
[
A(h)

])t
.

Therefore

Lξ
[
t1/αA(h)

]
· Lξ

[
(1− t)1/αA(h)

]
= Lξ

[
A(h)

]t · Lξ[A(h)
]1−t

=

= Lξ
[
A(h)

]
= GΦ[h],

and thus

GΦ

[
F− ln(t)/α(h)

]
·GΦ

[
F− ln(1−t)/α(h)

]
= GΦ[h] ∀h ∈ V(X ),

meaning that Φ is F-stable with exponent α.

Necessity: We now suppose that Φ is F-stable with exponent α. Firstly we

need to prove that

L[u]
.
= GΦ[A−1(u)] (3.28)

is the Laplace functional of a StαS random measure. While the functional

L in the left-hand side should be de�ned on all (bounded) functions with

compact supports, the p.g.�. GΦ in the right-hand side of (3.28) is well

de�ned just for functions with values on [0, 1] because A−1 : [0, 1] → [0, 1].

To overcome this di�culty we employ (3.26) which can be written as

GΦ[h] =
(
GΦ[F ln(m)

α

(h)]
)m ∀h ∈ V(X ),

and de�ne

L[u] =
(
GΦ[F ln(m)

α

(
A−1(u)

)
]
)m (3.5)

=
(
GΦ[A−1(m−1/αu)]

)m
. (3.29)
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Since u ∈ BM+(X ), for su�ciently large m the function A−1(m−1/αu) does

take values in [0, 1] and equals 1 outside a compact set. Since (3.29) holds

for all m, it is possible to pass to the limit as m→∞ to see that

L[u] = exp
{
− lim
m→∞

m(1−GΦ[A−1(m−1/αu)])
}

= exp
{
− lim
t→0+

t−α(1−GΦ[A−1(tu)])
}
.

We need the following fact

lim
t→0+

t−α(1−GΦ[A−1(tu)]) = lim
t→0+

t−α(1−GΦ[eA
−1(tu)−1]) ,

which using the p.g.f. B(z) of the limit conditional distribution can be also

written as

lim
t→0+

t−α(1−GΦ[1−B−1(tu)]) = lim
t→0+

t−α(1−GΦ[e−B
−1(tu)]) . (3.30)

Indeed, for any constant ε > 0

1− (1 + ε)tu ≤ e−tu ≤ 1− (1− ε)tu,

for su�ciently small t ≥ 0. From B−1(tu) = tu(B−1)′(0) + o(t) as t → 0,

with (B−1)′(0) 6= 0 (see Remark 9), it can be obtained that for any constant

ε > 0

1−B−1
(
(1 + ε)tu

)
≤ e−B−1(tu) ≤ 1−B−1

(
(1− ε)tu

)
,

for su�ciently small t ≥ 0. Then

L[(1− ε)u] ≤ lim
t→0+

t−α(1−GΦ[e−B
−1(tu)]) ≤ L[(1 + ε)u] ,

and the continuity of L yields (3.30). By the Schoenberg theorem (see [7]

Theorem 3.2.2), L is positive de�nite if limm(1−GΦ[1−B−1(m−1/αu)]) as

m→∞ is negative de�nite, i.e. in view of (3.30)

n∑
i,j=1

cicj lim
t→0

t−α(1−GΦ[e−t(ui+uj)]) ≤ 0
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for all n ≥ 2, u1, . . . , un ∈ BM(X ) and c1, . . . , cn with
∑
ci = 0. In view

of the latter condition, the required negative de�niteness follows from the

positive de�niteness of GΦ. Thus, L[
∑k

i=1 tihi] as a function of t1, . . . , tk ≥ 0

is the Laplace transform of a random vector. Moreover L[0] = 1, where 0 is

the null function on X . Finally from (3.29) and the continuity of the p.g.�.

GΦ it follows that given {fn}n∈N ⊂ BM+(X ), fn ↑ f ∈ BM+(X ) we have

L[fn] → L[f ] as n → ∞. Therefore we can use an analogue of Theorem

9.4.II in [2] to obtain that L is the Laplace functional of a random measure

ξ.

In order to prove that ξ is StαS we consider the case of functions u with

values in [0, 1] to simplify the calculations (the general case can be done

with analogous calculations). Given t ∈ (0, 1] we have

Lξ[u] = GΦ[A−1(u)] = GΦ

[
F− ln(t)/α(A−1(h))

]
·GΦ

[
F− ln(1−t)/α(A−1(h))

] (3.5)
=

GΦ

[
A−1(t1/αh)

]
·GΦ

[
A−1((1− t)1/αh)

]
= Lξ[t

1/αh] · Lξ[(1− t)1/αh],

which implies that ξ is StαS.

Corollary 4. A p.p. Φ is F-stable with exponent α if and only if it is a

cluster process with a DαS centre process Ψ on X and component processes{
Ỹx, x ∈ X

}
. Ỹx denotes the p.p. having Y∞ points in x and no points

in X\{x}, where Y∞ is the conditional limit distribution of the branching

process Y , with p.g.f. given by (3.6).

Proof. From Theorem 17 and (3.6) it follows that Φ is F-stable if and only

if its p.g.�. satis�es

GΦ[h] = Lξ
[
1−B(h)

]
,

where B(·) is the p.g.f. of Y∞, and ξ is a StαS random measure. Then from

Theorem 17 and equation (1.5) we obtain

GΦ[h] = GΨ

[
B(h)

]
,
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where Ψ is a DαS point process. The result follows from the cluster repre-

sentation for p.g.�. (equation (1.6)).

Remark 15. This corollary clari�es the relationship between F-stable and

DαS point processes. F-stable processes are an extension of DαS ones where

every point is given an additional multiplicity according to independent copies

of a Z+-valued random variable Y∞ �xed by the branching process considered.

We notice that when the branching operation reduces to the thinning operation

the random variable Y∞ reduces to a deterministic variable equal to 1 (see

Example 2). This implies that the cluster process described in Corollary 4

reduces to the DαS centre process itself.

Corollary 5. Let α ∈ (0, 1]. A p.p. Φ is F-stable with exponent α if and

only if its p.g.�. can be written as

GΦ[u] = exp
{
−
∫
S
〈1−B(u), µ〉ασ(dµ)

}
. (3.31)

where σ is a locally �nite spectral measure on S satysfying (2.5)

Proof. This result is a straightforward consequence of Theorems 11 and 17.

In fact if Φ is an F-stable point process with stability exponent α thanks to

Theorem 17 there exist a StαS random measure ξ such that

GΦ[h] = Lξ
[
A(h)

]
h ∈ V(X ).

Then (3.31) follows from spectral representation (2.6). Conversely if we have

a locally �nite spectral measure σ on S satisfying (2.5) and α ∈ (0, 1] then σ is

the spectral measure of a StαS random measure ξ, whose Laplace functional

is given by (2.6). Therefore (3.31) can be written as

GΦ[h] = Lξ
[
1−B(h)

]
,

which, by Theorem 17 implies the F-stability of Φ.
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3.3.2 Sibuya representation for F-stable point processes

Thanks to Theorem 17 every F-stable p.p. is uniquely associated to a StαS

random measure and thus to a Levy measure Λ and a spectral measure σ.

Corollary 5 enlightens the relationship between an F-stable p.p. Φ and the

associated spectral measure σ. If we consider the case of F-stable processes

associated to Levy measures Λ supported by �nite measures, representation

(3.31) becomes

GΦ[h] = exp
{
−
∫
M1

〈1−B(h), µ〉ασ(dµ)
}

∀h ∈ V(X ), (3.32)

where M1 is the space of probability measures on X . Using the de�nition of

Sibuya point processes (see equation (2.10)) we can rewrite this equation as

GΦ[h] = exp
{
−
∫
M1

1− (1− 〈1−B(h), µ〉α)σ(dµ)
}

=

= exp
{
−
∫
M1

(
1−GΥ(µ)[B(h)]

)
σ(dµ)

}
∀h ∈ V(X ),

(3.33)

where Υ(µ) denotes a point process following a Sibuya distribution with

parameters (α, µ). We notice that, since B(·) is the p.g.f. of the distribution

Y∞
(
see (3.6)

)
, GΥ(µ)[B(h)] is the p.g.�. of the point processes obtained

from a Sib(α, µ) p.p. by giving to every point a multiplicity according to

independent copies of Y∞. Therefore we can generalize Theorem 14 in the

following way.

Theorem 18. An F-stable point process with Levy measure Λ supported only

by �nite measures can be represented as a cluster process with centre process

being a Poisson process on M1 driven by the spectral measure σ and daughter

processes having p.g.�. GΥ(µ)[B(h)], where Υ(µ) are Sib(α, µ) distributed

point processes and B(·) is the B-function of the branching process driven by

F .
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3.3.3 Regular and singular F-stable processes

We can extend the decomposition in regular and singular components for

DαS processes (see Theorem 19) to F-stable processes.

Theorem 19. An F-stable p.p. Φ with Levy measure Λ can be represented

as the sum of two independent F-stable point processes

Φ = Φr + Φs,

where Φr is regular and Φs singular. Φr is an F-stable p.p. with Levy measure

being Λ
∣∣
Mf

= Λ(·IMf
) and Φs is a DαS p.p. with Levy measure Λ

∣∣
M∞ .

Remark 16. In an analogous way to the StαS case (see Remark 8) the

regular component of Φ, that we call Φr, can be represented as a Sibuya

cluster p.p. with p.g.�. given by (3.33)

GΦ[h] = exp
{
−
∫
M1

(
1−GΥ(µ)[B(h)]

)
σ̃(dµ)

}
∀h ∈ V(X ),

with spectral measure σ̃ = σ
∣∣
M1

, where σ is the spectral measure of Φ. On

the other hand the singular component Φs is not a Sibuya cluster p.p., and

his p.g.�. can be represented by (2.9) with spectral measure being σ
∣∣
S\M1

.
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Chapter 4

De�nition of the general

branching stability

4.1 Markov branching processes on NRn

In this section we follow Asmussen and Hering treatment in [8], Chapter V.

4.1.1 De�nition

Let (Ψϕ
t )t>0,ϕ∈NRn be a stochastic process on

(
NRn ,B(NRn)

)
where t ≥

0 is the time parameter and ϕ ∈ NRn is the starting con�guration. We

require (Ψϕ
t )t>0,ϕ∈NRn to be a time-homogeneous Markov branching process,

meaning that, if we denote by (Pt(ϕ, ·))t>0,ϕ∈NRn the probability distribution

of Ψϕ
t , given t, s ≥ 0 we have

Pt+s(ϕ,A) =

∫
NRn

Ps(ψ,A)Pt(ϕ, dψ).

In this framework it can be shown (see [8], Chapter V, section 1) that the

following two conditions are equivalent.

Condition 1.

No immigration : Pt(∅, {∅}) = 1 ∀t ≥ 0;
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Independent branching : ∀ϕ0 ∈ NRn , ϕ0 =

k∑
i=1

δxi with xi ∈ Rn

Pt(ϕ0, {ϕ ∈ NRn : ϕ(Aj) = nj , j = 1, ...,m}) =

=
∑

{nj1+...+njk=nj , ∀j=1,...m}

k∏
i=1

Pt(δxi , {ϕ ∈ NRn : ϕ(Aj) = nji , j = 1, ...,m}).

Condition 2. Let Gt,ϕ[·] be the p.g.�. of Ψϕ
t . Then

Gt,ϕ[h] = Gϕ
[
Gt,δx [h]

]
∀h ∈ BC(Rn), ∀t ≥ 0, ∀ϕ ∈ NRn . (4.1)

De�nition 36. A Markov branching process on NRn is a (time-homogeneous)

Markov process on
(
NRn ,B(NRn)

)
which satis�es the two equivalent condi-

tions above.

4.1.2 Construction

Given the de�nition of Markov branching processes on NRn (which are some-

times called branching particle systems) we ask ourselves if such processes

exist and how they can be constructed. For our purposes it's enough to give

the main ideas on how such processes can be obtained and then provide some

references where details can be found.

We follow the construction given by [8], Chapter V. Firstly we add two points,

{∂,∆}, to Rn making a two point compacti�cation Rn∗ := Rn∪{∂,∆}. The

intuitive meaning of ∂ and ∆ will be clear in a few lines. Let
(
X(t)

)
t≥0

be

a strong Markov process on Rn∗, right continuous with left limit. Let its

transition semigroup be denoted by Qt(x,B), where t ≥ 0, x ∈ Rn∗ and

B ∈ B(Rn∗). ∂ and ∆ work as traps for the process
(
X(t)

)
t≥0

, i.e.

Qt(∂, {∂}) = 1 and Qt(∆, {∆}) = 1 ∀t ≥ 0.

Let us de�ne a kernel F (x,A)

F : Rn × B(NRn)→ [0, 1],
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such that for every x ∈ Rn F (x, ·) is a probability measure on
(
NRn ,B(NRn)

)
and for every A ∈ B(NRn) F (·, A) is B(Rn)-measurable.

A Markov branching process (Ψϕ
t )t>0,ϕ∈NRn can be de�ned in the following

way:

1. every particle moves independently according to the transition semi-

group of
(
X(t)

)
t≥0

, Qt(x,B);

2. if a particle hits ∂ it dies out;

3. if a particle hits ∆ it branches: if the hitting time was T the particle

is replaced by an o�spring according to F (X(T−), ·), where X(T−)

represents the left limit of X(t) as t ↑ T . Branching operations of

di�erent particle are independent.

Asmussen and Hering in [8] show that such processes are well de�ned and are

indeed Markov branching processes on NRn (they work with more general

space then Rn). They do not prove that every Markov branching processes on

NRn can be represented in this way. A result of that type is given in [9],[10]

and [11]: given a compact metrizable space X every Markov branching pro-

cess on NX which is an Hunt process with reference-measure admits a rep-

resentation as the one shown above
(
with di�usion (X(t))t≥0 and branching

given by the kernel F (x,A)
)
. Another classical way of constructing Markov

branching processes on NRn doesn't use the two-point compacti�cation as

above, and particles' life-times are distributed according to exponential dis-

tributions (see [12] section 3.2 for details).

4.2 The general branching operation for point pro-

cesses

Let us consider a �nite con�guration of points in Rn, which we represent

as a �nite counting measure on Rn, ϕ ∈ NRn . In this section we want
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to de�ne a stochastic �multiplication� of ϕ for a real number. We denote

such an operation with the symbol ◦ and we de�ne it for the couples (t, ϕ) ∈

(0, 1]×NRn . Although ϕ is deterministic t◦ϕ is a stochastic point process on

Rn. This operation can be viewed as acting on the probability distributions

on NRn so that:

Gt◦Φ[h] =

∫
NRn

Gt◦ϕ[h]PΦ(dϕ) ∀h ∈ BC(Rn), (4.2)

where Φ is any �nite p.p. on Rn, PΦ its probability distribution and Gt◦Φ

and Gt◦ϕ the p.g.�.s of t ◦ Φ and t ◦ ϕ respectively.

De�nition 37. Let ◦ be an operation de�ned on the couples (t,Φ), where

t ∈ (0, 1] and Φ is a �nite p.p. on Rn, such that the outcome t ◦Φ is a �nite

p.p. on Rn. Let ◦ satisfy (4.2). Such an operation is a (general) branching

operation if it satis�es the following three requirements:

1. Associativity with respect to superposition: ∀ ϕ ∈ N (Rn) and ∀ t1, t2 ∈

(0, 1]

Gt1◦(t2◦ϕ)[h] = G(t1t2)◦ϕ[h] = Gt2◦(t1◦ϕ)[h] ∀h ∈ BC(Rn); (4.3)

2. Distributivity with respect to superposition: ∀ ϕ1, ϕ2 ∈ N (Rn) and ∀

t ∈ (0, 1]

Gt◦(ϕ1+ϕ2)[h] = Gt◦ϕ1 [h]Gt◦ϕ2 [h], ∀h ∈ BC(Rn); (4.4)

3. Continuity: ∀ ϕ ∈ N (Rn)

t ◦ ϕ ⇀ ϕ t ↑ 1, (4.5)

where ⇀ denotes the weak convergence of measure.

The reason to call these operations �branching operation� is that there is

a bijection between them and right-continuous Markov branching processes

on N (Rn), as it is proved in Theorem 13.
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Remark 17. Using (4.2) it is easy to prove that the three conditions that

characterize (general) branching operations are equivalent to the followings:

1'. Associativity with respect to superposition: for every �nite p.p. on Rn

Φ and ∀ t1, t2 ∈ (0, 1]

Gt1◦(t2◦Φ)[h] = G(t1t2)◦Φ[h] = Gt2◦(t1◦Φ)[h] ∀h ∈ BC(Rn);

2'. Distributivity with respect to superposition: ∀ t ∈ (0, 1] and for every

couple of �nite independent p.p.s on Rn Φ1 and Φ2

Gt◦(Φ1+Φ2)[h] = Gt◦Φ1 [h]Gt◦Φ2 [h], ∀h ∈ BC(Rn).

3'. Continuity: for every �nite p.p. on Rn Φ and for every t0 ∈ (0, 1]

t ◦ Φ ⇀ Φ t ↑ t0, (4.6)

where ⇀ denotes the weak convergence of measure.

Example 4. The simplest non trivial example of such a multiplication is

thinning. Also the F-operation described in chapter 3 satis�es the require-

ments above.

Proposition 13. Let ◦ be an operation acting on point processes and satisfy-

ing (4.2). Then ◦ is a general branching operation if and only if there exists a

right continuous Markov branching process on
(
NRn ,B(NRn)

)
, (Ψϕ

t )t>0,ϕ∈NRn

such that

Ψϕ
t
D
= e−t ◦ ϕ ∀t ∈ [0,+∞), ϕ ∈ N (Rn). (4.7)

Proof. Necessity: Give a general branching operation ◦ we denote the prob-

ability distribution of e−t ◦ ϕ by Pt(ϕ, ·). We want
(
Pt(ϕ, ·)

)
t≥0,ϕ∈NRn

to

be the transition probability functions of a Markov branching process on

NRn . Therefore we need to prove Chapman-Kolmogorov equations. Since ◦
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is de�ned on NRn and then extended to point processes (see (4.2)) for every

�nite point process Φ and t ≥ 0 we have that

Pr
{
t ◦ Φ ∈ A

}
=

∫
NRn

Pt(ϕ,A)PΦ(dϕ) ∀A ∈ B(NRn), (4.8)

where PΦ(·) is the probability distribution of Φ. Using this equation we

obtain that given t1, t2 ≥ 0 and ϕ ∈ NRn the distribution of e−t2 ◦ (e−t1 ◦ϕ)

is given by

Pr
{
e−t2 ◦ (e−t1 ◦ ϕ) ∈ A

}
=

∫
NRn

Pt2(ψ,A)Pt1(ϕ, dψ) ∀A ∈ B(NRn).

From the associativity of ◦ we know that

e−t1 ◦ (e−t2 ◦ ϕ)
D
= (e−t1−t2) ◦ ϕ,

from which Chapman-Kolmogorov equations follow∫
NRn

Pt1(ψ,A)Pt2(ϕ, dψ) = Pt1+t2(ϕ,A) ∀A ∈ B(NRn).

We denote the Markov process on NRn associated to
(
Pt(ϕ, ·)

)
t≥0,ϕ∈NRn

by

Ψϕ
t and its p.g.�. by Gt,ϕ[·]. The independent branching property of Ψϕ

t (see

(4.1)) follows from the distributivity of ◦. In fact using the de�nition of

Pt(ϕ, ·) and the distributivity of ◦ we obtain

Gt,ϕ[h] = Ge−t◦ϕ[h] = Gϕ
[
Ge−t◦δx [h]

]
= Gϕ

[
Ge−t◦δx [h]

]
= Gϕ

[
Gt,δx [h]

]
.

From the left continuity of ◦ it follows immediately that Ψt,ϕ is right con-

tinuous in the weak topology.

Su�ciency: Let (Ψϕ
t )t>0,ϕ∈NRn be a Markov branching process on NRn . We

consider the operation ◦ induced by (4.7), i.e.

t ◦ ϕ D
= Ψϕ

− ln(t). (4.9)

We start proving associativity of ◦, which means that ∀ ϕ ∈ NRn and ∀

t1, t2 ∈ (0, 1]

t1 ◦ (t2 ◦ ϕ)
D
= (t1t2) ◦ ϕ. (4.10)
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Using (4.9) and (4.2) we obtain that the distribution of t1 ◦ (t2 ◦ ϕ) is

Pr
(
t1 ◦ (t2 ◦ ϕ) ∈ A

)
=

∫
NRn

P− ln t1(ψ,A)P− ln t2(ϕ, dψ) ∀A ∈ B(NRn),

where Pt(ϕ, ·) is the distribution of Ψϕ
t . Using Chapman-Kolmogorov equa-

tions the right hand side of the equation becomes Pln(t1t2)(ϕ,A) and therefore

associativity (i.e. (4.10)) holds. We prove distributivity. Using the de�nition

of ◦ and the independent branching property of Ψϕ
t it follows

Gt◦(ϕ1+ϕ2)[h]
(4.9)
= G− ln t,ϕ1+ϕ2 [h]

(4.1)
= Gϕ1+ϕ2

[
G− ln t,δx [h]

]
∀h ∈ BC(Rn).

Since ϕ1 and ϕ2 are deterministic measure they're independent and so

Gϕ1+ϕ2

[
Gt◦δx [h]

]
= Gϕ1

[
Gt◦δx [h]

]
Gϕ2

[
Gt◦δx [h]

]
= Gt◦ϕ1 [h]Gt◦ϕ2 [h].

From the last two equations distributivity of ◦ follows. Finally the continuity

of ◦ follows immediately from the de�nition of ◦ (see (4.9)) and the right

continuity of Ψϕ
t ∈ NRn .

4.3 Two simple examples of general branching op-

erations

As shown before every general branching operation for point processes cor-

responds to a general Markov branching process in NRn . Such processes are

basically made of two components: a di�usion one and a branching one (see

subsection 4.1.2). We present here two examples of these processes and the

induced branching operations on point processes.

4.3.1 Simple di�usion

The �rst case we consider is the one in which there is only di�usion and no

branching. Let X(t) be a strong Markov process on Rn, right continuous

with left limits. We can associate to X a di�usion process (Ψt,ϕ)t>0,ϕ∈NRn :
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starting from a point con�guration ϕ every particle moves according to an

independent copy of X(t). We denote by ◦d the branching operation asso-

ciated through (4.7). ◦d acts on a �nite point process Φ by shifting every

point xi by Xi

(
− ln(t)

)
, where (Xi)i∈N are independent copies of X. We

denote by ft the density function of the distribution of X
(
− ln(t)

)
. Then,

given a p.p. Φ with p.g.�. GΦ[h], the p.g.�. of t ◦d Φ is

Gt◦dΦ[h] = E[
∏

xi∈t◦dΦ

h(xi)] = E[
∏
xi∈Φ

h
(
xi +Xi(− ln(t))

)
] =

= E[E[
∏
xi∈Φ

h(xi +Xi(− ln(t)))|Φ]] = E[
∏
xi∈Φ

E[h(xi +Xi(− ln(t)))]] =

= E[
∏
xi∈Φ

ft ∗ h(xi)] = GΦ[ft ∗ h].

4.3.2 Thinning with di�usion

The second case of general Markov branching process that we consider is the

following: every particle moves independently according to X(t), a strong

Markov process on Rn right continuous with left limits, and after exponential

time it dies. We call this operation thinning with di�usion and denote it by

◦td. This operation acts on a point process Φ as the composition of the

thinning and the di�usion operation (the order in which the operations are

applied is not relevant, see Remark 18). We give the following de�nition.

De�nition 38. Let X(t) be a strong Markov process on Rn right continuous

with left limits. Let ft denotes the density function of the distribution of

X
(
− ln(t)

)
. We denote the thinning with di�usion operation associated to

X(t) by ◦td. Given a �nite p.p. on Rn Φ, the process t◦tdΦ is de�ned through

its p.g.�.:

Gt◦tdΦ[h] = GΦ[1− t+ t(ft ∗ h)] ∀h ∈ BC(Rn), (4.11)

where GΦ is the p.g.�. of Φ.
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Remark 18. The density function ft has mass 1, therefore 1−t+t(ft∗h) =

ft ∗ (1− t+ th). This means that for every �nite point process Φ on Rn

t ◦td Φ
D
= t ◦d (t ◦ Φ)

D
= t ◦ (t ◦d Φ),

where ◦ denotes thinning and ◦d the di�usion operation described in subsec-

tion 4.3.1. This means that thinning with di�usion is the composition of the

thinning and the di�usion operation where the order with which these two

operations are applied is not relevant.

4.4 Notion of stability for subcritical general branch-

ing operations

Let ◦ be a general branching operation for point processes associated to a

Markov branching process on NRn Ψϕ
t . Ψϕ

t is obtained from ◦ as shown in

Theorem 13. We say that the operation ◦ is subcritical in the case it is

associated to a subcritical branching process Ψϕ
t (meaning that the mean

number of particle is decreasing, i.e. E[Ψϕ
t (Rn)] < ϕ(Rn).

Proposition 14. Let ◦ be a subcritical branching operation for point pro-

cesses. Let Φ be a �nite point process on a c.s.m.s. X and (Φ(1), ...,Φ(n))

independent copies of it. Φ is called (strictly) stable with respect to ◦ if it

holds one of the following equivalent conditions:

1. ∀ n ∈ N ∃ cn ∈ (0, 1] such that

Φ
D
= cn ◦ (Φ(1) + ...+ Φ(n));

2. ∀ λ > 0 ∃ t ∈ [0, 1] such that

GΦ[h] =
(
Gt◦Φ[h]

)λ
;

3. ∃ α > 0 such that ∀ n ∈ N

Φ
D
= (n−

1
α ) ◦ (Φ(1) + ...+ Φ(n)); (4.12)
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4. ∃ α > 0 such that ∀ t ∈ [0, 1]

GΦ[h] =
(
Gt◦Φ[h]

)t−α
;

5. ∃ α > 0 such that ∀ t ∈ [0, 1]

t1/α ◦ Φ(1) + (1− t)1/α ◦ Φ(2) D= Φ. (4.13)

Proof. 4)⇒ 2)⇒ 1) are obvious implications. If we prove 1)⇒4) then 1),2)

and 4) are equivalent.

1)⇒4) : ∀m,n ∈ N using distributivity and associativity we get

Φ
D
= cn ◦ (Φ(1) + ...+ Φ(n))

D
=

D
= cn ◦

(
cm ◦ (Φ(1) + ...+ Φ(m)) + ...+ cm ◦ (Φ(n−1)m+1 + ...+ Φ(nm))

) D
=

D
= (cncm) ◦ (Φ(1) + ...+ Φ(nm)),

which implies that

cnm = cncm. (4.14)

Given n,m ∈ N since we are considering the subcritical case we have

n > m⇒ cn < cm. (4.15)

We then de�ne a function c : [1,+∞) ∩Q→ (0, 1]. For every 1 ≤ m ≤ n <

+∞, m,n ∈ N

c
( n
m

)
:=

cn
cm
. (4.16)

The function c is well de�ned because of (4.14) and has value in (0, 1] because

of (4.15).

Using associativity, distributivity and hypothesis 1)

(
G cn
cm
◦Φ[h]

) n
m =

(
G cn
cm
◦
(
cm◦(Φ(1)+...+Φ(m))

)[h]
) n
m =

=
((
Gcn◦Φ[h]

)m) n
m

=
(
Gcn◦Φ[h]

)n
= GΦ[h].
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Therefore

GΦ[h] =
(
Gc(x)◦Φ[h]

)x ∀x ∈ [1,+∞) ∩Q. (4.17)

We want to extend this relationship for x ∈ [1,+∞) ∩ R. Firstly we notice

that from (4.15) and (4.16) we obtain that c is a strictly decreasing function.

Therefore we can de�ne a function c̃ : [1,+∞)→ (0, 1] in the following way

c̃(x) := inf{c(y)| y ∈ [1, x) ∩Q}.

Since c̃(x) = c(x) for every x ∈ [1,+∞) ∩ Q we will call both functions c.

It is easy to see from (4.14) and (4.15), taking limits over rational numbers,

that c(xy) = c(x)c(y) for every x, y ∈ [1,+∞). The only monotone functions

c from [1,+∞) to (0, 1] such that c(0) = 1 and c(xy) = c(x)c(y) for every

x, y ∈ [1,+∞) have the following form c(x) = xr with r ∈ R. Since our

function is decreasing then r < 0. We �x r := − 1
α with α > 0 exponent of

stability.

Let {xn}n∈N ⊂ [1,+∞) ∩Q be such that xn ↓ x as n→ +∞, and therefore

x
− 1
α

n ↑ x−
1
α as n → +∞. Since ◦ is left-continuous in the weak topology it

holds

x
− 1
α

n ◦ Φ ⇀ x−
1
α ◦ Φ n→ +∞,

where ⇀ denotes the weak convergence. From (4.17) we have

(
GΦ[h]

) 1
x = lim

n→+∞
Gc(xn)◦Φ[h] = lim

n→+∞
G
x
− 1
α

n ◦Φ
[h].

If we have a sequence of point processes {µn}n∈N such that their p.g.�.,

Gn[h], converge pointwise to a functional G[h] such that G[h]→ 1 for every

h ↑ 1, then there exist a random measure µ such that µn ⇀ µ and G[h] is

the p.g.�. of µ (see Exercise 5.1 in [14]). Since GΦ[h] ↑ 1 as h ↑ 1 then also(
GΦ[h]

) 1
x ↑ 1 as h ↑ 1, and thus

(
GΦ[h]

) 1
x is the p.g.�. of x−

1
α ◦ Φ.

4) ⇒ 3) ⇒ 1) are obvious implications and so also 3) is equivalent to 1),2)

and 4).
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4)⇒5): Let x, y ∈ [1,+∞). Then because of 4)

GΦ[h] = G
(x+y)−

1
α ◦Φ

[h]x+y = G
x−

1
α

(
x+y
x

)− 1
α ◦Φ

[h]x ·G
y−

1
α

(
x+y
y

)− 1
α ◦Φ

[h]y =

= G(
x+y
x

)− 1
α ◦Φ

[h] ·G(
x+y
y

)− 1
α ◦Φ

[h] = G(
x+y
x

)− 1
α ◦Φ+

(
x+y
y

)− 1
α ◦Φ′

[h],

where Φ′ is an independent copy of Φ. From the arbitrariness of x, y ∈

[1,+∞) follows the thesis.

5)⇒3): (4.12) is obviously true for n = 1. We suppose (4.12) true for n− 1

and we prove it for n. Putting t = 1
n in (4.13) we obtain

Φ
D
= n−

1
α ◦ Φ′ + (1− 1

n
)

1
α ◦ Φ′′

D
= n−

1
α ◦ Φ′ + (

n− 1

n
)

1
α ◦ Φ′′,

and using (4.12) for n− 1

n−
1
α ◦Φ′+(

n− 1

n
)

1
α ◦Φ′′ D= n−

1
α ◦Φ′+(

n− 1

n
)

1
α ◦
(

(n−1)−
1
α ◦(Φ(1)+...+Φ(n−1))

)
,

which is exactly (4.12) for n.
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Future perspectives

The natural continuation of this work is to study and try to characterize

stable p.p. with respect to the general branching operation described in the

fourth chapter. We are working on this problem and we have already ob-

tained some results in the case of branching operations made by a di�usion

and a thinning components. In this case stable p.p. admit a Cox represen-

tation similar to the one given for DαS p.p. in Chapter 2 (Theorem 13). We

are now trying to understand how to deal with the case of a general branch-

ing (i.e. when the particle branches it is replaced by particles on di�erent

locations). The �rst aspect that could be worth exploring is the role of the

limit conditional distribution of the branching process (Y∞ in the notation

of Chapter 3) in this general case.
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